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Preface

This volume contains the proceedings of the conference on Polynomial Identities and
Combinatorial Methods, held on the island of Pantelleria, Italy. It was the fourth in a
series of meetings in the last decade concerning the theory of associative and
nonassociative algebras satisfying polynomial identities (PI-algebras). The first of these
meetings was a small workshop in Palermo, Italy, in 1992. The second was the
conference entitled Methods in Ring Theory, held in 1997 in Trento, Italy. The
proceedings of that conference were published in the Marcel Dekker series Lecture Notes
in Pure and Applied Mathematics, Volume 198, and it is now a standard reference for
specialists working in the area of polynomial identities.

Considerable progress could be observed in the theory of algebras with
polynomial identities during the years following the Trento conference. Some of the
most important achievements in this area were due to a combination of algebraic
techniques with analytical and combinatorial methods in the study of various numerical
characteristics of Pl-algebras and their identities. Leading specialists in this area met in
Rehovot, Israel, in May 2000, in the Workshop on Growth Phenomena in Associative and
Lie Pl-algebras. Unfortunately, the results presented in Rehovot were not collected in
one volume. To make up for this deficiency we hereby offer the proceedings of the
Pantelleria conference, presenting the up-to-date status and tendencies in this area.

The conference featured the latest results in the theory of polynomial identities
and a presentation of different methods and techniques pertaining to different areas, such
as algebraic combinatorics, invariant theory, and representation theory, both of the
symmetric and the classical groups, and of Lie algebras and superalgebras.

During the conference one-hour invited lectures were given by Y. Bahturin, A.
Belov, O. Di Vincenzo, M. Domokos, V. Drensky, E. Formanek, A. Giambruno, A.
Guterman, P. Koshlukov, S. Mishchenko, V. Petrogradsky, C. Procesi, A. Regev, L. H.
Rowen, I. Shestakov, and M. Zaicev. In addition, several other invited talks of shorter
lengths were presented. This volume includes the papers of most of the principal
speakers and some other invited contributions related to the conference.

Even though the contents of this volume cover a broad range of themes, from
ring theory to combinatorics to invariant theory, they still have a common thread in the
theory of polynomial identities. The book will be useful to all researchers working with
polynomial identities, varieties of associative algebras, Lie and Liebnitz algebras, and
their generalizations. It will also be of interest to specialists in free algebras, growth
functions of algebras, and, more generally, to mathematicians who apply numerical and
analytical methods in algebra.
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iv Preface

The editors wish to express their appreciation to the following agencies and
institutions that have contributed financial support: the Gruppo Nazionale per le Strutture
Algebriche Geometriche ed Applicazioni of the Istituto Nazionale di Alta Matematica,
the national research project Algebre con Identita Polinomiali of the MURST, and the
University of Palermo.

Antonio Giambruno
Amitai Regev
Mikhail Zaicev
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Linearization method of computing Z, -
codimensions of identities of the Grass-
mann algebra

N. ANISIMOV  Chair of Higher Algebra, Faculty of Mechanics and Math-
ematics, Moscow State University, 119899, Moscow, Russia.
E-mail: nikanis@mail.ru

1 INTRODUCTION

Let A be an associative algebra over a field F' of characteristic 0, and let
G be a finite group of automorphisms and anti-automorphisms of A. Also
let X = {x1,x9,...} be a countable set of indeterminates. The free algebra
with the set of free generators < X |G >= {zf|i € N,g € G} is called the
algebra of G-polynomials. The space

Vo(z,G) = spanF{xi‘H])) . 'I?Ei:))la € Sn,9 € G}

is called the space of multilinear G-polynomials in the variables z1,..., z,.

The polynomial f(z1,...,2,,G) € Vi(x,G) is called an n-linear G-
identity if for arbitrary elements ay,...,a, of A, f(a1,...,an, G) = 0; here
we use the notation a9 = g(a) foralla € A, g € G. All n-linear G-identities
form the ideal Id,, (A, G) of n-linear G-identities. The sequence

Vo(z|G)

cn(A,G) = dimp —Idn(m, e

is called the sequence of G-codimensions of the ideal of the G-identities of
the algebra A. If the group G is generated by an element ¢ one uses the
notation of “p-identities” instead of “G-identities”. We remind that the

1



2 Anisimov

basic notions of PI theory were introduced by A. Regev in [1] and then
generalized by A. Giambruno and A. Regev in [2].

Properties of such sequences were widely investigated only in the tradi-
tional case G = {id}; the general case is very incomplete. Moreover, there
are only a few algebras whose sequence of codimensions of identities have
been computed exactly. One of these algebras is the infinite-dimensional
Grassmann algebra A, ¢, (A) = 2”1 (see [3]). Note that the Grassmann al-
gebra is of fundamental importance in PI theory, for example, it generates
a minimal variety of exponential growth. Questions that arise naturally
are: to compute the involutive and the Zs-codimensions of the identities
of the Grassmann algebra, and to describe the ideals of Zs-identities of
A. These questions were partially answered in [4]. For example, the se-
quence of involutive codimensions of the Grassmann algebra was computed
for an arbitrary involution. But the general case of Zs-action on A was
investigated in [4] only for automorphisms of order two with linear action
on generators. In this article we point out the deep connection between
arbitrary Zs-codimensions of identities and Zs-codimensions of identities
for linear automorphisms which were computed in [4]. The statements of
the theorems of Section 2 contain an additional assumption on the au-
tomorphism. By computing the structure of some automorphisms of the
Grassmann algebra we show in Section 3 that the additional assumption is
natural for such automorphisms.

We now list some definitions and properties used later. Let A be the
infinite-dimensional Grassmann algebra with generators ey, es, . . . and defin-
ing relations e;e; + eje; = 0. Then the set of all ordered monomials
{ei,...eilk > 1,1 <4 < ... < ix} form a basis Dy of A. There is a
natural Zs-grading on A, A = Ag & A1, where Ag and A; are spanned by
the basic monomials of even and of odd length correspondingly. The Zo-
graded elements of A commute by the following rule: if g € A; and h € Aj,
then gh = (—=1)“hg. The length |a| of the monomial a € Dy is the number
of generators in a: |e;, ...e;, | = k.

Let ¢ be an automorphism of order two on the algebra A. If it’s action
on the generators is defined by the formula

w(e:) = Zajiej + Z BrmiGm,
J am€Dp

lam|>2

then the mapping defined on the generators by the formula
@l(e,;) = Zaj,;ej
J

and homomorphically continued on A is also an automorphism of order two
on the Grassmann algebra. The automorphism ¢; is a linear operator in



Z,-Codimensions of Identities of the Grassmann Algebra 3

the space L = spang{e,ea,...}. In further considerations we will assume
without loss of generality that the generators of the Grassmann algebra
form the eigenbasis for the operator ¢; in the space L. The subspaces
corresponding to the eigenvalues 1 and —1 are denoted by L; and L_;.

2 7Zo-IDENTITIES OF THE GRASSMANN ALGEBRA

First we note that for an arbitrary automorphism ¢ of the Grassmann alge-
bra A with dim L; = dim L_; = oo the p-codimensions of the identities of
A were computed in [4]. But ¢, (A, ¢;) are known precisely only if one of the
eigenspaces Lj or L_; is finite-dimensional. In this section the coincidence
of Id,, (A, ¢) and Id, (A, ¢;) (and of corresponding codimensions) is proved,
provided there are some additional assumption on ¢.

LEMMA 2.1 Let ¢ : A — A be a graded automorphism of the Grassmann

algebra and let k be a natural number. If for any k generators e;, ..., e;,
k
H plei;) —ei;) =0,
Jj=1
then for any basic monomials a;,,...,a; € Dj

(¢(ai;) —ai;) = 0.

—.

<
ﬂ‘

Proof. Consider arbitrary basic monomials a;,,...,a;, € Dy. We argue
by induction on the total length Z?:l lai;| of the chosen monomials. The
base of induction follows from the condition of the lemma for k arbitrary
generators. Next assume Zj 1lai;| = m > k and that the statement of
the lemma is true for all sets of basic monomials with total length less
than m. Since m > k, at least one of the chosen monomials a;,,...,a;, is
of a non-unit length. Since ¢ is a graded automorphism we may assume,
without loss of generality, that a;, = e; a; is of non-unit length. Then

k
H(SO (11] (11] :(‘P(eu 11 — €0 11 H al] (11] =

=2

k
= ((50(81'1) — € + 61:1)(90(04,) - 0‘21 + a’ — €;a 11 H a1J a'iJ) ES
=2
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k
= (Lp(eil)((p(a;;l) - a';jl) + (‘P(eil) 611 H 01] (11_7

Since |aj, | + Z_I;:Q lai;| = m — 1 < m, therefore by induction

k

(4,0((1;1) - a;‘,l) H(‘p(ai]‘) - a'ij) =0.

=2

Since ¢ is a graded automorphism, the element ¢(e;, ) — e;, is also graded
and hence commutes (or anticommutes) with the monomial a . So finally
we obtain

k k

[1(elas,) = ai;) = (plen) — ei)ai, [[(w(a;) —asi;) =

J=1 Jj=2

= :{:a w(ei,) — eiy) H e(ai;) —ai;) =0

since 1+ Z§=2 lai,| < m and so we may apply the inductive assumption to

the set of monomials e;,, a,, ..., a;,.
O

THEOREM 2.1 Let ¢ : A — A be a graded automorphism of order two of
the Grassmann algebra A, let dimL_1 = [ < co and assume that for any
I+ 1 generators e;y,...,€;,,,

H(g0(61])—67]) =0. (1)

Then
Idn (A, ) 2 1dn (A, 1),

1
4"~ 7, n <I;

Cn(Aa 80) = CTL(A7 LlDl) = { 2n—1 2320 C%, n > l

Proof. For m < I the statement of the theorem follows from the chain of
inequalities

3 2] 4] 4
“3 D 9nc,(A) S (A, 0) > en(h, 1) 2

43, (2)

pb.
wh—-
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Now suppose n > [. In this case we prove the equality c,(A,¢) =
cn(A, ¢1) by proving the isomorphism of ideals Id, (A, ¢) = Id,(A, ¢;). Let
f € Va(z, ), then:

9o ( 9o(n)
f= Z aa’gﬂ‘,a(ll)’ Ty (3)

o€Sp ]
G=(91,-- 977.)€Z72'

T, gi=0; , ;
where ;' = {;Zp 5: -1 We define the isomorphism 7 : V(z,¢) —
L g .

Vo(x, 1) by the equality 7(zf) = zf' and prove that if (7f) € Id,(A, ¢;)
then f € Id,(A,¢). The inverse inclusion of these ideals of identities was
proved in [4].

Choose a set aq, ..., a, of n arbitrary basic monomials of the Grassmann
algebra A and recall some characteristics introduced in [4] for every such
set of monomials:

o I =1I(ay,...,an) = (i1,...,1n) € Z7 is called “the set of evens” for

) o 3 0, |ag| is even;
1y y0n 'k — 1’ Ia,kl s Odd;

o J = J(ay,...,an) = (J1,...,Jn) € Z7 is called “the set of signs”
for ay,...,ay if ji is defined by the formula ¢;(ax) = (—1)%*ay, k =
1,...,n;

. fl(n)(a) is defined by the equation
_ (n) . 4
Ag(1) -+ - Ao(n) = f7 " (0)ar...an; (4)

