OsborneMcGraw-Hill

Werner Feibel

Using Microsoft C

Werner Feibel

Berkeley New
Auckland Bog®¢

Mexico City Milan Montreal New Delhi ~ PanawwaCity
Paris Sao Paulo Singapore Sydney

Tokyo Toronto

Osborne McGraw-Hill

2600 Tenth Street

Berkeley, California 94710
U.S.A.

For information on translations and book distributors outside of the U.S.A.,
please write to Osborne McGraw-Hill at the above address.

A complete list of trademarks appears on page 705.

Using Microsoft C

Copyright © 1989 by McGraw-Hill, Inc. All rights reserved. Printed in the
United States of America. Except as permitted under the Copyright Act of
1976, no part of this publication may be reproduced or distributed in any form
or by any means, or stored in a database or retrieval system, without the prior
written permission of the publisher, with the exception that the program
listings may be entered, stored, and executed in a computer system, but they
may not be reproduced for publication.

1234567890

DOCDOC 898 ISBN 0-07-881428-6

Acquisitions Editor Jeff Pepper

Technical Reviewer Kris Jamsa

Project Editor Nancy Beckus

Cover Art Bay Graphics Design Associates

Screens produced with InSet from InSet Systems, Inc.
Book printed and bound by R.R. Donnelley & Sons Company
Crawfordsville, Indiana

Information has been obtained by Oshorne McGraw-Hill from sources believed to be reliable.
However, because of the possibility of human or mechanical error by our sources, Oshorne MeGraw-
Hill, or others, Osborne McGraw-Hill does not guarantee the accuracy, adequacy, or completeness
of any information and is not responsible for any errors or omissions or the results obtained from
use of such information.

Preface

Welcome to C and to the Microsoft C environment! You’ve chosen
an excellent language and compiler.

About C

C is a small but very powerful programming language. It has
always been a popular language among professional programmers,
and it is becoming much more widely used as more people are
learning to program.

The language has been used to develop all sorts of programs —
including simple utilities (such as calendar programs), text editors,
database management systems and other applications, as well as
operating systems. (Significant portions of such popular operating
systems as DOS, OS/2, and UNIX have been written in C.) The C
language has even been used to write C compilers!

Because it’s a small language, C is quite easy to learn. Because
it’s a powerful language, you can spend many years learning all of
its subtleties and strengths. (Of course, as with any language, you
can also spend lots of time searching through frustrating program
errors if you're not careful.)

Xi

xii Using Microsoft C

In this book, you’ll find a complete introduction to C. You'll
learn how to use all the components of the language. You’ll also
find examples that you can use to begin to explore some of C’s finer
points. Many of these subtle features are pointed out in the book.

About Microsoft C

Whether you’re new to programming or a professional program-
mer who has been working with other languages, Microsoft C is the
ideal programming environment for you. It has everything you’ll
need to program in C—from your first day at programming
through your first professional programming project. It is also the
first commercial C compiler to work under OS/2. In fact, your
Microsoft C package contains versions for both DOS and OS/2.

The editor in the Microsoft C package is very easy to use. If
you're new to computers, this will be helpful. If you generally use
a different editor, you may be able to configure the Microsoft editor
to obey the same commands as the editor you're already using.
You'll find a brief introduction to the editor in Chapter 2.

If you're reluctant to give up the editor you're accustomed to
using, you can continue to use this editor — provided it can produce
text files (that is, files without any special formatting characters) for
the compiler to read.

The Microsoft C compiler is quite a versatile program. If you're
just getting started with programming or with C, you can simply let
the compiler run in “default” mode —in which the compiler makes
decisions concerning various aspects of the program being created.
For example, the compiler will try to optimize certain constructs in
your program. In this mode, you simply tell the compiler to
“compile my file,” and the program takes care of the rest. Since
there is so little to this process, you'll learn about it in Chapter 1.

By using the compiler in this mode, you can concentrate on
designing and writing your programs—confident that the com-
piler will turn your program design into an executable version,
without requiring any special instructions or attention from you.

Preface Xifi

The Microsoft G package also includes QuickC as a special
component. QuickC 1s a completely integrated programming en-
vironment, containing an editor, compiler, and debugger, all in
one¢ program.

If you're a professional programmer, you will want to take
much greater control of how your program should look. You can
set a broad range of options for the compiler—to optimize for
speed and program size, as well as to keep track of various settings
while building your program.

The programs in this book don’t require such fine-tuning.
Therefore, the programs are compiled using default settings. You
may want to use these programs to explore some of the more
advanced options.

The linker is flexible, and is quite easy to use. As with the
compiler, you can run the linker in “default” mode, which will
suffice for the majority of your programs. If necessary, you can also
fine-tune the linker to custom build a program for you.

