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Preface

Welcome to C and to the Microsoft C environment! You’ve chosen
an excellent language and compiler.

About C

C is a small but very powerful programming language. It has
always been a popular language among professional programmers,
and it is becoming much more widely used as more people are
learning to program.

The language has been used to develop all sorts of programs —
including simple utilities (such as calendar programs), text editors,
database management systems and other applications, as well as
operating systems. (Significant portions of such popular operating
systems as DOS, OS/2, and UNIX have been written in C.) The C
language has even been used to write C compilers!

Because it’s a small language, C is quite easy to learn. Because
it’s a powerful language, you can spend many years learning all of
its subtleties and strengths. (Of course, as with any language, you
can also spend lots of time searching through frustrating program
errors if you're not careful.)
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xii Using Microsoft C

In this book, you’ll find a complete introduction to C. You'll
learn how to use all the components of the language. You’ll also
find examples that you can use to begin to explore some of C’s finer
points. Many of these subtle features are pointed out in the book.

About Microsoft C

Whether you’re new to programming or a professional program-
mer who has been working with other languages, Microsoft C is the
ideal programming environment for you. It has everything you’ll
need to program in C—from your first day at programming
through your first professional programming project. It is also the
first commercial C compiler to work under OS/2. In fact, your
Microsoft C package contains versions for both DOS and OS/2.

The editor in the Microsoft C package is very easy to use. If
you're new to computers, this will be helpful. If you generally use
a different editor, you may be able to configure the Microsoft editor
to obey the same commands as the editor you're already using.
You'll find a brief introduction to the editor in Chapter 2.

If you're reluctant to give up the editor you're accustomed to
using, you can continue to use this editor — provided it can produce
text files (that is, files without any special formatting characters) for
the compiler to read.

The Microsoft C compiler is quite a versatile program. If you're
just getting started with programming or with C, you can simply let
the compiler run in “default” mode —in which the compiler makes
decisions concerning various aspects of the program being created.
For example, the compiler will try to optimize certain constructs in
your program. In this mode, you simply tell the compiler to
“compile my file,” and the program takes care of the rest. Since
there is so little to this process, you'll learn about it in Chapter 1.

By using the compiler in this mode, you can concentrate on
designing and writing your programs—confident that the com-
piler will turn your program design into an executable version,
without requiring any special instructions or attention from you.
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The Microsoft G package also includes QuickC as a special
component. QuickC 1s a completely integrated programming en-
vironment, containing an editor, compiler, and debugger, all in
one¢ program.

If you're a professional programmer, you will want to take
much greater control of how your program should look. You can
set a broad range of options for the compiler—to optimize for
speed and program size, as well as to keep track of various settings
while building your program.

The programs in this book don’t require such fine-tuning.
Therefore, the programs are compiled using default settings. You
may want to use these programs to explore some of the more
advanced options.

The linker is flexible, and is quite easy to use. As with the
compiler, you can run the linker in “default” mode, which will
suffice for the majority of your programs. If necessary, you can also
fine-tune the linker to custom build a program for you.

In addition to these components, the Microsoft C package in-
cludes several utilities, such as a program for building precompiled
function libraries that you can use in your programs. Once you
start writing larger programs, such libraries can help make your
programming task much easier. Because they are precompiled,
these libraries take less time to process while your program is being
built.

The CodeView debugger is also included in your Microsoft C
package. This program lets you examine your program as it exe-
cutes. You can follow the source code as each instruction is carried
out. In the debugger, you can also observe the values of specified
variables —for example, to determine where an error in your pro-
gram begins.

Any of these components can be used independently of each
other. This gives you considerable leeway in how you create your
programs.

When you first begin programming in C, you’ll probably just
write your programs and compile them. At this point, it’s good to
know you have new challenges to look forward to. You may even
want to explore the other components.

As your programming experience and your challenges grow,
you'll begin to use some of the other components to make your job
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easier and more efficient. For example, you may start building
precompiled files and function libraries, for use in other programs.
Or you may start using the debugger to examine your program’s
execution, in order to isolate a bug in your program.

Once you're an experienced programmer, you’ll make exten-
sive use of the components, and will have to worry about such
issues as program size and version control. Again, it’s nice to know
that your programming environment allows you to deal with such
concerns.

These features make the Microsoft C environment an easy,
flexible, and very powerful program collection.

About This Book

In this book you’ll learn how to use the C language and your
Microsoft C package to accomplish the tasks you want. I've tried to
make the learning process as enjoyable as possible. The main thing
you’ll learn from this book will be how to program well in C.

Where editor commands are discussed, or where specific com-
mands are used to accomplish some task in the program develop-
ment process, the commands and details will be based on the
Microsoft C package. Where C language features are concerned,
the discussion is independent of any particular compiler or lan-
guage implementation. The examples all use the syntax contained
in the Draft Proposed ANSI Standard definition for the C lan-
guage — which will eventually become the “official” definition of the
language.

The approach in this book is informal, and uses extensive ex-
amples to illustrate C’s syntax and features. I strongly urge you to
type in the examples and try them. You'll learn C more thoroughly
that way.

Many of the examples are designed to enable you to explore a
particular feature or issue on your own—either by using or ex-
tending the program. In some cases, this goal has led to long
examples. Don’t let this daunt you; exploration can help you better
understand C. If this happens, your gain will more than offset the
extra time it took to type in the program.
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The book goes into considerable detail about most of C’s fea-
tures. This should make the book useful for both beginners and
intermediate students of C. Don’t worry if you've never pro-
grammed before. There’s enough information here to get you
started and to keep you going. You'll have to work, however, since
the book is no substitute for experience.

If you're already somewhat familiar with C, you may still find
useful information here. First, you may find details of C that were
not covered in your previous exposure to the language. You may
also find topics that may be new to you —for example, complex data
structures such as linked lists.

If you're truly interested in learning C, and you’re willing to put
some effort into it, I think you’ll find this book a painless and
perhaps even enjoyable way to accomplish your task. When it’s fun
to do something, you don’t mind the extra effort it may require of
you. Happy programming!
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Source Code Listings

There are over 150 programs in this book. If you want to save
yourself the task of typing the programs (and about 75 other
listings containing functions or header material) into your com-
puter, the source code for all the programs in this book is available
on one 720K (3 1/2 inch) or two 360K (5 1/4 inch) diskettes.

The diskettes contain about 450K of source files and cost $22
($20 + $2 for postage and handling). To order them, please fill out
the form on the next page.
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To order the source code for Using Microsoft C, please provide the
information reques[ed and include a check or money order for the
appropriate amount.

$25 per copy ($20 + $5 for shipping and handling) for foreign
orders.

$23 per copy ($20 + $2 for shipping and handling + $1 sales tax)
for Massachusetts residents.

$22 per copy ($20 + $2 for shipping and handling) for other
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Number of copies: ____ Amount enclosed: $
Diskette format: 360K 720K
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Country (if not USA)

Please send this information, along with your check or money
order to:

Werner Feibel
P.O. Box 2499
Cambridge, MA 02238-2499
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Introducing C

C is an elegantly simple language; it’s also a challenge to program-
mers. At times, you'll love C; at other times, you’ll hate it.

There is much to like about C: it’s small and powerful. When
used properly, C is fast, efficient, and portable, meaning that it’s
moved easily from one computer or operating system to another.

C lets you do marvelous things, such as building compilers,
operating systems, editors, and whatever else you wish. C can also
turn nasty, overwriting compilers, operating systems, editors, or
whatever else you may have stored in your system’s memory.

C gives you the power and potential portability of high-level
languages, such as Pascal or Modula-2, along with the flexibility
(and destruction potential) of low-level languages, such as assembly
language. C lets you build complex data structures found in other
high-level languages, and enables you to manipulate individual bits
of a data structure in ways normally possible only with assembly
language.

However, C will not protect your programs from themselves,



