ags8

/777 LTIV

ROGER McSHANE

TP/

8555862

"Me2l

EXPLORING APPLESOFT

Roger McShane

Prentice-Hall of Australia

A Prentice-Hall Direct Edition

©1983 by Prentice-Hall of Australia Pty Ltd

A1l rights reserved. No part of this book may be
reproduced in any form or by any means without
permission in writing from the publisher,

Prentice-Hall of Australia Pty Ltd, Sydney
Prentice-Hall International Ine., London
Prentice-Hall Canada Inc., Toronto

Prentice-Hall of India Private Ltd, New Delhi
Prentice-Hall of Japan Inc., Tokyo

Prentice-Hall of Southeast Asia Pte Ltd, Singapore
Editora Prentice-Hall do Brasil LTDA., Rio de Janeiro
Whitehall Books Ltd, Wellington

Prentice-Hall Inc., Englewood Cliffs, New Jersey

The program material contained herein or in any further
deletions, addenda, or corrigenda to this manual or
associated manuals or software is supplied without
representation or guarantee of any kind. These computer
programs have been developed for student use in a

teaching situation and neither the authors nor Prentice-Hall

of Australia Pty Ltd assume any responsibility and shall
have no liability, consequential or otherwise, of any kind
arising from the use of these programs or part thereof.
1234587 86858483

Printed and bound in Australia by
Globe Press Pty Ltd, Brunswick, Victoria

Cover by Sam Latsis

Apple II and APPLESOFT are registered
trademarks of Apple Computer, Inc.

ISBN 0-13-29591k-X

Library of Congress Cataloguing in Publication Data

McShane, Roger, 1950-
Exploring Applesoft.

Includes index.

1. Apple II (Computer)--PrograTm1ng. 2. Apple lle
(Computer)--Programming. I. Title.
Qa76.8.A662M4 1983 001.64'2 83-11152
ISBN 0-13-295916-X

National Library of Australia
Cataloguing-in-Publication Data

McShane, Roger.
Exploring APPLESOFT.

Includes index.
ISBN 0 7248 0417 X.

1. Apple II (Computer) - Programming.
I. Title

001.64'24

PREFACE

This book has been written in response to the needs of
three groups: students having their first contact with a
microcomputer, students who wish to study programming as an
interest rather than a discipline, and last, but by no
means least, adults who find the traditional approaches to
programming to be difficult or confusing.

The main philosophy behind the approach taken in this book
is that students will grasp programming concepts more
readily if they can 'see' the results of their programs.
For this reason there is a heavy emphasis on the use of
graphics throughout the book. The author believes that
students are able to detect errors, and correct those

errors, much faster if they have a graphics image to deal
with.

Another variation from the traditional approach is that the
syntax of the APPLESOFT language is introduced
incidentally. The author believes that many students are
given a very bad impression of programming in their first
few lessons when a bewildering number of ‘rules' for PRINT
formatting or mathematical formulae are thrust upon them.
The time for an explanation of these facts is when the
student needs to use them - if they are comfortable in
using the computer for simple programming they will be more
receptive to looking up the rules in books and manuals.

The book has been designed to appeal to a wide range of
students and therefore does not contain many examples or
exercises from the mathematics area. Computers are used
widely in the general community for accounting, word
processing, file handling, record keeping, information
sharing and for recreation - very few people use them for
mathematics in the true sense and the author believes that
the teaching of programming should reflect this.

In the first sections of the book a number of 'programming
models' have been introduced to help explain some of the
elementary programming concepts which are so often dealt
with in a cursory fashion. It is the author's belief that
students begin writing programs by imitating sections of
code that they have already seen. It is not until they

have internalized a complete set of ‘'models’ that they
become proficient at the task of coding. One of the chief
responsibilities of the teacher, therefore, is to provide
students with an adequate set of models. Conversely,
students should not be asked to attempt problems for which
adequate models have not been provided.

The book has been divided into a number of lessons each
with a particular theme, and these are supplemented by a
number of 'interludes' and appendices which contain much of
the technical information the students will need. Most of
the lessons finish with a slightly longer program. It will
not be necessary for all students to understand those
programs as the next lesson will begin at an easier level
in each case. The author has included these harder
examples for those students who find programming to be
easy. Towards the end of the book a number of programming
standards are introduced to show students who intend to
take their study of programming further that adherence to

standards and programming style 1is essential in the
programming field.

[would Tlike to pay a tribute to my wife Ain and my
children Stuart and Sallyanne who have supported me in the
development of this book, giving up many weekends and
holidays so that the project could be completed. My
sincere thanks are also extended to Scott Brownell who has
been an inspiration to all computer educators in Tasmania,
and to Jo Ginn for the diagrams used in this book.

Roger McShane

Hobart, 1983.

Preface
Lesson 1
Interlude 1
Lesson 2
Interlude 2
Lesson 3
Interlude 3
Lesson 4
Interlude 4
Lesson 5
Interlude 5
Lesson 6
Appendix A
Appendix B
Appendix C

Appendix D

8585862

CONTENTS

Graphics Programming 1
15

Further Graphics Programming 18
30

The Text Display 34
44

String Handling 48
62

Arrays 65
74

Subroutines and Animation 76
Command Summary 87
Error Codes 163
ASCII Codes 167

Shapes Subroutines 169

Lesson 1

Graphics Programming

In this lesson the fundamental concepts
of computer programming will be
discussed. These ideas will be introduced
by plotting various images on the Apple's
graphics display. The fundamental ideas
of assigning values to variables and
constructing 1oops and branches are
introduced.

OQur investigation of the way to program the Apple
microcomputer will begin with a 1look at the GRAPHICS
features. The Apple must first be turned on. Throughout
these lessons it will be assumed that the Apple has been
turned on and Applesoft is the standard language. The
prompt] will appear as soon as Applesoft is available.

The Apple can display TEXT (ordinary characters) or
GRAPHICS (pictures and designs) or a mixture of both.
One of the graphics screens (the low-resolution) will be
displayed in response to the instruction:

] GR

A1l of the screen, except for the bottom four lines, will
be cleared to prepare for the graphics display. The
graphics display consists of 1600 points on the screen made
up of 40 columns (numbered 0 to 39) and 40 rows (also
numbered 0 to 39). The top left hand corner is numbered
040 5

0 39
o| N /-
0,0 39,0
39,39
39 -
4 TEXT LINES

LOW-RESOLUTION GRAPHICS DISPLAY

D

Graphics points are displayed using the PLOT command. Try
the instruction:

1 PLOT 5,30

This instruction asks the Apple to display a point in the
5th column and the 30th row. After we have typed this
instruction, however, nothing will be seen! The reason

for this is that the Apple must know what COLOR to plot the

point in. We have just plotted a black point on a black
background.

The COLOR can be specified by typing
] COLOR=2
If we now repeat the instruction

] PLOT 5,30

a small, colored rectangle will appear on the left-hand

side of the screen towards the bottom. The color codes
are:

0..... BLACK 8..... BROWN

l..... MAGENTA 9..... ORANGE

2..... DARK BLUE 10..... GRAY

3..... PURPLE 11..... PINK

4..... DARK GREEN 12..... LIGHT GREEN

5..... GRAY 13ssase YELLOW

6..... MEDIUM BLUE 14..... AQUA

7eeeeo LIGHT BLUE 15..... WHITE

These colors will vary from one TV set or monitor to
another.Try some different COLOR commands such as COLOR=9
or COLOR=12. Follow the COLOR commands with PLOT commands.

Throughout this book a number of PROGRAMMING MODELS will be

provided to act as a guide for using various statements in
your own programs.

=3

® © o e o o o e o o o

MODEL 1

A point is PLOTted in the current color according to the
column and row which it is given.

PLOT 5,2

e
l o e

AV L
VAV

A\

A\
In the example given, the point will be plotted in the
fifth column and the second row.

® e » » s+ s 2 e e & & e & 6 o o o o © © © © e ® e o o e o o

Exercises

(a) Photostat the diagram of the low-resolution graphics
display then mark in each of the PLOT commands.

(1) PLOT 0,0 (i1) PLOT 3,18 (iii) PLOT 37,23
(iv) PLOT 1,5 (v) PLOT 17,15 (vi) PLOT 39,20
(vii) PLOT 20,39 (viii) PLOT 0,5 (xi) PLOT 0,39
(x) ~ PLOT 15,10 (xi) PLOT 20,30 (xii) PLOT 19,39
(b) Draw the outline of a yacht on a graphics sheet

then write down the PLOT commands required to draw
1t

(c) Teacher activity:

Pass out a graphics sheet to each student then call
out a number of PLOT commands. For marking purposes
pass around an overhead projector transparency with
the correct positions marked on it. The student
places this over his or her own answer to check.

If we now wish to display a point then erase it, the
following sequence of commands could be typed in:

1 GR display graphics screen
] COLOR=15 ce... S€t color to white

] PLOT 15,30 ~plot a point in white

J coLorR=0 set color to black

] PLOT 15,30 «.... point disappears

If we wish to plot a point, then erase it, then plot it at
the next position and hence move the point across the
screen it would be very tedious to type these commands in.
This is because we are giving our commands to the Apple in
what is known as IMMEDIATE MODE. An alternative method is
to STORE a sequence of instructions (known as a PROGRAM)
and then ask the computer to execute these instructions.
A program to display a point would Took like this:

] 10 GR

1 20 COLOR=4

] 30 PLOT 15,30
1 40 END

After typing these instructions you will notice that
nothing has been displayed. This is because we have used
line numbers (10, 20 etc.) to store the sequence of
instructions (program) in the Apple's memory. To activate
the sequence of instructions type the following:

1 RUN

The point will now be displayed. If RUN is typed again
the point will be displayed again and so on. To erase
this program and start a NEW one type:

1 NEW

Now you will notice that the program "disappears"
underneath the graphics screen. When a program is being
typed it is a good idea to return to TEXT mode by typing:

1 TEXT

At this stage you will notice that the display looks very
strange. If you wish to remove this, press RETURN a
number of times.

The following program will display an orange dot in each
corner of the screen:

<5

...+ display graphics
..... Set orange
0 PLOT 0,0 ceees top left

]

12

13 3

1 40 PLOT 39,0 vee.. top right

71 50 PLOT 39,39 ..s.. bottom right
] 60 PLOT 0,39 bottom left

To activate this set of instructions remember to type:

1 RUN

Notice that it is not necessary to reset the COLOR after
each PLOT command.

At the end of this lesson there is a program which causes a
"ball" to bounce off the edge of the screen. What are the
instructions needed to do this? Let us first look at the

set of instructions which display a point and then erase
it:

] 10 GR
] 20 COLOR=15
] 30 PLOT 15,30
1 40 COLOR=0
] 50 PLOT 15,30
1 60 END
Now type:
] RUN

You will notice that the point hardly appeared. This is
because the Apple executes the instructions very quickly.
If we wish to slow the Apple down a bit, a good idea is to
"waste" some time in between instructions. One way of
doing this is to make the APPLE "count" to a large number
such as 100 or 500 or 1000. The Apple does this with the
following "magic" command (which shall be explained later):

JFORI=1TO0 100 : NEXT I
Therefore we could amend the previous program by typing
135 FOR I =1T0 100 : NEXT I

-6-

This would have the effect of inserting the counting
instruction between lines 30 and 40. Now when RUN is
typed a white dot will be plotted and will remain while the
Apple counts to 100. Increase this value to 300 or 500 if
you wish the dot to stay there longer.

Let us now write a program to move the point across the
screen at a rate we can see. Before this is done the
concept of a VARIABLE must be understood. In the memory
of any computer there are a large number of memory "cells"
(variables) set aside to store numbers of characters.
Study the next four programming models carefully before
going on to the next program.

® ® o e o e e o o o o o o e o o o o o

MODEL 2

A memory cell or VARIABLE should be INITIALIZED (i.e. given
a first value) before being used. The basket of apples will
be used to represent the variable called APPLES. Some
microcomputers, including the Apple, set all variables to 0
when RUN is typed. It 1is good programming practice,
however, to give them an initial value. Notice that the
cell has a name (LABEL) as well as a VALUE.

100 APPLES=0 put 0 in the cell
labelled APPLES

S3744
g 22 A4y

® ® e o e & e e o e e o o e e 8 e & o o e e e e e

MODEL 3

Numbers can be stored in VARIABLES. We say that the VALUE
of 3 has been assigned to the VARIABLE called APPLES.
Notice that there are three apples in the basket.

200 APPLES=3

® © o o e o e e e e e © e e o e o o & o © © e e e o o e e e

MODEL 4

The value of a variable can be increased or decreased. In
this example we say that "the variable APPLES is assigned
the old value of the variable plus 1". In this case there
were three apples in the basket, now there are four.

30 APPLES = APPLES + 1

\

® © e e ° e e e e & e o o e e o e © © e & o © © o s e e o

MODEL 5

e o e o o o o

A set of instructions can be executed over and over again
Normally a program is executed

through the use of a LOOP.

line by line - the GOTO
different part of the program.

90

The program

developed
] 10
20

30
40

50
60

70
80

—_ e —tl —_r —_

90

GOTO 30

cece e

GR
COLUMN=0

COLOR=15
PLOT COLUMN, 20

FOR I =
COLOR=0

PLOT COLUMN, 20

COLUMN=COLUMN + 1

GOTO 30

1 TO 100:NEXT I

statement allows a change to a

go back to line 30

30

LEC I)

to move a point across the screen can now be

turn graphics
on

set column
value

set color value
plot first
point

wait a while
set color to
black

erase point
move to next
column

do it again

When execution reaches line 90 it will simply jump back up

to line 30 and start there again.

-9-

When the command RUN is

issued, the white dot will move across the screen and then
the message:

? ILLEGAL QUANTITY ERROR IN 40

will be displayed. The reason for this is that the
variable COLUMN has taken.the values 0,1,2,3, ... and so
on, and has finally reached the value 40. There is no
value 40, however, so the Apple has become confused! After
the set of exercises, a method of testing the value of

variables will be introduced. The test will help eliminate
this error.

Exercises

(a) Make the dot move across the screen very slowly.
(b) Make the dot move across the top of the screen.

(c) Make the dot move across the bottom of the screen.
Note: it is not necessary to retype the whole
program, just retype the lines which need changing.

(d) Change the program so that the dot moves down the
screen in the center. Hint: change the variabTe from

COLUMN to ROW and change the PLOT command to PLOT
20,ROW.

(e) Make the dot move down the screen on the left hand
side.

(f) Make the dot change color each time it is plotted.

(g) Make the dot move across the screen, but this time
only plot it every second point.

(h) Make the dot move diagonally from the top left hand
corner to the bottom right hand corner. Increase a
COLUMN variable and a ROW variable.

(i) Make the dot move from the top right hand corner to
the bottom left hand corner.

MODEL 6

The value of a variable can be TESTED. If it passes the
test then one set of instructions will be executed,
otherwise a different set will be executed.

Example 1:
10 APPLES = 2
20 IF APPLES = 2 THEN APPLES = 0

IF APPLES = 2 THEN APPLES = O

In this example the value of the variable APPLES is
initially 2 therefore the instruction after the THEN
statement will be executed. Therefore the value of APPLES
is now 0.

Example 2:
10 APPLES =1
20 IF APPLES = 2 THEN APPLES = 0

THEN _APPLES = O

N

In this example the value of APPLES is not 2 so the
instructions after the THEN statement will be ignored.

® o o e e o e e o o © & © o s e e ® ® o e e & o o e o o o