In addition to these components, the Microsoft C package in-
cludes several utilities, such as a program for building precompiled
function libraries that you can use in your programs. Once you
start writing larger programs, such libraries can help make your
programming task much easier. Because they are precompiled,
these libraries take less time to process while your program is being
built.

The CodeView debugger is also included in your Microsoft C
package. This program lets you examine your program as it exe-
cutes. You can follow the source code as each instruction is carried
out. In the debugger, you can also observe the values of specified
variables —for example, to determine where an error in your pro-
gram begins.

Any of these components can be used independently of each
other. This gives you considerable leeway in how you create your
programs.

When you first begin programming in C, you’ll probably just
write your programs and compile them. At this point, it’s good to
know you have new challenges to look forward to. You may even
want to explore the other components.

As your programming experience and your challenges grow,
you'll begin to use some of the other components to make your job

Xiv Using Microsoft C

easier and more efficient. For example, you may start building
precompiled files and function libraries, for use in other programs.
Or you may start using the debugger to examine your program’s
execution, in order to isolate a bug in your program.

Once you're an experienced programmer, you’ll make exten-
sive use of the components, and will have to worry about such
issues as program size and version control. Again, it’s nice to know
that your programming environment allows you to deal with such
concerns.

These features make the Microsoft C environment an easy,
flexible, and very powerful program collection.

About This Book

In this book you’ll learn how to use the C language and your
Microsoft C package to accomplish the tasks you want. I've tried to
make the learning process as enjoyable as possible. The main thing
you’ll learn from this book will be how to program well in C.

Where editor commands are discussed, or where specific com-
mands are used to accomplish some task in the program develop-
ment process, the commands and details will be based on the
Microsoft C package. Where C language features are concerned,
the discussion is independent of any particular compiler or lan-
guage implementation. The examples all use the syntax contained
in the Draft Proposed ANSI Standard definition for the C lan-
guage — which will eventually become the “official” definition of the
language.

The approach in this book is informal, and uses extensive ex-
amples to illustrate C’s syntax and features. I strongly urge you to
type in the examples and try them. You'll learn C more thoroughly
that way.

Many of the examples are designed to enable you to explore a
particular feature or issue on your own—either by using or ex-
tending the program. In some cases, this goal has led to long
examples. Don’t let this daunt you; exploration can help you better
understand C. If this happens, your gain will more than offset the
extra time it took to type in the program.

Preface XV

The book goes into considerable detail about most of C’s fea-
tures. This should make the book useful for both beginners and
intermediate students of C. Don’t worry if you've never pro-
grammed before. There’s enough information here to get you
started and to keep you going. You'll have to work, however, since
the book is no substitute for experience.

If you're already somewhat familiar with C, you may still find
useful information here. First, you may find details of C that were
not covered in your previous exposure to the language. You may
also find topics that may be new to you —for example, complex data
structures such as linked lists.

If you're truly interested in learning C, and you’re willing to put
some effort into it, I think you’ll find this book a painless and
perhaps even enjoyable way to accomplish your task. When it’s fun
to do something, you don’t mind the extra effort it may require of
you. Happy programming!

Acknowledgments

Many people deserve thanks for getting this book out to you.

Kris Jamsa offered valuable criticism and advice in his technical
reviews of the book. The book is better as a result of his suggestions,
for which I'm grateful.

The people at Osborne/McGraw-Hill deserve special thanks for
their patience and perserverance with this project. This book was
written during a period of family crises, and everyone at Osborne
was very understanding, accommodating, and helpful. Jeff Pepper
and Madhu Prasher knew just when to push me and when to wait.
Their timing made it easier to write the book, even during the
worst of times. Nancy Beckus and the other people in the produc-
tion department once again worked wonders with the material I
sent them over many months. They succeeded admirably, and 1
congratulate them.

Finally, thanks to the people who have bought my earlier books,
since you implicitly encouraged Osborne to let me write this one.

xviii Using Microsoft C

Source Code Listings

There are over 150 programs in this book. If you want to save
yourself the task of typing the programs (and about 75 other
listings containing functions or header material) into your com-
puter, the source code for all the programs in this book is available
on one 720K (3 1/2 inch) or two 360K (5 1/4 inch) diskettes.

The diskettes contain about 450K of source files and cost $22
($20 + $2 for postage and handling). To order them, please fill out
the form on the next page.

Order Form

To order the source code for Using Microsoft C, please provide the
information reques[ed and include a check or money order for the
appropriate amount.

$25 per copy ($20 + $5 for shipping and handling) for foreign
orders.

$23 per copy ($20 + $2 for shipping and handling + $1 sales tax)
for Massachusetts residents.

$22 per copy ($20 + $2 for shipping and handling) for other

orders.

Number of copies: ____ Amount enclosed: $
Diskette format: 360K 720K
Name

Company (if applicable)

Street Address

City State Zip Code

Country (if not USA)

Please send this information, along with your check or money
order to:

Werner Feibel
P.O. Box 2499
Cambridge, MA 02238-2499

Osborne/McGraw-Hill assumes NO responsibility for this offer. This is solely an offer of Werner
Feibel and not of Osborne/McGraw-Hill.

Contents

Preface

Introducing C
Who’s Using C?
C Features

The Nature of C
Using C

Why Microsoft C?

Working with Microsoft C

The Microsoft Editor

Creating a Simple Program

Modifying Your File

Frequently Used Commands: A Summary
Summary

Variables and Variable Definitions

C Program Structure

Statements

C’s main() Rule

Using printf() for Output

Identifiers

Variable Definition: Making Room

The Assignment Operator and Assignment
Statements

Summary

55
55
57
60
61
66
68

69
71

Simple Types and Operators
C’s Simple Data Types

Exploring Simple Types
Constants

Arithmetic Operators

printf() Once More

Summary

AN
Preprocessors and Programs
The C Preprocessor
Preprocessor Commands
Other Preprocessor Commands
Library Functions
Macros That Look Like Functions
Header and Other Include Files
Summary

Reading and Writing in C

Reading Characters

More About printf()

Function fprintf()

Values and Variables: The Address Operator
Function scanf()

Summary

Controlling C

Relational and Equality Operators
Logical Operators

The if-else Construct

The switch Statement

More Operators

Loops in C

The do-while Loop

The for Loop

The break and continue Statements
Summary

73
73
86
93
100
109
109

111
111
118
132
138
142
145
146

147
147
156
162
163
165
172

175
176
178
181
188
193
198
204
205
214
216

10

11

Functions in C

C Functions

Flow of Control in a C Program
Function Returns

Global and Local Variables
Function Declarations

Formal and Actual Parameters
More Function Examples
Summary

-~

Scope, Lifetime, and Storage Class
Scope and Visibility

Duration, or Lifetime, of Variables
Storage Class

Summary

Pointers

Variable Contents and Variable Locations
Pointers

Pointer Syntax

Pointers as Function Parameters

Pointer Arithmetic

The NULL Pointer Address

Pointer Pitfalls

Summary

Arrays and Strings

Arrays

Defining and Declaring Arrays

Arrays and Pointers

Arrays as Function Parameters

Strings

Library Functions for String Handling
Multidimensional Arrays

Pointer Arrays

Summary

219
220
220
226
232
233
236
250
257

259
259
274
276
291

293
293
296
304
312
325
333
333
336

337
337
342
347
353
359
369
379
393
399

12

13

14

15

16

Functions Revisited

Functions Returning Pointers
Recursion

Adding Functions to Your Collection

A Program to Exercise the String-Handling

Functions

Files and Command Line Arguments

Files in C

Command Line Arguments
Example Programs
Summary

Memory Allocation and Usage
Dynamic Memory Allocation
Memory: General Issues

Summary

Structures, Bit-Fields, and Unions
Structures

Self-Referential Structures

Bit-Fields

Unions

Summary

Bitwise and Conditional Operators
Bit Patterns

The Bitwise Complement Operator

The Bitwise AND Operator

The Bitwise OR Operator

The Bitwise XOR Operator

Shift Operators

The Conditional Operator

Enumeration Types

Summary

401
401
409
421

458

463
464
475
494
511

513
513
514
541

543
543
569
584
589
593

595
595
602
608
613
618
620
626
630
634

<17 Communicating with Your Operating System

Similarities and Differences in Accessing DOS and
0s/2

Accessing DOS Services Through Interrupts
Interrupts
Interrupting DOS Through the Function Dispatcher
Interrupting Without a Dispatcher
Accessing OS/2 Services Through Calls
Sample API Functions
Summary

A ASCII Codes for the PC

B Miscellaneous Listings

Index

635

636
638
640
642
657
665
667
681

683

691

707

Introducing C

C is an elegantly simple language; it’s also a challenge to program-
mers. At times, you'll love C; at other times, you’ll hate it.

There is much to like about C: it’s small and powerful. When
used properly, C is fast, efficient, and portable, meaning that it’s
moved easily from one computer or operating system to another.

C lets you do marvelous things, such as building compilers,
operating systems, editors, and whatever else you wish. C can also
turn nasty, overwriting compilers, operating systems, editors, or
whatever else you may have stored in your system’s memory.

C gives you the power and potential portability of high-level
languages, such as Pascal or Modula-2, along with the flexibility
(and destruction potential) of low-level languages, such as assembly
language. C lets you build complex data structures found in other
high-level languages, and enables you to manipulate individual bits
of a data structure in ways normally possible only with assembly
language.

However, C will not protect your programs from themselves,

