IBM-PC’ Assembly Language
B Fin& Easy ‘

-

S T 7 ' P it
AN
TR
J .“p
.
X, l
XU g
e > g -
e i
¥
!

1 'amuel A. Solomo '



IBM-PC* ASSEMBLY LANGUAGE
IS FUN AND EASY

Samuel A. Solomon

Reston Publishing Company, Inc.

A Prentice-Hall Company
Reston, Virginia



Library of Congress Cataloging in Publication Data

Solomon. Samuel A.
IBM-PC* assembly language is fun and easy.

IBM Personal Computer—Programming. 2. Assembler
language (Computer program language) I. Title. II. Title:
[.B.M. P.C. assembly language is fun and easy.
QA76.8.12594564 1984 001.64'24 83-26965
ISBN 0-8359-3038-6

© 1984 by Samuel Solomon

IBM PC? is a registered trademark of the International Business Machines, Inc.

All rights reserved. No part of this book may be reproduced, in any way or by any means, without
written permission in writing from the author and the publisher.

10987654321

Printed in the United States of America



ACKNOWLEDGMENTS

The author wishes to acknowledge the following persons whose
help was invaluable during the writing of this book: James Rusten, for
editorial and artistic contributions; Linda Rusten, for artistic talent;
Richard Nielsen, for assistance in helping to obtain the hardware for

this book: and Dave Dixon, for assistance in helping to obtain the
software for this book.



INTRODUCTION

Confusion. Fright. Complexity. Chips, bits, binary, RAM. Are
those the thoughts that enter your mind when you think about assembly
language? If they do, you are one of millions of new computer users
who will be facing such thoughts in the coming years as more and
more people delve deeper into their IBM PCs and PC compatibles.

If the thought of assembly language overpowers you, this book is
for you. If you know nothing about exotic numbering systems, or if
you have never spoken a word of BASIC or any other computer
language, or if this is the first book about your IBM PC that you have
picked up, this book is for you. If you have dabbled in BASIC or can
count to four in binary, that’s great but not a prerequisite.

As a beginner you will enjoy the approach taken by IBM-PC
Assembly Language Is Fun and Easy. You will giggle your way to
understanding as you read how hexadecimal numbers were used to
mark the runways of Stonehill Airport. You will smile with apprecia-
tion as the eccentric Dr. Bittwiddler explains the mysteries of bits,
bytes, and structuring assembly language programs. You will admire
Dr. Hacker’s conéise and lucid explanations of some of the nastier
assembly language concepts.

This book is ideal for the assembly language beginner. It uses
humor and metaphor to put every assembly language instruction into
understandable terms. Besides explaining the instructions, it goes a
step further and explains how the instructions can be made to fit
together into programs. Concepts of structured programming are put
into human terms, with input, process, and output compared to the
evolution of life on Earth.

The book focuses around one program in particular to illustrate
how assembly language programs are put together. This program is
useful in its own right as an aid to writing assembly language
programs, and programs similar to it are currently being sold for more
than the price of this book. A listing of the program is included with
this book, or you can save yourself the trouble of keying it in and
assembling by purchasing the program on a supplementary diskette
directly from the author.

So if you still don’t believe that IBM PC assembly language is
really fun and easy, you're in for a pleasant, as well as a fun and easy,
surprise. Let’s begin right now!



ABOUT THE AUTHOR

Samuel A. Solomon is co-owner of the Learning Methods Com-
puter Training Center in San Jose, California. Mr. Solomon learned the
art of making obtuse subjects comprehensible during his fifteen years’
experience in all aspects of newspaper production.