° 95")(g1, ..., 9n) is defined by the equation

9o o(n n
(T(xa((ll)) - .mi(;))))(al, R 95 )(gl, ey Gn)Ag(1) - - - Ag(n)

and may be computed by the formula

90, )01 0) = (~D) T I

In [4] it was proved that (7f) € Id, (A, ¢;) if and only if

Z <f1(n.)(o-)g'(]")(gl, s e ,gn))aa’g‘ =0 (5)

o€Sp,
g=(g1,--+ !Jn)EZ'z7

for all (0,g) € S, x Z5, all I € Z% and all J = (j1,...,jn) such that
Dok=1Jk <L
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ga(l) 9o(n)

o(1) =+ To(n)

Vo(z, ), computed on the monomials ay,...,a,. Introduce the notation

GO U h;
! o(a;) —a;, h;

Let go(i,) = --+ = Go(iy) = 1, and the other g; are equal to 0. We

Transform the value of the basic monomial = of the space

Il

05
1

also use a natural lexicographic partial order on binary sequences: h =
(h1,... hn) < (91,---y9n) = gif h; < g; for alli = 1,...,n. Now we
transform

9o Go(n
Gty G = (1) -+ (P(Ao(i1) = Go(ir) + Ao(in)) -+

((ag(iy) = Ao(iy) T Ao(in)) - - - Qo(n) = Ag(1) - - - Qo(n) T

(h'o(l)) (ha(n)) (ho(l)) (h‘a('n))
B Z Aoly -+ Omy oot Z Ap(1y ++Og(n) (6)

From condition (1) of the theorem and from Lemma 2.1 we obtain that
for any natural number m > [,

m
H 0,7(-1) =0.
=1

Since ¢ is a graded automorphism, one may continue Equation (6) as fol-
lows:

min{/,>" g;}

ga (1) 9o(n) __ (h'a(l)) (ho(n))
o1y ~+Aon) = Z Z aa(l) o lomy
fwsa
=7 ok
We substitute the above expression in the valuation of the polynomial f
computed on the monomials aq, ..., ay:
9o(1) ga(n) _
f((l,l, . orwy Z aggaa(l) o(n) =
min{l,>" g:} ( )
_ ho(1) (ha(ny) _
- Z Ao,g Z Z aa(l) T acr(n
o,g h<g
Z;’ 1 h;=k
l (ho(1)) (ho(n))
— - ‘o (1) o(n)
=Y Z Bog Y. Ggi e i S
k=0 o9 h<g
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Since ¢ is a graded automorphism, for any i, 1 < i < n, a( )is a

. h‘d agn
graded element and one may apply Equation (4) to a,g(1§l)) . ag(n() )) , which
transforms the last equality as follows:

far, . Z > (X #@ang)a™ . al. (7)

gESn
2 0 h;=k g>h

—

Prove that for any k£, 0 < k£ < [, and for any binary sequence h =
(hiy...,hy) with 37 hy =k,

3 1) 0, 8)

oESn
g>h

using the system of Equations (5) on the coefficients o, 5 of the polynomial
f. Consider the following linear combination of some equations of this

system:
DDA (Y @) (01, an)ang). (9)

f<h 0,9

where I = I(ay,...,ap). Since Y.;" h; = k < I, therefore f < h holds
S, fi <1, and hence every term of the sum (9) (maybe multiplied by
—1) is contained in the system of Equations (5). Hence the linear combi-
nation (9) is equal to 0. On the other hand this linear combination may be
transformed as follows:

=> [ 2D g1, 90) | £V (0)ag. (10)

o3 \f<h

Fix ¢ and ¢ and compute the coefficient of fl("')(a)ag'g. Without loss

of generality we may assume that hy = ... = hy = 1, hgyq = ... =
hn, = 0. Also we assume that § contains exactly r units on the first &
entries and without loss of generality g = ... = g, = 1. Also note that
gj(;")(gl, o pilla) = (—1)21{19’. Thus

Z(_I)ZI1Q§:)(917,gn Z( 1 ,—1 f1 g1+l)

f<h f<h

k
=3 > (-nTRheD, (11)



