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INTRODUCTION

Confusion. Fright. Complexity. Chips, bits, binary, RAM. Are
those the thoughts that enter your mind when you think about assembly
language? If they do, you are one of millions of new computer users
who will be facing such thoughts in the coming years as more and
more people delve deeper into their IBM PCs and PC compatibles.

If the thought of assembly language overpowers you, this book is
for you. If you know nothing about exotic numbering systems, or if
you have never spoken a word of BASIC or any other computer
language, or if this is the first book about your IBM PC that you have
picked up, this book is for you. If you have dabbled in BASIC or can
count to four in binary, that’s great but not a prerequisite.

As a beginner you will enjoy the approach taken by IBM-PC
Assembly Language Is Fun and Easy. You will giggle your way to
understanding as you read how hexadecimal numbers were used to
mark the runways of Stonehill Airport. You will smile with apprecia-
tion as the eccentric Dr. Bittwiddler explains the mysteries of bits,
bytes, and structuring assembly language programs. You will admire
Dr. Hacker’s conéise and lucid explanations of some of the nastier
assembly language concepts.

This book is ideal for the assembly language beginner. It uses
humor and metaphor to put every assembly language instruction into
understandable terms. Besides explaining the instructions, it goes a
step further and explains how the instructions can be made to fit
together into programs. Concepts of structured programming are put
into human terms, with input, process, and output compared to the
evolution of life on Earth.

The book focuses around one program in particular to illustrate
how assembly language programs are put together. This program is
useful in its own right as an aid to writing assembly language
programs, and programs similar to it are currently being sold for more
than the price of this book. A listing of the program is included with
this book, or you can save yourself the trouble of keying it in and
assembling by purchasing the program on a supplementary diskette
directly from the author.

So if you still don’t believe that IBM PC assembly language is
really fun and easy, you're in for a pleasant, as well as a fun and easy,
surprise. Let’s begin right now!
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Chapter One

IS THERE LIFE AFTER BASIC?






Welcome to the fascinating world of assembly language pro-
gramming on the IBM® Personal Computer. Our study of assembly
language will be an adventure, complete with all the ‘perils and
satisfactions of a long journey. This book will not lecture you, nor will
it bore you with unneeded technical detail. Instead, by the end of this
chapter you will have written and executed a simple assembly language
program. Then, together, we will design and study an assembly
language program that you will use again and again as you continue to
explore your IBM PC. You will not only know the 92 instructions that
comprise the 8088 microprocessor, but how to express them as a
program using the IBM Macro Assembler, and by the end of this book
you will know something about programming. You will learn more
than just the definitions of the words of assembly language—you will
know how to use them to form sentences, paragraphs, and programs.

Familiarity with a programming language like BASIC is helpful,
but not necessary to comprehend this book. Unlike many other books
on assembly language which tend to be heavy on the technical side,
this book includes explanations of programming concepts from the
ground up. For those of you who do know BASIC, comparisons of
assembler and your native BASIC are employed to aid in your
learning. For the serious students among you, each chapter contains a
glossary, a summary of what you learned, and a few review questions.
The chapter—by—chapter glossary is combined at the end of the book to
form a handy reference.

THE GOOD DOCTORS BITTWIDDLER
AND HACKER

The study you are about to undertake will not be easy. However,
we are extremely fortunate to have with us two distinguished computer
scientists who will help us grasp fundamental concepts and supplement
the teaching skills of your author. They are Dr. Boran Bittwiddler and
Dr. Hammond Hacker. I will now introduce Dr. Bittwiddler, who will
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give us a brief explanation of what assembly language programming is.
But, before I do that let me warn you that I’ve been roundly criticized
for allowing Dr. Bittwiddler’s intelligent ramblings to grace these
pages—you see, after many years of living locked in the basement with
a computer, several cases of soda pop, and a truckload of corn chips,
some would say he has a few bits loose here and there. Many of you are
likely to agree with Dr. Hacker, one of Dr. Bittwiddler’s most
outspoken critics, that Dr. Bittwiddler has a personality that could be
characterized as—shall we say—offensive. If that is your opinion, you
are welcome to skip the Doctor’s sections and pay attention to Dr.
Hacker only. So without further ado, please welcome Dr. Boran
Bittwiddler:

“Thank you ladies and gentlemen, and fellow scientists. Let me
begin by saying that I am most honored to help guide you through this
most exciting of journeys—an adventure into the guts of the IBM
Personal Computer. It is with a confirmed sense of adventure that I
accompany you on this important mission, and with trepidation that
"

“Please, Dr. Bittwiddler, get to the point. We’ve heard your tired
ramblings too many times before.”

As 1 said, Dr. Hacker is not one of Dr. Bittwiddler’s most
enthusiastic fans. We will request him to be quiet and let the Doctor
finish. Dr. Bittwiddler?

“Thank you. Now, as I was saying....The computer we have
chosen to explore is the IBM Personal Computer. This machine
features a state—of—the—art 16-bit 8088 microprocessor, which will be
your main concern as you learn to make it do tricks that BASIC
programmers could only dream of in those dark, primitive days before
assembly language became a staple of the masses.

HOW THE COMPUTER “THINKS”

“We humans have vast memories in our brains which can store
millions of words and images. But computers are unlike us. While they
do, indeed, have memories, those memories are capable of storing
nothing but numbers. A program is really just a series of instructions,
like a recipe, reduced to numerical codes. Let us now construct a
sample code to illustrate this principle:



