

ARTIFICIAL
INTELLIGENCE
PROGRAMMING

SECOND EDITION

EUGENE CHARNIAK

Brown University
CHRISTOPHER K. RIESBECK
Yale University

DREW V. MCDERMOTT
Yale University

JAMES R. MEEHAN
Cognitive Svstems, Inc.

@ LAWRENCE ERLBAUM ASSOCIATES., PUBLISHERS
1987 Hillsdale, New Jersey Hove and London

Copyright © 1987 by Lawrence Erlbaum Associates. Inc.
All rights reserved. No part of this book may be reproduced in
any form, by photostat. microform. retrieval system. or any other
means, without the prior written permission of the publisher.

Lawrence Erlbaum Associates, Inc., Publishers
365 Broadway
Hillsdale, New Jersey 07642

Library of Congress Cataloging in Publication Data

Artificial intelligence programming.

Rev. ed. of: Artificial intelligence programming
Eugene Charniak. Christopher K. Riesbeck. Drew \
McDermott. 1980.

Bibliography: p.

Includes index.

1. Artificial intelligence—Data processing.

2. Programming (Electronic computers) 3. LISP
(Computer program language) 1. Charniak. Eugene.
Q336.A78 1987 006.3 87-8981

ISBN 0-89859-609-2

Printed in the United States of America
100 9 8 7 6 5 4 3 2

ARTIFICIAL
INTELLIGENCE
PROGRAMMING

SECOND EDITION

PREFACE TO THE SECOND EDITION

Since the first edition of this book appeared, some things in the Al
programming world have changed a great deal, and some things are almost
exactly the way they were five years ago. Perhaps the most significant
development has been the appearance of COMMON Lisp, documented in abundant
detail by Guy Steele [102]. All of the Lisp code in this new edition has been
rewritten in CoMMON Lisp. COMMON. LIspP is a pleasant surprise, given the
normal result of compromise solutions designed by committees. It manages to be
a synthesis of many of the best ideas present in modern Lisp dialects, rather than
a fossilization of the worst. While there are other dialects that have a more
coherent semantics, such as SCHEME [82] and T [81], COoMMON LisP is more than
adequate for our needs.

The choice of CoMMON Lisp has affected the contents of this book in several
ways. First, many features that we spent some time developing and adding to our
earlier dialect of Lisp are already available in CoMMON Lisp. In some cases, we
have therefore just described the ComMON Lisp feature. In other cases, we have
retained the developmental material in order to explain the underlying principles.

CoMMON Lisp is a “‘large’’ language, and we cover only part of it; some of
the best-designed features allowed us to remove material from the first edition
that dealt with the friendly but limited dialect we used then, UCI Lisp. Gone are
the sections on FEXPRs and LEXPRs; while we still discuss the issue of
extending the language by adding new data types, COMMON LisP’s
DEFSTRUCT is an example of a tool that we had to build from scratch in UCI
Lisp.

We considered both SCHEME and T for this edition. SCHEME has the right
essential semantics for programming, such as lexical scoping and closures, and

Xi

xii Preface

T extends that to include the right primitives for object-oriented programming
and language-extension via macros, as well as a host of well-designed support
features. (The next edition (!) will probably be in T.) Happily, many of these
ideas are also present in COMMON Lisp, and given its greater visibility, we chose
it instead. In particular, the availability of lexical closures has allowed us to
re-implement a number of disparate ideas in a uniform manner.

One problem with CoMMON Lisp is that it is not yet widely available. Most
implementations exist only on very large machines. While this situation will
certainly change in the next few years, we have tried to ameliorate the problem
in two ways. First, we have used only a subset of CoMmmMON LIsP in our code.
Second, we have provided a glossary describing the subset we used.

In the Lisp chapters in Part | and in the Al topics in Part 2, five years’ additional
experience has led us to provide completely new explanations, examples, and
implementations. The original chapter on alternative control structures, which
described the implementation of a variation of SCHEME, served two purposes: to
introduce some of the power behind lexically scoped languages with procedures
as first-class objects, and to give an example of how other languages with very
different control structures could be implemented in Lisp. Since COMMON LISP is
lexically scoped, there is no longer any-need to treat that topic separately. The
topic of control structure in SCHEME is now described briefly in a new chapter on
higher-order functions, continuations, and coroutines. Some of the flavor of
implementing interpreters can be gleaned from a new chapter on production
systems. (For more information on SCHEME and implementing a SCHEME inter-
preter, the interested reader is referred to Abelson and Sussman [2].)

The chapter on production systems illustrates several aspects of Al program-
ming. A production system is much easier to implement than a deductive
retriever, and correspondingly more limited in power. Production systems,
however, have proved to be very useful in the development of expert systems,
which are the basis for most of the commercial Al work at the moment.

As before, the intended audience of Artificial Intelligence Programming
remains the advanced undergraduate or early graduate student in Al. Although
the material involved requires only modest knowledge of programming, the
student who has had the most experience in creating Al programs already will
understand best the benefits of the techniques described. In addition, in response
to the changing nature of Al in industry, we have changed the text to be a bit
more like a cookbook. It has turned out that many people learning Al
programming are doing so on their own, either at home or at work. Many of them
prefer to begin with working pieces of code that they can then extend, rather than
inadequate pieces of code that are then corrected in the text and exercises. This
latter technique works in classrooms, but not in a self-study situation. Therefore,
we have eliminated almost all figures with deliberately incorrect code, and added
an appendix with the answers to nearly all the exercises in the book. We have
also removed the chapters on the sample course project.

Preface xiii

ACKNOWLEDGMENTS

We would like to thank the teachers, students, and other programmers who
suggested changes (and supplied corrections!) to the first edition, as well as
reviewers who gave us criticisms prior to this revision. Thanks to Paul Hudak
and Bill Ferguson for comments on Chapter 7, and to Robert Farrell for
comments on Chapter 12. We are indebted to Bob Strong at Cognitive Systems
Inc. for reviewing the new edition, recommending improvements, and helping us
test the code. Answers to some of the exercises were written by Gregory
Parkinson and Rika Yoshii when they were students at UCI. The Yale Artificial
Intelligence Project and Cognitive Systems Inc. provided computer support for
the preparation of the new manuscript. Finally, Chris Riesbeck would like to
dedicate this book to Maxine.

Christopher K. Riesbeck
Jim Meehan

PREFACE TO THE FIRST EDITION

Artificial Intelligence (henceforth Al) is still a field where disagreement is
more common than solid theory, and interesting ideas more common than
polished programs. Yet there is slowly coming into being a small core of
accepted (though not universally accepted) theory and practice. This book is an
attempt to gather together the ‘‘practice’” aspect of this *‘core’’ Al.

The “‘practice’” of Al is, of course, the writing of programs. Al problems are
usually ill-defined and the theories proposed are often too complex and
complicated to be verified by intuitive or formal arguments. Sometimes the only
way to understand and evaluate a theory is to see what comes next. To find this
out, and to check for obvious inconsistencies and contradictions, we write
programs that are intended to reflect our theories. If these programs work, our
theories are not proved, of course, but at least we gain some understanding of
how they behave. When the programs don’t work (or we find ourselves unable
to program the theories at all), then we learn what we have yet to define or
re-define.

With this emphasis on programming, it becomes important that an Al
researcher have a wide library of programming tools available. This is particu-
larly true because of the *‘level’” problem. That is, your theory describes what
to do at a fairly high level, but you need to tell the machine what to do at a low
level. So a theory of, say, coherency in conversation, will in all probability say
nothing about pattern matching or efficient data retrieval. It is not that these
topics are not worthy of their own theory. How people manage to retrieve
knowledge efficiently under a wide variety of circumstances is a fascinating

Xiv Preface

question. But if you are worried about conversation, it is simply not your
department.

The intent of this book is to give you a wide variety of commonly used tools
for programming Artificial Intelligence theories: discrimination nets, agendas,
deduction, data dependencies, backtracking, etc. By having these tools, we hope
you will find that your programs better reflect your intentions.

Almost all of the ideas that are described here are in common use, particularly
at the larger Artificial Intelligence centers. But very few of them have ever been
written down in one place. There are a number of books that introduce you to
Lisp (although none of them are completely satisfactory), and there are a number
of books on theories and algorithms in Artificial Intelligence. Until now,
however, there have been no books that fill in the middle ground and present the
methods that all the old-timers know for getting from theory to practice. That is
what this book is all about.

The major problem in writing a book such as this is that of selection. In some
cases it is easy. It seems unlikely that anyone would seriously contest our
inclusion of discrimination nets, pattern matching, or agendas. These techniques
have been used by many researchers in the field and in a variety of problem
areas—from natural language comprehension to problem solving to medical
diagnosis. However once one moves beyond this handful of topics, or even starts
getting specific about the type of pattern matching, or agenda, then consensus is
not so easy. So to some degree the selections made in this book are personal
ones. Of course, to say they are personal is not to say they cannot be defended
on scientific grounds, but rather that the defense would take the form of an
extended debate on the nature of Al and where it is going. For example, data
dependencies receive a chapter to themselves here in spite of the fact that they are
fairly new on the scene and hence relatively untested, at least compared to
something like unification pattern matching. Naturally we try to show the
usefulness of these ideas, but only to show how the ideas are motivated, not to
defend particular approaches against competitors. Such a defense would be well
worth having, but it would be out of place in a text such as this.

Selection also implies that some things are omitted, and there are at least two
notable omissions from these chapters. One of these is inadvertent. The
techniques discussed here all come from what might be thought of as ‘‘abstract’’
Al That is, if we think of Al programs on a spectrum from ‘‘concrete’’ programs
which must deal with the real world in terms of sound and light input (or sound
and muscle output) to ‘‘abstract’” programs which only deal with abstractions,
the techniques described here fall most naturally towards the abstract end. This
book does not have the space and the authors do not have the expertise to do
justice to the concrete end of things.

A second omission is quite deliberate. We have made no attempt to survey,
much less teach, the many Al languages (CONNIVER, QA-4, KRL, etc.). This
stems from our conviction that at present there is no commonly agreed-upon set

Preface XV

of functions above the level of list processing which everyone would agree is
useful in a wide variety of Al settings. Experience has shown that each major
project has found it necessary to build up its own tools, starting, typically, from
Lisp. We do not see this situation as likely to change in the foreseeable future.
Hence rather than covering the basics of the various languages we have tried
instead to explain the techniques which typically lie behind these languages.

The book is divided into two parts. Since almost all serious programming in
Artificial Intelligence is done in the language Lisp, Part 1 tells you how to
improve your general abilities as a Lisp programmer. [The first chapter covers]
most of the basic Lisp concepts needed for the rest of the book. We intend the
introductory material to cover all the concepts of Lisp needed later, but if you
have never programmed in Lisp before, we recommend that you spend some time
writing simple LISp programs until you get a feel for the language.

The [second through seventh] chapters are concerned with the many features
found (or lmplementable) in Lisp that make the language an attractive one to use.
Many of the ideas that pass under the rubric of ‘‘structured programming’’ will
be found here. Although Lisp is almost as old as FORTRAN, it is surprisingly
amenable to things like top-down programming and data types.

Part 2 contains more advanced and complex techniques. Since this book is
intended not just to be a description of ideas, but also to give you a chance to
learn the craft of Artificial Intelligence, we present actual Lisp implementations
of all the ideas discussed, along with exercises which modify and extend the
code. These exercises are intended to make you familiar, in a practical hands-on
way, with the techniques involved. We hope that the exercises will inspire you
to experiment and learn on your own.

This book is intended mainly for use as a textbook for an Al course in which
programming is emphasized. This ceuld be either an advanced or a fast
elementary course. The book might also be used as an auxiliary text for a systems
course; for this purpose, the chapters on macros, structured programming, and
alternative control structures would be most useful.

ACKNOWLEDGMENTS

The first edition of this book was the outgrowth of a graduate course given by
the authors in the spring of 1978 at Yale University for students in the Artificial
Intelligence Project of the Yale Computer Science Department. We would like to
acknowledge Roger Schank who originated the idea of the course. We’d also like
to thank Dave Barstow and Walter Stutzman for their detailed comments on the
complete manuscript, Laury Miller and Glenn Edelson for their comments on the
introductory chapters, and Jon Doyle for his comments on the chapter on data
dependencies.

The Yale Artificial Intelligence Project is funded by the Advanced Research
Projects Agency of the Department of Defense and the Office of Naval Research.

XVi Preface

During the writing of [the first edition of] this book, Eugene Charniak and
Christopher Riesbeck were supported by the Advanced Research Projects
Agency monitored under the Office of Naval Research under contract
N00014-75-C-1111.

Eugene Charniak
Christopher K. Riesbeck
Drew V. McDermott

LISP PROGRAMMING

Contents

Preface

PART I:

Xi

LISP PROGRAMMING

1. LISP REVIEW

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.1
1.12
1.13
1.14

Data Structures 1

Program Structures 2
Primitive Operations gn S-expressions
Tree Structures 10

Lists 12

Mapping Functions 14
LAMBDA Expressions 15
Atoms 17

Inside Lisp 18

Equality 23

Local versus free variables 25
Lisp style 27

Keywords 29

More lambda-list keywords 32

2. MACROS AND READ-MACROS

2.1
2.2
2.3

Read-Macros 33
The Backquote Read-Macro 34
Terminating read-macros 39

33

Vi Contents

2.4
2.5
2.6

Macros 39
Generating new symbols 45
BIND: A Macro For Special Variables 47

3. DATA STRUCTURES AND CONTROL STRUCTURES

IN LISP

3.1
3.2
3.3
3.4
3.5
3.6
37
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17

The Need for Data Types 48

The Conservative Approach to Type Definition
The Liberal Approach 51

The Radical Approach 53

Control Structures 55

Basic control structure 56

Local functions: FLET and LABELS 56
Interrupting the normal flow 58
Redirecting the flow of control: GO 59
ITERATE 60 ‘

DO 63

Iteration and lists: the mapping functions 64
Defining the FOR-macro 69

CATCH and THROW 74
UNWIND-PROTECT 74

BIND 75

Conclusion 82

4. INPUT/OUTPUT IN LISP

4.1
4.2
4.3
4.4
4.5
4.6

Streams 84)
READ-CHAR, READ-LINE, and READ 85
PRIN1, PRINC, and TERPRI 88

PRINT, PPRINT, and FORMAT 88

The MSG Macro 90

Separating 1/0O from Your Functions 93

5. COMPILING YOUR PROGRAM AND YOUR
PROGRAM’S PROGRAM

5.1
5.2
5.3
5.4
5.5
5.6
5.7

What Is Compilation? 97
Implications for Al Programs 99
Example: Regular Expressions 100
What the Lisp Compiler Does 101
Compiler Declarations 105

Macros in Compiled Code 107
Variables in Compiled Code 107

50

48

83

97

5.8
59

Contents

Lexical Scoping Versus EVAL and SET 108
Ignored Variables 110

6. DATA-DRIVEN PROGRAMMING AND OTHER
PROGRAMMING TECHNIQUES

6.1
6.2
6.3
6.4

6.5
6.6

Data-driven Programming 111
Association Lists, Property Lists, and Hash Tables
Reimplementing MSG 116
Data-Driven Programming as an
Organizational Device 119
Set Operations on Lists 121
Headed Lists and Queues 123

7. HIGHER-ORDER FUNCTIONS, CONTINUATIONS,
AND COROUTINES

7.1
7.2
7.3
7.4
7.5

7.6
PART Il

Passing Procedures In and Out 127

Continuations and Tail-Recursion 129

Continuations and Multiple Values 132

Coroutines 136

Continuations and Control Flow:
CALL-WITH-CURRENT-CONTINUATION 142

Problems with Continuation Passing 147

Al PROGRAMMING TECHNIQUES

8. SIMPLE DISCRIMINATION NETS

8.1
8.2
8.3

8.4

The General Discrimination Net 149

Database Discrimination Nets—Lists of Atoms 153

Database Discrimination Nets—General
S-expressions 157

Implementing Discrimination Trees with
Continuations 161

9. AGENDA CONTROL STRUCTURES

9.1
9.2
9.3
9.4
9.5

Introduction 166

Best-First Tree Search 166
Coroutines and Agendas 171

Design Alternatives for Agendas 176
Generated Lists 177

10. DEDUCTIVE INFORMATION RETRIEVAL

10.1

Introduction 182

vii

111

112

127

149

166

182

viii Contents

10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9
10.10
10.11
10.12
10.13
10.14
10.15

Database-defined Predicates 183

Connectives, Variables, and Inference Rules

Existential Quantification 187

Coming to Terms 188

Issues 189

Deductive Retrieval 190

A Unification Algorithm 195

A Deductive Retriever 202

Forward Chaining 213

Programming with Logic 215

Extending the Retriever 218

Deductive Retrieval versus Theorem Proving

Pattern Matching 224

The Pros and Cons of Deductive Information
Retrieval 226

11. DISCRIMINATION NETS WITH VARIABLES

111
11.2
11.3

Plan Retrieval 231
Fetching Facts 235
Variations on the Discrimination Net Theme

12. PRODUCTION SYSTEMS

12.1
12.2

12.3
12.4
12.5
12.6
12.7
12.8
12.9

Representation of Rules in XPS 249

Representation of Working Memory Elements
in XPS 250

Establishing the Conflict Set 251

Conflict Resolution in XPS 251

The Implementation of XPS 254

An Example 266

Improvements to XPS 271

XPS and OPS5 272

Deductive Retrieval and Production Systems

13. SLOT AND FILLER DATA BASES

13.1
13.2
13.3
13.4
13.5
13.6
13.7

Expanding Property List Facilities 276
An Introduction to XRL 277
IF-ADDED Methods 287

Pattern Matching in XRL 288
Indexing Forms 294

Retrieving Forms 296

Extending XRL 298

183

223

240

275

230

248

276

Contents ix

14. CHRONOLOGICAL BACKTRACKING 304
14.1 Introduction 304
14.2 A Basic Transition Network Grammar without
Backup 305
14.3 Representing an ATN Network in Lisp 308
14.4 An ATN without Backtracking 312
14.5 Backtracking In ATNs—A State-Saving Approach 320
14.6 Backtracking with a Transition-Saving Approach 327
14.7 Defining the ATN with Continuations 328
14.8 Using Problem-Solving Techniques 332

15. DATA DEPENDENCIES AND REASON MAINTENANCE
SYSTEMS 337

15.1
15.2
15.3
15.4
15.5
15.6
15.7
15.8
15.9
15.10
15.11
15.12
15.13
15.14

Appendix 1:

The Need for Reason Maintenance 337
Data-Dependency Clauses 338
Data-Dependency Network Graphs 339
Labeling Data-Dependency Networks 339
Propagating Labels from New Clauses 341
Incompleteness of the RMS Algorithm 343
Retracting Clauses and Delabeling Nodes 345
The Implementation of an RMS 347

The Eight Queens Problem 355
Dependency-directed Backtracking 367
Finding Nogoods 372

Subsuming Clauses . 378

Dealing with Interruptions 379

RMS to Lisp Communications 385

A Glossary of Common Lisp Functions 389

Answers to Selected Exercises 441

Bibliography

495

Author Index 505
Index of Defined LisP Iltems 507
Subject Index 515

Lisp REVIEW

Lisp has jokingly been called ‘‘the most intelligent way to misuse a computer.’’ |
think that description is a great compliment because it transmits the full flavor of
liberation: it has assisted a number of our most gifted fellow humans in thinking
previously impossible thoughts.

— Edsger Dijkstra

Lisp was the world’s first elegant language, in the sense that it provided a
parsimonious base with rich possibilities for extension. Lisp has been applied
mainly to problems of symbolic manipulation and artificial intelligence, partly
because manipulating symbols is so easy in Lisp, and partly because Al
programmers tend to be lazy and undisciplined, like pilots who refuse to file a
flight plan before taking off, and LisP’s interactive structure allows them to get
away with this.

1.1 Data Structures

Lisp data structures are called ‘‘S-expressions.”” The S stands for ‘‘sym-
bolic.”” In this text, the terms ‘‘S-expression’ and ‘‘expression’’ are used
interchangeably. An S-expression is

1. a number, e.g., 15, written as an optional plus or minus sign, followed
by one or more digits.

2. asymbol, e.g., FOO, written as a letter followed by zero or more letters
or digits.

