Lecture Notes In

Mathematics

Edited by A. Dold, B. Eckmann and F. Takens

Subseries: Fondazione C.I.M.E., Firenze
Adviser: Roberto Conti

1403

B. Simeone (Ed.)

Combinatorial Optimization
Como 1986 ‘

@ SpringerVerlag

Lecture Notes In
Mathematics

Edited by A. Dold, B. Eckmann and F. Takens

Subseries: Fondazione C.I.M.E., Firenze
Adviser: Roberto Conti

1403

B. Simeone (Ed.)

Combinatorial Optimization

Lectures given at the 3rd Session of the
Centro Internazionale Matematico Estivo (C.I.M.E.)
held at Como, Italy, August 25—Sentember 2. 1986

SpringerVerlag
Berlin Heidelberg New York London Paris Tokyo Hong Kong

Editor

Bruno Simeone

Dipartimento di Statistica,

Probabilita e Statistiche Applicate
Universita di Roma “La Sapienza”
Piazzale Aldo Moro 5, 00185 Roma, ltaly

Mathematics Subject Classification (1980): 90C27; 68R99

ISBN 3-540-51797-9 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-51797-9 Springer-Verlag New York Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation,
broadcasting, reproduction on microfilms or in other ways, and storage in data banks. Duplication
of this publication or parts thereof is only permitted under the provisions of the German Copyright
Law of September 9, 1965, in its version of June 24, 1985, and a copyright fee must always be
paid. Violations fall under the prosecution act of the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1989
Printed in Germany

Printing and binding: Druckhaus Beltz, Hemsbach/Bergstr.
2146/3140-543210 — Printed on acid-free paper

PREFACE

The present volume contains the proceedings of the CIME
International Summer School on "Combinatorial Optimization",
which was held at Villa Olmo, Como, Italy, from August 25 to
September 2, 1986.

This was the first CIME Summer School specifically devo-
ted to this quickly developing area, although the Varenna
School on "Matroid Theory and its Applications" organized by
Prof. Barlotti in 1980 did already include some lectures on
matroid optimization. As a matter of fact, the idea of the
present School came up for the first time there.

Combinatorial Optimization has a peculiar 1location in
the map of Applied Mathematics, being placed in an interzone
in the middle of Combinatorics, Computer Science and Opera-
tions Research. From a mathematical point of view, it draws
on pure combinatorics, 1including graphs and matroids, on
Boolean algebras and switching functions, partially ordered
sets, group theory, linear algebra, convex geometry and pro-
bability theory, as well as other tools. Over the past
years, a substantial amount of research has been devoted to
the connections between Combinatorial Optimization and theo-
retical Computer Science, and in particular to computational
complexity and algorithmic issues. Quite often the study of
combinatorial optimization problems is motivated by real-
1ife applications, such as scheduling, assignment, location,
distribution, routing, districting, design and other Opera-
tions Research applications.

Although references to actual applications were frequen-
tly given, the emphasis of the School has been on theoreti-
cal aspects of Combinatorial Optimization. The four invited
Lecturers, Prof. Peter L. Hammer, Rutgers University, USA;
Prof. Ellis L. Johnson, IBM Scientific Research Center, Yor-
ktown Heights, USA; Prof. Bernhard Korte, University of
Bonn, West Germany; and Prof. Eugene L. Lawler, University
of California, Berkeley, USA, have given a broad account of
recent results and current trends in the area. Special at-
tention has been devoted to the study of important classes
of functions (either real- or binary-valued) defined on the
binary n-cube (Prof. Hammer); to polyhedral combinatorics
and its connections with combinatorial duality theories and
min-max identities (Prof. Johnson); to the deep link between

v

greedy algorithms and finite geometries such as matroids and
greedoids (Prof. Korte); to the role of submodularity (a di-
screte analogue of convexity) and to a general decomposition
theory leading to linear-time graph algorithms (Prof. Law-
ler).

Contributed papers were presented by D. Acketa, C. Ar-
bib, J. Bisschop, S. Dragutin, 0. Holland, M. Lucertini, S.
Pallottino, G. Pirillo, W. Piotrowski, B. Simeone, and P.
Winter, and many of them are collected in this volume. We
have also included contributions by M. Conforti and P. Han-
sen, who had planned to attend the School, but at the last
moment were not able to come.