In 1977 Mr. Solomon joined Radio Shack (a division of the Tandy
Corporation) in Ft. Worth, Texas, where he designed and wrote the
best-selling Scripsit series of word processing software. Each of the
three programs in the series was written in Z-80 assembly language
and took about one year to produce. In 1981 Mr. Solomon founded
Executive Software of San Francisco, California, a company that
engages in contract programming and consulting for microcomputers.

xii



CONTENTS

CHAPTER ONE

Is There Life After Basic? 1

The Good Doctors Bittwiddler and Hacker 3
How the Computer “Thinks” 4

Assembling and Running From Start to Finish 6
Chapter One Glossary 9

Chapter One Review Questions 10

iii



1 v CONTENTS

CHAPTER TWO

EDLIN Without Fear 11

Assembly Language Rigamarole 13
Starting EDLIN 14

The List Lines Command 15

The Insert Lines Command 16

The Edit Line Command 18

The End And Quit Edit Commands 18
Chapter Two Glossary 19

Chapter Two Review Questions 20

CHAPTER THREE

ASM Made Easy 21

Files, Files Evervwhere 23

Those Darned Error Messages 27
Chapter Three Glossary 28
Chapter Three Review Questions 28

CHAPTER FOUR

LINK: Whether You Like It Or Not 29

Yet More Files 32

Interpreting Link’s Results 34

Solution to the .EXE Versus .COM Mystery 35
Chapter Four Glossary 36

Chapter Four Review Questions 37



CONTENTS v

CHAPTER FIVE

How Milton Hex Discovered Hexadecimal 39

Bytes and RAM 42

The Concept of Registers 42

The Definitive Explanation of Hexadecimal Numbers 43
Programmers Are Lazy 44

Chapter Five Glossary 45

Chapter Five Review Questions Ag

CHAPTER SIX

Use and Abuse of DEBUG 47

The Joy of Single Stepping 50
Breakpoints and the Go Command 52
Displaving and Editing RAM 53
Quitting DEBUG 54

Chapter Six Glossary 55

Chapter Six Review Questions 56

CHAPTER SEVEN

How to Design a Computer Program 57

Life on Earth: Input, Output, and Process 59
Can DEBUG Be Improved Upon? 60

What Should It Do? 61

How Should It Do 1t? 61

The View From Inside 64

Chapter Seven Glossary 64

Chapter Seven Review Questions 65



vi CONTENTS

CHAPTER EIGHT

What’s in a Line? 67

Labels 69

Instructions and Operands 71
Comments 72

Chapter Eight Glossary 74
Chapter Eight Review Questions 74

CHAPTER NINE

MOV-ING Around 77

Pointing a Finger at RAM 79

Making a Million Out of 65,000 81
Constants and Variables 84

Chapter Nine Glossary 89

Instructions Learned in Chapter Nine 89
Chapter Nine Review Questions 90

CHAPTER TEN

Branching and Looping 91

Comparing Values 93

Throwing the 8088 for a Loop 95

The Jump Instructions 98

Chapter Ten Glossary 99

Instructions Learned in Chapter Ten 99
Chapter Ten Review Questions 100



CONTENTS Vii

CHAPTER ELEVEN

Subroutines 103

Subroutines as Documentation Tools 106
Assigning Parameters to Subroutines 107

A Real Life Example 108

Chapter Eleven Glossary 111

Instructions Learned in Chapter Eleven 112
Chapter Eleven Review Questions 112

CHAPTER TWELVE

Assembler Arithmetic 115

Adding and Subtracting 117

The Horror of Signed Numbers 120

Shortcutting ADD and SUB With INC and DEC 121
Multiplying and Dividing 123

Arithmetic in Action 125

Chapter Twelve Glossary 126

Instructions Learned in Chapter Twelve 126
Chapter Twelve Review Questions 127

CHAPTER THIRTEEN

Fancy Addresses 131

Indexed Addressing 133

More on Segments 135

Making Assumptions 136

Chapter Thirteen Glossary 140

Instructions Learned in Chapter Thirteen 141
Chapter Thirteen Review Questions 141



viii CONTENTS

CHAPTER FOURTEEN

Stacking Up 143

What Is a Stack? 145

The Stack Segment 147

CALL and RET Revisited 149

Preventing Stack Abuse 150

Chapter Fourteen Glossary 151

Instructions Learned in Chapter Fourteen 151
Chapter Fourteen Review Questions 152

CHAPTER FIFTEEN

Communicating with the World 153

Me and My DOS 155

Playing the Keyboard 157

Scanning the Keyboard in Real Life 159
Hard Copy 160

Chapter Fifteen Glossary 160

Instructions Learned in Chapter Fifteen 160
Chapter Fifteen Review Questions 161

CHAPTER SIXTEEN

Advanced Instructions You’ll Rarely Use 163

Bit Shifting 169

String Instructions 169

Other Instructions 170

Chapter Sixteen Glossary 171

Instructions Learned in Chapter Sixteen 171
Chapter Sixteen Review Questions 172



APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

Creating the EDMEM Program 175

ASCII Codes 197

Answers to Review Questions 203

Glossary 217

Index 229

CONTENTS ix



Chapter One

IS THERE LIFE AFTER BASIC?






Welcome to the fascinating world of assembly language pro-
gramming on the IBM® Personal Computer. Our study of assembly
language will be an adventure, complete with all the ‘perils and
satisfactions of a long journey. This book will not lecture you, nor will
it bore you with unneeded technical detail. Instead, by the end of this
chapter you will have written and executed a simple assembly language
program. Then, together, we will design and study an assembly
language program that you will use again and again as you continue to
explore your IBM PC. You will not only know the 92 instructions that
comprise the 8088 microprocessor, but how to express them as a
program using the IBM Macro Assembler, and by the end of this book
you will know something about programming. You will learn more
than just the definitions of the words of assembly language—you will
know how to use them to form sentences, paragraphs, and programs.

Familiarity with a programming language like BASIC is helpful,
but not necessary to comprehend this book. Unlike many other books
on assembly language which tend to be heavy on the technical side,
this book includes explanations of programming concepts from the
ground up. For those of you who do know BASIC, comparisons of
assembler and your native BASIC are employed to aid in your
learning. For the serious students among you, each chapter contains a
glossary, a summary of what you learned, and a few review questions.
The chapter—by—chapter glossary is combined at the end of the book to
form a handy reference.

THE GOOD DOCTORS BITTWIDDLER
AND HACKER

The study you are about to undertake will not be easy. However,
we are extremely fortunate to have with us two distinguished computer
scientists who will help us grasp fundamental concepts and supplement
the teaching skills of your author. They are Dr. Boran Bittwiddler and
Dr. Hammond Hacker. I will now introduce Dr. Bittwiddler, who will



4 IS THERE LIFE AFTER BASIC?

give us a brief explanation of what assembly language programming is.
But, before I do that let me warn you that I’ve been roundly criticized
for allowing Dr. Bittwiddler’s intelligent ramblings to grace these
pages—you see, after many years of living locked in the basement with
a computer, several cases of soda pop, and a truckload of corn chips,
some would say he has a few bits loose here and there. Many of you are
likely to agree with Dr. Hacker, one of Dr. Bittwiddler’s most
outspoken critics, that Dr. Bittwiddler has a personality that could be
characterized as—shall we say—offensive. If that is your opinion, you
are welcome to skip the Doctor’s sections and pay attention to Dr.
Hacker only. So without further ado, please welcome Dr. Boran
Bittwiddler:

“Thank you ladies and gentlemen, and fellow scientists. Let me
begin by saying that I am most honored to help guide you through this
most exciting of journeys—an adventure into the guts of the IBM
Personal Computer. It is with a confirmed sense of adventure that I
accompany you on this important mission, and with trepidation that
"

“Please, Dr. Bittwiddler, get to the point. We’ve heard your tired
ramblings too many times before.”

As 1 said, Dr. Hacker is not one of Dr. Bittwiddler’s most
enthusiastic fans. We will request him to be quiet and let the Doctor
finish. Dr. Bittwiddler?

“Thank you. Now, as I was saying....The computer we have
chosen to explore is the IBM Personal Computer. This machine
features a state—of—the—art 16-bit 8088 microprocessor, which will be
your main concern as you learn to make it do tricks that BASIC
programmers could only dream of in those dark, primitive days before
assembly language became a staple of the masses.

HOW THE COMPUTER “THINKS”

“We humans have vast memories in our brains which can store
millions of words and images. But computers are unlike us. While they
do, indeed, have memories, those memories are capable of storing
nothing but numbers. A program is really just a series of instructions,
like a recipe, reduced to numerical codes. Let us now construct a
sample code to illustrate this principle:



