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INTRODUCTION

Some background and definitions

In these notes we study Jordan triple systems. A prominent class of
examples of Jordan triple systems are associative algebras. To consider
an associative algebra A with a bilinear product (x,y) » xy as a Jordan
triple system means to forget the bilinear product of A and its unit
element and instead work just with the triple product (x,y) » P(x)y =
xyx and its linearization (x,y,z) » {xyz} = xyz + zyx. There are good
reasons for doing this, some of which are indicated below. O0f course,
the associative law has to be rephrased in terms of the triple product,
leading to the general definition due to K. Meyberg: A Jordan triple
system consists of a module V over a commutative associative ring k and

a quadratic map P: V » End, V (the triple product) satisfying the

k
following identities in all scalar extensions:
(1) L{x,y)P(x) = P(x)L(y,x)
(2) L(P(x)y,y) = L(x,P(y)x)

(3) P(P(x)y) = P(x)P(y)P(x),
where the linear map L(x,y) - End V is defined by L(x,y)z ={xyz} =
P(x+z)y - P(x)y - P(z)y.

Jordan triple systems received their name because they are
generalizations of Jordan algebras (which in turn are generalizations of
associative algebras): although this is not the usual definition, a
Jordan algebra can be defined as a Jordan triple system which contains a

unit element, i.e. an element e with P(e) = Id. Over the past 20 years
the theory of Jordan algebras has seen major advances mainly due to the
work of N. Jacobson, K. McCrimmon and the Russian School, notably E.I.
Zel'manov. An exposition of this has been given by N. Jacobson in his
book [19] and his lecture notes [20] [21] and by K. McCrimmon in [41].

Besides Jordan algebras another class of Jordan triple systems,
which has been thoroughly investigated in recent years, is the class of
Jordan pairs. A Jordan pair is a Jordan triple system which has a
polarization: V is the direct sum of two submodules, V = V+ @ vV,
satisfying

PIVEIVE = 0 = P(VE,VT)V,  P(VE)VTE cvE,
The theory of Jordan pairs was proposed by K. Meyberg and pursued and
described by 0. Loos in his lecture notes [31].

One of the driving forces of the development of the Jordan pair and



Jordan triple theory was the increasing number of applications found in
other areas of mathematics showing that Jordan triple systems are more
than just generalizations of associative and Jordan algebras.

The most important of these applications was found by M. Koecher,
the category of circled bounded symmetric domains in " s equivalent to
a certain category of Jordan triple systems (namely finite-dimensional
positive hermitian Hilbert triples in the terminology of these notes,
see IV §2). An exposition of this fundamental theorem, from different
points of view, was given by M. Koecher in his notes [28], 0. Loos in
[32] and I. Satake in [52]. This theorem has been generalized by W.
Kaup and his collaborators to infinite dimensions, using certain
infinite-dimensional Banach Jordan triple systems (see IV §3). An
exposition of this part of Jordan theory can be found in H. Upmeier's
notes [55]. Banach Jordan algebras are studied in [11] and [17].

There are many more applications of Jordan structures known - so
many that we can only mention some areas of applications without going
into details: Lie algebras, algebraic and Lie groups, symmetric spaces,
in particular symmetric R-spaces, Siegel domains, cones, various types
of geometries and mathematical physics. Some of these applications have
been described in the surveys [6, 37, 16].

The grid approach motivated by examples

In these notes we present a new method in Jordan theory: the grid
approach. For a first understanding of grids it might be helpful to
keep in mind the theory of split semisimple Lie algebras in
characteristic 0. Roughly speaking, covering grids in Jordan triple
systems play the same rdle as Chevalley bases for split semisimple Lie
algebras, a spanning system of elements closed under the product. We
will make this more precise in the course of this introduction starting
with two instructive examples. But first we need to introduce some
general notions.

Grids will be special families of tripotents. An element e in a
Jordan triple system V over k is called a tripotent if P(e)e = e, in
which case V has a Peirce decomposition with respect to e:

V=V,(e) @V, (e) @ Vyle),
with Vi(e) = {ve V; L(e,e)v = iv} if 1/2 <k, for a general k see I §1.3.
We can define generalized Peirce spaces with respect to an arbitrary

family £ of tripotents:
n " E
VI(E) = e EVi(e)(e), I = (1(6))91 E {0,1,2}
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In general, V will not be the sum of the Peirce spaces VI(E) nor
will it be determined by E. Some information can only be expected for
the cover of E which is

CV(E) =@ {V
We say E covers V if Cv( E)

(E); E n V (E) # @}
V.

I o=

Example 1 (rectangular matrix system): For an associative k-algebra
D with involution d » d the (pxq)-matrices over D form a Jordan triple
system Mat(p,q;D, ) over k with quadratic representation P(x)y = x}tx.
A Chevalley-type D-basis of V = Mat(p,q;D, ) is given by the matrix
units Eij:

R(p,q):-= {Eij; 1<i<p,1<j<q},

is a concrete realization of what has been called a rectangular grid.
It is straightforward to check that R(p,q) has the following two
decisive properties:

(G) R(p,q) is a family of tripotents which is closed under

triple products (the "grid property"), i.e. for i # k, 1 # j

one has
{Eij Eij Ekj} = Ekj {Ekl Eyr Ekj}’ i#k, 1#j,
{Ei5 B Bl = Eyn,

whereas all other types of products vanish,
(C) R(p,q) covers V = Mat(p,q;D, ):
V=8 DEij
where DE.. is a Peirce space of V relative to R(p,q):
DEij= Vz(Eij) - vl(Eik) . (E]j) nVO(E]k)
It is easily seen that in this example the whole Jordan triple
structure, i.e. the module and the triple product, is determined by
(i) the covering rectangular grid R(p,q) and

(ii) the coordinate system (D, )-

Example 2 (hermitian matrix system): Let (D, ) be as in Example 1
and = be a second involution of D commuting with ~. Then the
m-hermitian (pxp)-matrices x=x"° form a Jordan triple system Hp(D,n,_)

with triple product P(x)y= xitx (which is a Jordan algebra iff n = 7).

In this case a Chevalley-type (D,n)-basis (use Fixn on the diagonal) is

formed by the hermitian matrix units H..= E.., H.. = H.. = E.. + E..,
ii ii iJ Ji 1] J1

io# e
H(p) = {Hij; l<i<j<p}
is a concrete realization of a hermitian grid. It has similar
properties to R(p,q):
(G) H(p) is a family of tripotents closed under triple products in
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the following sense: For i,j,k # one has

(Hig Hyg Hyg b= 2y o {Hgy Mgy Hygh = Hyy
M5 B Had = Mo o

POH 5 IHG5 = Wy

(H; H__H = H

im Mon nj} (m arbitrary) ,

iJ

H H = 2H (m,n arbitrary)

{Him mn ni}
whereas all other types of products vanish.
(C) H(p) covers V = Hp(D,n,_):
vV = Q_i (F‘IX T[) Hii @ (@ ]"J DHij)
where for i,j,k,m #:
(Fix “)Hii = Vz(Hii) = VZ(Hij) 1 VO(Hjj) ’VO(ij)
DHij = VZ(Hij)” vl(Hii)‘ vl(Hjj) = Vl(ij)'ivo(Hkm). i
Analogously to the rectangular matrix case the Jordan triple HP(D,n, )
is determined by
(i) the covering hermitian grid H(p) and

(ii) the coordinate system (D,=n, ).

These two examples suggest the following program: Develop a theory
for grids in general such that R(p,q) and H(p) become examples and
such that interesting classes of Jordan triple systems allow the

GRID APPROACH (finite-dimensional version):
Look at a Jordan triple system as an object determined by:

(i) a finite covering grid (carrying all the combinatorial
information), and
(ii) a coordinate system.

We want to point out that this philosophy appears in different areas
in mathematics, for example in the theory of split semisimple Lie
algebras or algebraic groups or in the theory of W* - algebras.

Although we will find that important classes of Jordan triple
systems are accessible to the finite-dimensional version of the grid
approach, the Jordan triple systems appearing in some applications of
Jordan theory require an extended version which we want to motivate by
the following.