It is a pleasure to acknowledge the financial support of
CIME, as well as the valuable assistance provided by Prof.
Roberto Conti, Director, and Prof. Antonio Moro, Secretary
of CIME. I am grateful to Fondazione "A. Volta" and its Di-
rector Prof. Giulio Casati for their kind hospitality: the
elegant neo-classic architectures of Villa Olmo and the sce-
nic beauty of Lake Como have created a charming atmosphere
for the School; and the local staff, in particular Dr. Chia-
ra De Santis and Mrs. Donatella Marchegiano, has efficiently
handled even the tiniest logistic details. I also thank my
colleagues Prof. Mario Lucertini and Prof. Stefano Pallotti-
no for their personal help in the organization of the
School. Finally, my deepest thanks to the invited Lecturers
and to the other participants for their individual contribu-
tions to the School.

Bruno Simeone,
University of Rome "La Sapienza"

TABLE OF CONTENTS

Courses
P.L. HAMMER and B. SIMEONE, Quadratic Functions of Binary Variables 1
E.L. JOHNSON, On Binary Group Problems Having the Fulkerson Property 57

r 4
O. GOECKE, B. KORTE and L. LOVASZ, Examples and Algorithmic Properties

of Greedodds: i .essesssies s o 6 wim 8 im e e e o 6 Wi s oy § W8 3 B BV SIS 8 e a el & 113
E.L. LAWLER, Combinatorial Structures and Combinatorial Optimization 162
Seminars
C. ARBIB, A Polynomial Algorithm for Partitioning Line-Graphs 198

J. BISSCHOP, B. DORHOUT and A. DRUD, Structural Dependence and Systems
of Equations & & 18 i SEE 6 G § Wl 6 I & %\5 #6 » W18 & BUG o e e s s are e s e 209

P. CHAILLOU, P. HANSEN, Y. MAHIEU, Best Network Flow Bounds for the Quadratic

Knapsack Problemiiieeeeeennenneceennaneneann cessesecsseces 225
M. CONFORTI, (K4—e)-Free Perfect Graphs and Star Cutsets © 8 EE s E s ne s we 230
P.L. HAMMER and B. KALANTARI, A Bound on the Roof-duality Gap coees 254
S. NGUYEN and S. PALLOTTINO, Hyperpaths and Shortest Hyperpaths s s swis «w 258
W. PIOTROWSKI and M.M. SYSZO, A Characterization of Centroidal Graphs 272

P. WINTER, Topological Network Synthesis siei s sie S Saeis s e s 282

QUADRATIC FUNCTIONS OF
BINARY VARIABLES

by
Peter L. Hammer
RUTCOR, Rutgers University, New Brunswick, NJ, USA

and
Bruno Simeone
RUTCOR, Rutgers University, New Brunswick, NJ, USA
and
Department of Statistics, University of Rome, Italy

Contents

1

Introduction

PART I: Quadratic boolean functions and equations

2
3

Boolean functions and boolean equations
Efficient graph-theoretic algorithms for solving quadratic boolean equations

PART II: Quadratic pseudo-boolean functions

Generalities on pseudo-boolean functions

Maximization of quadratic pseudo-boolean functions

Upper planes

Roofs

Complementation and the height

Linearization

Equivalence between roof duality, complementation and linearization
Elementary boolean operations

Equivalence between roof-duality and paved duality

“Local” vs “Global” concave envelopes

Weighted stability in graphs and the Konig-Egervary property
Weighted stability in graphs and efficient computation of best roofs
Persistency

Extreme cases

References

1 Introduction

The present survey is devoted to quadratic functions of n binary variables. Part I (Sec. 2
to 3) deals with binary-valued functions (boolean functions, truth functions) and its main
theme is the efficient solution of quadratic boolean equations; Part II (Sec. 4 to 17) deals
with real-valued functions (pseudo-boolean functions, set-functions) and focuses on the
maximization of such functions over the binary n-cube.

Quadratic functions of binary variables deserve attention for a variety of reasons. They
naturally arise in modelling interactions. Consider a set of n objects, labelled 1,2, ..., n,
each of which can be either chosen or not. Assume that for any pair (7, j) of objects a real
number a;;, measuring the “interaction” between i and j, is given. Also, assume that the
global interaction is the sum of the interactions between all pairs of chosen objects. Let
z; = 1 or 0 depending on whether object ¢ is chosen or not. Then the global interaction
can be written as a quadratic function 1, 357, a;jz;z; of the n variables z4, ..., z,.

For example, inter-city traffic [Rhys (1970)] and kinetic energy in spin-glass models
[Kirkpatrick, Gelatt and Vecchi (1983)] can be represented in this way.

Quadratic functions of binary variables also naturally arise in least-square approzima-
tion. Assume that a weight w; is assigned to each object i = 1, ..., n, and that one wants to
choose a subset of objects whose total weight is as close as possible to a “target” weight
t. This leads to the minimization of the quadratic function (wiz1 + - -+ + waz, — t)2.
One nice application deals with the optimal distribution of cargoes among the trips of a
space shuttle in the supply support system of a lunar base [Freeman, Gogerty, Graves,
and Brooks (1966)]. As another example, consider the optimal regression problem [Beale,
Kendall, and Wall (1967)]. An endogenous variable Y is approximated by a linear func-
tion a1Z; + -+ -+ a,Z, of n exogenous variables Z,, ..., Z,. We assume that the coefficients
a; have been already estimated from a sample of m observations (y;, 21, ..., zin) of the
variables Y, Z;, ..., Z, via standard linear regression techniques. However, for practical
reasons one often wants to choose only p variables (p < n) among Z,, ..., Z,, and express
Y as a linear combination of the chosen variables with the smallest possible loss of infor-
mation. Let z; = 1 or 0 depending on whether variable Z; is chosen or not. Then the
problem can be formulated as the minimization of the quadratic function

Y (¥ — a1zazy — -+ — AnZinTa)’

i=1
subject to the cardinality constraint z; + ---+z, =p

There is a rich and fruitful interplay between the theory of quadratic functions of bi-

nary variables and the theory of graphs. As a matter of fact, with any graph G = (V, E),
where V = {1,...,n} is the vertex-set and E is the edge-set, one can naturally associate
the quadratic monotone boolean function fg(z) = V(; jjeg z:iz;, and vice-versa. For this
reason, quadratic monotone boolean functions are sometimes called graphic. One impor-
tant direction of research attempts to find connections between combinatorial properties
of G and functional properties of fg. This line of research is typified by a theorem of
Chvéital and Hammer (1977) stating that a graphic function is threshold if and only if
the associated graph does not contain squares, paths of length 3, or parallel edges.

Graph-theoretic methods are very useful in the solution of quadratic boolean equa-
tions. Actually, all the fastest known solution algorithms are graph-theoretic in nature
(see Sec. 3). Graphs are also a very useful tool in the maximization of quadratic pseudo-
boolean functions. For example, a reduction of this problem to finding a maximum weight
stable set in a graph is exhibited in Sec. 14. Conversely, many graph optimization prob-
lems can be naturally formulated as quadratic 0 — 1 optimization problems (see Sec. 5).

One important reason for studying quadratic boolean equations is that, unlike equa-
tions of higher order, they can be solved in polynomial — in fact, linear — time. Further-
more, the most common types of logical relations,

“Either P or Q is false”
“Either P or @ is true”
“P implies Q”

are represented by gquadratic equations, namely

pg =0,

pg=0,

pg =0,
respectively.

The survey is structured as follows. Some fundamental concepts of the theory of
boolean functions and pseudo-boolean functions are recalled in Sec. 2 and 4, respectively.
Sec. 3, which is based on [Petreschi and Simeone (1985)], describes some fast graph-
theoretic algorithms for the solution of quadratic boolean equations.

Sec. 5 describes many combinatorial applications of quadratic 0 — 1 maximization.

The remaining sections are devoted to a detailed account of the theory of roof-duality
in quadratic 0—1 maximization. They are mainly based on [Hammer, Hansen and Simeone
(1984)]; however, new developments are reported in Sections 11, 12 and 13.

The theory of roof-duality allows one to get — with a modest computational effort
— upper bounds of the maximum of a quadratic function f over the binary n-cube B™.
This is achieved by considering a special class of linear overestimators of f — the so called
roofs — and maximizing them (instead of f) over B". “Best” roofs can be generated
in polynomial time via maximal flow techniques (Sec. 15). There is no guarantee that
the upper bound obtained by maximizing a best roof does coincide with the quadratic
optimum; however, one can check whether this is indeed the case in polynomial time by
solving a quadratic boolean equation (Sec. 17).

Sec. 16 is devoted to the intriguing persistency phenomenon: consider any maximum
point z* of the quadratic function f and any maximum point Z of a best roof g; then
for every variable z; with a non-zero coefficient in g one has #; = z}. This phenomenon,
deserves, along with many other topics related to quadratic functions of binary variables,
further substantial investigation.

PART 1
Quadratic boolean functions and equations

2 Boolean functions and boolean equations

It is well known that the set B = {0,1}, endowed with the operations

zVy=maz{z,y} (union)
z Ay =min{z,y} =z-y (intersection or product) (2.1)
T=1-=z (complementation)

is a boolean algebra.

Let z;,...,z, be boolean variables, i.e. variables taking values in B. A literalis either
a variable z; or its complement Z;. A term is a finite product of distinct literals a boolean
ezpression (in disjunctive normal form, DNF) a finite union of terms.

A boolean function is any mapping f : B* — B. Given any boolean expression ¢, one
can associate with each @ € B™ the element ¢(a) € B obtained by replacing in ¢ each
variable z; by o; and evaluating the resulting expression according to (2.1). Such mapping
a — ¢(a) is a boolean function, and conversely each boolean function is representable in
this way.

A boolean expression is called

e primitive, if no two distinct terms involve the same variables, no matter whether
complemented or not. For example, the presence of the term zyz forbids the presence
of terms Tyz, TYz, TYZ, =Yz and so on, as well as other occurrences of zyz.

e normal, if all terms are different and if no two terms of the form zC, TC are present.
Example: zyzV ZJZVzyV yZz.

e pure, if every term contains at least one uncomplemented variable. Example: zyz V
TyVuyz.

e mized, if every term contains both complemented and uncomplemented variables.
Example: z7ZV Ty V yZ.

Let ¢ be a boolean expression. A monomial I (i.e. a finite product of distinct literals
but not necessarily a term of ¢) is an implicant of ¢ if I < ¢; that is, when I = 1 then
¢=1.

The implicant I is prime if there is no implicant J # I such that I < J < ¢. The prime
implicants of a boolean expression ¢ can be found by the following consensus method, due
to Quine (1955): Starting from the list of terms of ¢, execute as many times as possible
the following two operations.

CONSENSUS: If two terms zC and ZD are present in the current list and no variable is
complemented in C and uncomplemented in D or vice versa, then add to the current
list the consensus CD of the two terms after deleting possible repeated literals.

ABSORPTION: If the current list contains two terms C, D such that each literal in D
appears in C, then delete D from the list.

Quine (1955) has proved that when no further consensus or absorption operation is
possible, then the final list contains all prime implicants of ¢, and only them.

The consensus method may well take exponential time. However, when the method is
applied to quadratic boolean expressions, only quadratic or linear terms can be generated
at each step. It follows that the number of terms in the list at each step is O(n?) and this
in turn implies that in the quadratic case the consensus method runs in polynomial time.

Let us now turn our attention to boolean equations. Let ¢ be a boolean expression.
The boolean equation ¢ = 0 is said to be consistent if there exist some a € B™ such that
¢(a) = 0. Then a is called a solution of the equation.

It is easy to see that a boolean equation ¢ = 0 is consistent if and only if the constant
1 is not a prime implicant of ¢. Hence one method for checking the consistency of
¢ = 0 consists in applying the consensus method to ¢ and to verify whether 1 is a prime
implicant or not. Many methods for solving general or specific boolean equations have
been proposed in the literature [see e.g. Rudeanu (1974)].

Clearly a pure boolean equation is always consistent, since a = (0,...,0) is always a
solution. This statement can be somehow reversed, as shown by Prop. (2.1) below.

Given the boolean expression ¢(z,,...,z,), the switch on the variable z; is the oper-
ation which replaces each occurence of z; in ¢ by Z; and vice versa. Similarly one defines
a switch on a set S of variables.

Proposition 2.1 A boolean equation is consistent if and only if it can be transformed
into a pure one by a switch on some set S of variables.

Proof: Given the boolean equation ¢(z,,...,z,) = 0, assume that a = (ay,...,a,)
is a solution. If S = {z; : a; = 1}, the switch on S transforms the equation into a pure
one. Conversely, suppose that there is some set S of variables such that the switch on §
transforms the equation into a pure one. Then (0, ...,0) is a solution of the transformed
equation; hence, if one defines a; = 1 or 0 according as z; belongs to S or not, the vector
a = (aj,...,a,) is a solution of the original equation. m]

3 Efficient graph-theoretic algorithms for solving
quadratic boolean equations

In the present section, we shall describe three fast algorithms for the solution of a quadratic
boolean equation ¢ = 0:

e The Labelling Algorithm of Even, Itai and Shamir (1976) (this paper contains only
an outline of the algorithm; more detailed descriptions can be found in Gavril (1977)
and Simeone (1985);

e The Switching Algorithm of Petreschi and Simeone (1980);
e The Strong Components Algorithm of Aspvall, Plass and Tarjan (1979).

&———®

Figure 1: The graph G associated with 1 = 1T3V T1ZT3 V 223 V T2T4 V T3T4.

A common feature of the three above algorithms is their graph-theoretic nature: in
the first two algorithms, the quadratic boolean expression ¢ is represented by an undi-
rected graph (the so called “matched graph” or “clause graph”), while the third algorithm
exploits a digraph model (the so called “implication graph”).

Consider a quadratic boolean equation (in DNF') in n variables z;,...,z, and m
terms

¢=T1Vv..VT, = 0, (3.1)
where, without loss of generality, we may assume that each term is the product of exactly
two literals and that the presence of the term ¢7 forbids the presence of other occurences

of .

Definition. The matched-graph associated with ¢ is the undirected graph G = (V, E),
where V = {z1,...,z,;%1,...,Zn} and

E = {(&,n) for each term €7 of ¢} U {(z;,Z:) : 1 =1,...,n}

The edges of G are classified into positive, negative, mized or null ones according to
whether they are of the form (z;, z;), (%i, Z;), (i, T;), (i, T:), respectively.
Figure 1. shows the matched graph G associated with the following expression

‘lp =173 \% TT3 Vv TyT3 \% Loy \% T3T4 (32)

As shown by Theorem (3.1) below, the consistency of the quadratic boolean equation
¢ = 0 has a nice graph-theoretic counterpart in the matched graph G associated with ¢.
We recall that, given an arbitrary graph G’ = (V', E’), a matching M of G’ is any set of
pairwise non-incident edges; a transversal T' of G’ is any set of vertices such that every
edge of G’ has at least an endpoint in G’; and that G’ is said to have the Konig-Egervdry
Property (briefly, the KE Property) if the maximum cardinality of a matching is equal
to the minimum cardinality of a transversal.

Theorem 3.1 : The quadratic boolean equation ¢ = 0 is consistent iff the matched graph
G associated with ¢ has the Konig-Egervdry Property.

&)—E——@)

Figure 2: The implication graph of ¢, as given by (8.2).

Proof: See Simeone (1985). O

Gavril (1977) has described an O(m) algorithm for recognizing the Konig-Egervary
Property in a graph with m edges, assuming that a maximum cardinality matching is at
hand. One such matching can be found in O(n?®) time, e.g. via the implementation of
Edmonds’ Blossom Algorithm described in Micali and Vazirani (1980).

In view of Theorem (3.1), one can check the consistency of the equation ¢ = 0 by
executing Gavril’s algorithm on the matched graph G associated with ¢. (Note that the
null edges form a maximum cardinality matching of G). The resulting procedure turns
out to be essentially Even, Itai and Shamir’s method.

Definition. The implication graph associated with ¢ is the digraph D(V, A), where
V is defined as above and

A ={(¢7), (€ n) for each term £7 in ¢}.

The digraph D is isomorphic to the digraph D obtained from D by reversing the orienta-
tion of every edge and complementing the name of every variable.

The implication graph of ¥ (as given by (3.2)) is shown in Figure 2.

We are ready to describe the three above mentioned algorithms.

3.1 Labelling Algorithm

The idea of the algorithm is to guess the value of an arbitrary literal { in some solution
and to deduce the possible consequences of this guess on other variables appearing in the
expression. Since ¢ can take either the value 0 or the value 1, the algorithm analyzes in
parallel the consequences of these two alternative guesses on £. One keeps track of these
consequences by a “red” labelling (corresponding to the guess { = 1) and by a “green”
labelling (corresponding to the guess { = 0). Initially all terms are declared to be “red-
unexplored” and “green- unexplored”; then one selects on arbitrary literal { and assigns

Red- Green- Red Green
Step | explored | explored labels labels
terms terms
0 / / $1=1;51=0 1!1:0;51:1
(guess) (guess)
1 T1T3 T3 = 0, T3 = 1
2 T1T3 T3 = 0, T3 = 1
3 5)_21)3 Ez = 0, Ty = 1
4 T3T4 _4 = 0, Ty = 1
5 T3T4 Ty = 0, Ty = 1
6 Tog T, = 0, Ty = 1
7 Lol y Ty = 0, Ty = 1
conflict
8 Toly4 Ty = 0; 54 =1
conflict

Table 1: Steps for the Labelling algorithm for v as given by (8.2)

to it the red label 1 and the green label 0. Then € must receive the red label 0 and the
green label 1.

Then the two labellings are extended to as many literals as possible by alternately
performing for the red labelling and for the green one the following STEP.

STEP: Take an arbitrary unscanned term 7¢ such that » has the label 1, and assign
to ¢ and to { the labels 0 and 1, respectively, making sure that ¢ did not previously get
the label 1. Declare the term 7¢ scanned. (Of course, terms like “label”, “unscanned”,
“scanned” involved in STEP are relative to the color currently under consideration).

If a conflict arises, say, for the red labelling (i.e. a literal which was peviously red-
labelled 1 is forced to get the red label 0 or vice versa), the red labelling stops and the
red labels are erased. If, at a later stage, a conflict occurs also for the green labelling, the
algorithm stops and the equation has no solution. It may happen that a labelling, say the
red one, “gets stuck”: no conflict has occurred, but there are still literals having no red
label. This is possible only when, for each red-unexplored term, the literals appearing in
that term are either red-unlabelled or have red label 1. If this situation occurs then red
labels are taken for granted and both the red- and the green-labellings are restarted on
the reduced expression involving only the red-unlabelled literals.

The algorithm can be shown to run in O(m) time (see Gavril (1977)). As an example,
the following Table 1 summarizes the algoritm steps when the input expression is v as
given by (3.2).

The expression 1 is not satisfiable because hoth labellings end up in a conflict.

&) ()

| |
@)

Figure 3: The alternating tree rooted at T, for the graph of Figure 1.

3.2 Switching algorithm

On the basis of Prop. (2.1), the algoritm tries to transform the given expression ¢ into a
pure one, if possible, through a sequence of switches. Before describing the algorithm, it
is convenient to introduce some preliminary definitions. (we use the tree-terminology of

Aho, Hopcroft and Ullman (1974)).

Definition: A variable z in ¢ is said to be forced to the value @ (a = 0 or 1) if either
the equation ¢ = 0 is inconsistent or = has the value a in all solutions.

Definition: An alternating tree rooted at Z; is any subgraph of G (the matched graph
of ¢) which is a tree T'(Z;) rooted at Z; and has the following properties:

1. Z; is the root;

2. if T; is a vertex of T'(Z;), then its father in T'(Z;) is T;.

3. if T; is a vertex of T'(Z;), then its father is a vertex z, of T'(%;), such that (z,,Z;) is

a mixed edge of G;

4. if z; is a vertex of T'(Z;) and (z;,Z,) is a mixed edge of G, then T, is a vertex of

T(z;).

For the matched graph of Figure 1., an alternating tree rooted at ; is shown in Figure
3.

Definition: The join of two vertices { and n of T'(Z;) is their common ancestor which
is farthest from the root ;.

10

Let us now briefly describe the switching algorithm. Again the algorithm works on the
matched graph G. An endpoint Z; of a negative edge Z;Z, is selected and the alternating
tree T'(Z;) is grown. As soon as a new vertex zj of T'(Z;) is generated, one checks whether
there is in G any positive edge zpz) linking z, to a previously generated vertex z; of
T(%;). If this is the case, the variable z; corresponding to the join of z; and z; must be
forced to 0.

As a consequence, other variables are forced in cascade according to the following
rules:

(i) if ¢ is forced to 0, then £ is forced to 1;
(i1) if ¢ is forced to 1 and (¢, 7) is an edge of G, then 7 is forced to 0.

If during this process a conflict occurs (that is, some variableis forced to both 0 and
1), then the algorithm stops pointing out that the equation is inconsistent. Otherwise
one obtains a reduced equation involving fewer variables and a new cycle begins. If the
construction of T'(Z;) has been completed and no positive edge between two vertices of
T(z;) has been detected, then a switch is performed on all the variables corresponding
to vertices of T'(Z;). In this way one obtains an equivalent expression and a new cycle
begins. The procedure is iterated until either a pure equation is obtained or all variables
are forced. In both cases a solution of the original equation ¢ = 0 can be found by
inspecting the list of the forced variables and the list of the switched ones.

As an example, given 1 as in (3.2), the alternating tree T'(Z;) of Figure 3. is grown.

Since z, and z4 are linked by a positive edge, their join z3 is forced to 0 and hence
Z3 is forced to 1. In turn, T3 = 1 forces z; = 0 and Z; = 1. On the other hand, because
of the edge (T1,Z3), Z1 must also be forced to 0 and thus a conflict arises. Hence the
equation % = 0 is inconsistent.

For a formal description of the algorithm and for a correctness proof, the reader is
referred to Petreschi and Simeone (1980), where a worst-case O(mn) bound on the time-
complexity of the algorithm is also given.

3.3 Strong components algorithm
This algorithm is based on the following key result.

Theorem 3.2 (Aspvall, Plass and Tarjan (1979)) . The equation ¢ = 0 is consis-
tent iff in the implication graph D no vertez z; is in the same strong component as its
complement T; (i.e. no circuit of D contains both z; and ;). o

The algorithm works on D and preliminarly finds the strong components of D in reverse
topological order (see Tarjan (1972)). The isomorphism between D and D implies that for
every strong component SC of D there exist a “mirror” component SC, the complement
of SC, induced by the complements of the vertices in SC. Hence Theorem (3.2) can
be restated as follows: “¢ is satisfiable iff in D no strong component coincides with its
complement”.

The general step of the algorithm consists in processing the strong components of D
in the following way.

For each strong component SC, one of the following cases must occur:

Figure 4: The spanning arborescence generated by the algorithm of Tarjan (1972).

(a) SC is already labelled. The algoritm processes another strong component.

(b) SC = SC. The algorithm stops. In view of Theorem (3.2) the equation % = 0
is not consistent.

(c) SC is unlabelled. The algorithm assigns the label 1 to SC and the label 0 to
SC.

SC1, is said to be a predecessor of SC; (and SC; a successor of SC4,) if there exists
an edge from some vertex of SCi, to some vertex of SC,. It is easy to show that every
component labelled 1 has only components with label 1 as successors and every component
labelled 0 has only components with label 0 as predecessors. Thus, if we assign to each
vertex ¢ the label of the component containing ¢; we get a solution to ¢ = 0.

As an example, we consider again 9 and the associated implication graph D of Figure
2.

The algorithm of Tarjan (1972) for finding the strong components produces the ar-
borescence of Figure 4: the digraph D turns out to be strongly connected. For every i,
the vertices z; and Z; belong to the same strong component and thus, by Theorem (3.2),
the equation ¥ = 0 is inconsistent.

The complexity of the Strong Components Algorithm is O(m). For further details,
see Aspvall,Plass and Tarjan (1979).

A randomized algorithm with expected O(n) time has been described by Hansen,
Jaumard and Minoux (1984).