Example 3 (Hilbert-Schmidt operators). The Hilbert-Schmidt
operators from E to F, where E and F are Hilbert spaces over K =R ,
or H,form a real Jordan triple system LZ(E,F; K) with triple product
P(x)y = xy*x (y* = adjoint of y). With respect to Hilbert space bases
(ej)jud of E and (e;)j,1 of F we can identify Lp(E,F; K) with matrices
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x= (xij)icI,j&J ovir K such that Zi,jlxij‘z < . Then the product
becomes P(x)y = xy x (7 = canonical involution of K ), and the whole
triple system behaves Tike an infinite rectangular matrix system.
Indeed, we again have a rectangular grid
R(I,J) = {eiw eg ; icl,jeadl,

satisfying the multiplication rules (G) of Example 1. However, a new
phenomenon appears: R(I,J) does not cover V = LZ(E,F; K), we only have
that

(C) the cover of R(I,J) is dense in V with respect to the Hilbert-

Schmidt operator norm: V = CV(R(ITGT).

Nevertheless, one can recover the structure of LZ(E,F;K) from the cover
of R(I,J). Thus, here we need a topology as a third ingredient (besides
a grid and a coordinate system) in order to completely determine the
structure of LZ(E,F;B<). This example suggests the

GRID APPROACH (topological version):
Look at a Jordan triple system as an object determined by

(i) a grid of arbitrary size,

(i) a coordinate system, and

(iii) a topology with respect to which the cover of the grid is
dense.

We see that both versions of the grid approach lead to the following
four fundamental questions which will be answered in these notes:

- What is the general definition of a grid so that R(p,q),H(p) and
R(I,J) are examples of grids? - Chapter I

- Can grids be classified? - Chapter II

- What does the cover of a grid look like? - Chapter III

- Which classes of Jordan triple systems allow the grid approach? -
Chapter I 85,6 and Chapter IV.

A short description of the contents can be found below ("the new
results") or at the beginning of each chapter and section.

The origins of grids

One special grid has long been known to Jordan algebraists: 1In our
terminology Jacobson's Coordinatization Theorem states that a Jordan

algebra covered by a hermitian grid H(p), 33p, is a hermitian matrix
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algebra, a fundamental result in the classification theory of Jordan
algebras. Since semi-primitive Jordan algebras with capacity are always
covered by a hermitian grid, it was however not necessary to develop a
general theory for grids in Jordan algebras.

The first hint about grids in Jordan triple systems can be found in
K. McCrimmon's review [38] of 0. Loos' notes [31]. To explain this, let
us recall the procedure of [31] for classifying Jordan pairs: Choose a
maximal tripotent e so that V = Vz(e) @ Vl(e). If Vl(e) = 0 then V is a
mutation of a Jordan algebra hence is known modulo Jordan algebra
theory. Otherwise V is the standard imbedding of an alternative
polarized triple system (called alternative pair in [31]) which is
defined on Vl(e). In view of the "complicated and asymmetric identities
of alternative pairs" McCrimmon remarked that it may be possible to
"analyse the Jordan pair directly using 'collinear' rather than merely
‘orthogonal' family of tripotents", [38] p. 689.

Subsequently ([40]) he considered "compatible" families of
tripotents and then defined special classes of grids. However, he did
not develop a theory for grids in general nor did he give a
classification-free proof that covering grids exist for certain classes
of semisimple Jordan triple systems. Nevertheless the merits of grids
became clear in the paper [42] by K. McCrimmon and K. Meyberg, where the
covers of finite rectangular, symplectic and hermitian grids were
coordinatized.

Independently of [40] and [42] (actually before their publication)
and unaware of McCrimmon's remark in [38] the author was led to grids by
studying weight space decompositions of compact Jordan triple systems
with respect to the structure algebra: The weight spaces turn out to be
exactly the generalized Peirce spaces of a suitable grid. Details will
appear elsewhere.

The new results

Since grids are a new concept in Jordan theory, most of the results
in these notes are new. In case a result has been previously proven we
have indicated this to the best of our knowledge. We apologize in
advance for any omissions.

The results can be summarized according to the various themes of the



chapters:

Chapter I ("What is the general definition of a grid so that
R(p,q), H(p) and R(I,J) are examples of grids ?") - We develop a theory
for families of Peirce compatible tripotents (called cogs), leading to
the fundamental notion of a grid. Roughly speaking a grid is a cog
which is multiplicatively closed up to association. For example, R(p,q)
< Mat(p',q';D,”), p < p', q < q', is a grid, but also

R(p,q,(cij)) = (Cij E l<i<p, 1<j<q)

ij? :
for any choice of scalars Cij < D satisfying Cijcij = 1.
Chapter II ("Can grids be classified?") - Indeed they can be
classified modulo "association". We show that every grid is a unique

disjoint union of connected grids and that every connected grid is
associated to one of seven standard grids. For example, R(p,q,(:ij)) is
associated to R(p,q). The seven standard grids fall into 5 types of
grids of arbitrary size (for example R(I,J) is one type) and 2
exceptional grids consisting of 16 resp. 27 tripotents. This last grid,
called Albert grid, naturally carries a geometry, which is the same as
the geometry of the 27 lines on a cubic surface.

Chapter III ("What does the cover of a grid look like?") - We
generalize the coordinatization theorems of McCrimmon and Meyberg to
grids of arbitrary size and prove new coordinatization theorems for the
remaining four types of grids.

Chapter IV ("Which classes of Jordan triple systems allow the grid
approach?") - The results of chapters I - III give, among others, a
classification of a new class of Jordan triple systems, namely the ones
covered by a grid. This class is distinct from the class of Jordan
triple systems recently classified by E. Zel'manov ([56]). 1In the
intersection of both classes lie the simple Jordan triple systems
covered by a grid. These are identified in IV §1. In the last two
sections we give examples of how the topological version of the grid
approach works. We classify Hilbert triples over R and {, generaiizing
results of Kaup, and we present the theory of atomic JBW*-triples in a
new way which is independent of the elaborate theory of JB-algebras.

The advantages of grids

Grids provide a more direct and natural approach to Jordan triple
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systems than presently existing ones, thus justifying McCrimmon's remark
as quoted above. Grids make it superfluous to leave the category of
Jordan triple systems (or Jordan pairs) and study alternative triple
systems (or alternative pairs) first in order to gain information about
Jordan triple systems.

It is also no longer necessary to reduce triple theory to algebra
theory as has been customary until now. In fact the theory of grids as
presented in these notes is independent of the theory of Jordan
algebras. Indeed, parts of Jordan algebra theory (e.g. classification)
are special cases of our results.

Since grids can have arbitrary size, systems of infinite rank are
treated at the same time as the finite rank case. This is not only a
technical improvement from the algebraic point of view, but also allows
a more direct application of the algebraic theory in a functional
analytic setting (see for example IV§52,3).

Besides these fundamental advantages we would like to point out two
more innevations: The coordinatization theorems proven by McCrimmon and
Meyberg in [42] and supplemented here in Chapter III immediately give
information about unital bimodules of Jordan triple systems covered by a
grid. Details have not been included here, however they are easily
deduced along the lines of [42] §6.

And, at last we give a confirmation (via the Albert grid) of the
conjecture that there is a connection between the 27 lines on a cubic
surface and the 27 dimensional exceptional Jordan structures.

Concluding remarks

The notes are self-contained up to some elementary facts concerning
Peirce decompositions (to be found in [31]55 or [44]) and the results
of the papers [40] and [42]. However all that is needed is put together
in I 8§81, including the necessary definitions.

These notes contain the proofs of the results of the survey [47].
These results were also announced at the Oberwolfach meeting on Jordan
algebras in 1982 and in an improved form again in 1985.

Major parts of the research for these notes were done at the
University of Virginia, Charlottesville, in the academic year 1980/81
while the author held a Forschungsstipendium der Deutschen
Forschungsgemeinschaft (Research fellowship of the German Research
Council). The notes were completed at the University of Ottawa with the
support of a NSERC operating grant.

Besides DFG and NSERC the author wants to thank all mathematicians



Xl
whose interest and encouragement were of great help during his research
on grids, in particular thanks are due to J.Dorfmeister, J.Faulkner,

G.Horn, W.Kaup, M.Koecher, K.McCrimmon, K.Meyberg and M.Racine.

Ottawa, Winter 1986 E. Neher
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CHAPTER I. SPECIAL FAMILIES OF COMPATIBLE TRIPOTENTS

This first chapter is the foundation for the whole notes. After a
review of the basic definitions, results and examples for Jordan triple
systems in £1 we consider in the following sections special families of
compatible tripotents, i.e. tripotents whose Peirce projections commute.
We derive the fundamental properties of these families (52-55) and prove

existence theorems (555,6).

§1 Basic definitions, known results, examples

In this section we recall some of the basic facts about Jordan triple
systems which are needed in the following. We also give the examples
which will play a fundamental role throughout these notes.

1.1. The results of this section are mostly contained in [30], [31]
or [44] which are the standard texts on Jordan triple systems. To fix
our notation and assumptions we begin with the definition:

A Jordan triple system V is a module V over an arbitrary ring k of

scalars together with a quadratic map P: V » End V such that the
following identities hold in all scalar extensions:

(1.1) L{x,y)P(x) = P(x)L(y,x)
(1.2) L(P(x)y,y) = L(x,P(y)x)
(1.3) P(P(x)y) = P(x)P(y)P(x)

where L(x,y)z = P(x,z)y = P(x+z)y - P(x)y - P(z)y. We use the notation
{xyz} = L(x,y)z = P(x,z)y = {zyx}
We refer to P resp. {...} as the triple product.

A homomorphism ¢: V » V' of Jordan triple systems over k is a k-Tlinear
map such that ¢P(x)y = P(¢x)¢y for all x,y « V. Isomorphisms and
automorphisms are defined in the usual way.

A subsystem (resp. an ideal) of a Jordan triple system V is a
submodule W of V such that P(W)W = W (resp. P(V)W + P(W)V + [VVW} = W).
The defining identities for Jordan triple systems imply of course
more identities (eg. by linearization, see [31]32), of which we Tist in

particular the following



(1.4) L(x,y)P(x)= P(x,P(x)y) = P(x)L(y,x)
(1.5) P(x,z)L(y,x) + P(x)L(y,z)= P(x,{xyz}) + P(z,P(x)y)
= L(x,y)P(x,z) + L(z,y)P(x)
(1.6) L(x,{yxz}) + P(x)P(y,z) = L(x,z)L(x,y) + L(P(x)y,z)
= L(x,y)L(x,z) + L(P(x)z,y)
(1.7) L({xyz},y) = L(z,P(y)x) + L(x,P(y)z)
(1.8) Lx,{yxz}) = L(P(x)y,z) + L(P(x)z,y)
(1.9) L(x,y)L(z,y) = P(x,z)P(y) + L(x,P(y)z)
(1.10) P(x,z)L(y,x) = P(P(x)y,z) + L(z,y)P(x)
(1.11) L(x,y)P(x,z) = P(P(x)y,z) + P(x)L(y,z)
(1.12) Lix,y)P(z) + P(z)L(y,x) = P(z,{xyz})
(1.13) L{X¥)LA%Xs2) = L{P(R)ysZ) + P(X)P(y,z)
(1.14) [L(x,y),L(u,v)] = L({xyu},v) - L(u,{yxv}),

where as usual [A,B] = AB - BA.

The map
B(x,y) = Id - L(x,y) + P(x)P(y) ¢ End V

is called the Bergman operator (because of reasons explained in [28],
[32]). It is used to define the Jacobson radical
(1.15) Rad V = {x < V; B(x,y) is invertible for all y Vi,
see [31]54 or [44]XIII. If Rad V = 0 one calls V semisimple. The
Bergman operator satisfies the identity
(1.16) P(B(x,y)z) = B(x,y)P(z)B(y,x),
so B(x,y) is an automorphism of V if it is invertible with inverse

B(y,x). A special example of this fact is Theorem 1.13.

1.2. In this subsection we present the basic examples of Jordan
triple systems.

Example 1.1. Let J be a quadratic Jordan algebra over k with
quadratic representation U (see [20], [21], [31] or [44] for a
definition). By forgetting the squaring (or the identity element if J
has one) and putting P = U one obtains a Jordan triple system, denoted
by V(J) and called the Jordan triple system associated to J. For an

abstract characterization of such Jordan triple systems see [48].

Example 1.2. Let V = (V+,V_) be a Jordan pair over k and put V =
e - - - .
vie v , P(x @ x )(y+ ® y ) = P(x+)y ® P(x )y+. Then V is a Jordan
triple system called the Jordan triple system of a Jordan pair. The




Jordan triple systems arising in this way are exactly the polarized

Jordan triple systems, i.e. Jordan triple systems V = v¥ ® V™ where the

P-operator satisfies (e = #)
P(VE)VE = 0, P(VE)VTE « vE |
L(VE,VE)VTE = p(VE,VTE)VE = 0.
In this way we will identify Jordan pairs = polarized Jordan triple

systems.

Example 1.3. (rectangular matrix system) This class of examples

consists of two subclasses:

a) Let V be the 1 x 2 matrices with entries in a unital alternative
algebra D over k, which has a k-linear involution d » d, and define the
quadratic representation by P(x)y = x(?tx). We denote this Jordan
triple system by Mat(1,2;D) or Mat(1,2;D, ).

b)(i) Before we define the second subclass we make the following
remark: For any unital algebra D over k with an involution d » d we may
look at the p x q matrices Mat(p,q;D), p + q > 3, together with the
product P(x)y = x(y®x). It was shown in [34] that this defines a Jordan
triple system iff D is alternative and even associative if p + q > 4.

We will generalize this example to matrices of arbitrary size.

(ii) Let I and J be arbitrary index sets and D an associative

algebra over k. We define a matrix of type I x J over D as a family

x = (x of elements of D such that for every i I the

i3, 1 x 3
i-th row (xij)j Cy and for every j - J the j-th column (xij)i: I
contain only a finite number of non-zero elements. Assuming that d - d

is a k-linear involution of D we can define a Jordan triple system on
the space of all matrices of type I x J over D by putting as above P(x)y
= xytx. (Note that x?tx makes sense). This triple system is denoted by
Mat(I,J;D) or Mat(I,J;D, ) if we want to exhibit the involution. In
case #1 = p < » and #J = q < » we also write Mat(p,q;D) for Mat(I,J;D).

(ii1) A D-basis of Mat(I,J;D) is given by all rectangular matrix

units Eij= (xk1) with x4 = ékiélj:
R: =R(I,d): = {Eij; i Tis: .3 J}
We have a decomposition
Mat(1,J;D) = @ ® DE

: , ij
and the product is given by the fo]]éwin; rﬂ]esthich are stated in such
a way that they also hold for the example a):
P(aEij)bEij = a(Ba)Eij,
{aEij bEij cEkj} = (cB)aEkj,
{aEij bE, CEpqt = albelEy,, ‘
all other products (modulo symmetry in the outer variables) vanish.

{aE;. bE.. cE

iJ ij 11} - a(BC)Ei1’



(iv) That Mat(I,J;D) actually is a Jordan triple system may be best
seen in the following more general context: Let A be an associative
algebra over k with an involution a » a* and define P(a)b = ab*a. Then
the identities (1.1) - (1.3) are easily checked in K& A for any
extension K= k. Hence we have a Jordan triple system; call it V(A,*).
Now every subsystem W of V(A,*) is again a Jordan triple system. For A
= Mat(10J,15d:D), a* = Et, we can imbed Mat(I,J;D) into A in a canonical
way so that it becomes a subsystem of A.

Example 1.4. (symplectic matrix system) Let I be an arbitrary index

set and define the alternating matrices of type I x I as those

skew-symmetric matrices x = —xt of type I x I with diagonal elements X5

0. We assume that the entries of x belong to an extension K k, i.e.
a unital commutative and associative algebra over k. Moreover, let a ~»

1

a be a k-linear automorphism of K with period 2. Then the alternating
matrices form a subsystem of Mat(I,I;K, ) with product P(x)y = -xyx,
which we denote by A(I;K, ) or A(I;K) for short or A(p;K) in case #I = p
and which we call the symplectic (or alternating in case ~ = Id) matrix

system. We point out that the involution ~ is only needed to define the
product, but not the underlying module of A(I;K, ).

L.-E.. = -F..
1] J1 J1
for i,j I, i # j. To write down a K-basis for A(I;K) we have to use a

The symplectic matrix units are the matrices Fij = E

total order < on I:
S=S8(1) = {Fij; i<}
The triple product of A(I;K) is completely determined by the following
rules (for i,j,k,1 #):
P(aFij)bFij = aEaFij,
{aFij bF cF 1} = abcFy,,
all other products (modulo symmetry) vanish.
Finally, since A(1;K) = 0, A(2;K) = K and A(33;K) = Mat(1,3;K) (see
[40](0.11)) we always assume #I1 > 4 for this example.

= abCFik’

{aFij bF].j CFik}

Example 1.5. (hermitian matrix system) Here we start with a unital

a]te?FEETVE_;TEEbra D over k with a nuclear k-linear involution a » a"
(i.e. all norms aa™ are in the nucleus N(D) = {n-D; (ndl)d2 = "(dldz)
for all dl,dzeD}) and an ample subspace D0 (i.e. a subspace of
n-symmetric elements in the nucleus of D containing the unit 1 of D and
closed under aDOa’I c D0 for all a « D). Also, let I be an index set

with #1 > 2. The underlying module of this example is formed by the

I x I hermitian matrices (x™ = xt Mat(I,I;D)) over D whose diagonal
elements lie in DO' To define the triple product we moreover assume

that we have another involution a » a of D commuting with the given



involution = and leaving D, invariant (a™ = a allowed).

For #I < 3 it is well-known that the hermitian matrices over D form
a Jordan algebra J (see e.g. [20]). Let U be its quadratic
representation and define a new quadratic representation by P(x)y =
U(x)it. That this so-called mutation actually defines a Jordan triple
system follows from [44]10 Theorem 2. For #I > 4 we assume in addition
that D is associative and define the quadratic representation for the
hermitian matrices by P(x)y = xytx, i.e. we consider them as a subsystem
of Mat(I,I;D, ).

In both cases the resulting triple system is called a hermitian
matrix system and denoted by HI(D,DO,n,-) or HD(D,DO,n,—) if #1 = p. It
is denoted by H (D,D;,”) in case a = a®™. We remark that HI(D,DO,-) is
actually the Jordan triple system associated to the obvious Jordan
algebra. Often the choice of D, is clear (for example, if % < k then

Do= Fix = is the only possible ghoice for DO), then HI(D,DO,n,') =
Hy(Duw,”) and Hy(D,”,7) = Hy(D,"). In particular for D = k the only
choices are Dy = k. m = " = I1d and we put HI(k,k,Id,Id) = HI(k) or
Hp(k) for #1 = p. In general, HI(D,DO,n,') is spanned by elements of
type

alijl = aEiJ + a“Eji (@« D, i#3J), agliil = ajE (ag < Dy)
with products for distinct i,j,k,]1

P(ao[ii])bo[ii] = aO(BOaO)[ii]

P(alij])blij] = a(ba)[ij]

P(a[ij])bo[Jj] = a(BOa“)[iil

{alij] bLi3] clik]} = a(bc)lik]

{alij] blkj] c[kil} = (a(bc) + (c™™a™[ii]l (k = i allowed)

{alij] blkjl c[k11} = a(Bc)[il1]

(k = jor i=3ork=14=3ori=3j, k=1 allowed)

whereas all other products between these generators vanish. Finally, in
analogy to the symplectic matrix units we define the hermitian matrix

units Hij as the matrices Hij = 1[ij] = Hji (i = j allowed)
Note that

D) = {Hy5,1,3 < 1)
is a (D,Do)-basis of HI(D,DO,n, ).

Example 1.6. (quadratic form triple) Here the ingredients are the

fo]]ngFET_E_T;_an extension over k, i.e. a unital commutative
associative algebra over k, with a k-linear automorphism «: K » K: a » a
of period 2, V is a module over K, gq: V » K is a quadratic form with
bilinearization q(x,y) = q(x+y)-q(x)-q(y) and finally S: V > V is a
k-linear map with s = Id, S(cv) = ¢cS(v) for ¢ « K, v « V and q(Sv) =



