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PREFACE TO THE SECOND EDITION

Since the first edition of this book appeared, some things in the Al
programming world have changed a great deal, and some things are almost
exactly the way they were five years ago. Perhaps the most significant
development has been the appearance of COMMON Lisp, documented in abundant
detail by Guy Steele [102]. All of the Lisp code in this new edition has been
rewritten in CoMMON Lisp. COMMON. LIspP is a pleasant surprise, given the
normal result of compromise solutions designed by committees. It manages to be
a synthesis of many of the best ideas present in modern Lisp dialects, rather than
a fossilization of the worst. While there are other dialects that have a more
coherent semantics, such as SCHEME [82] and T [81], COoMMON LisP is more than
adequate for our needs.

The choice of CoMMON Lisp has affected the contents of this book in several
ways. First, many features that we spent some time developing and adding to our
earlier dialect of Lisp are already available in CoMMON Lisp. In some cases, we
have therefore just described the ComMON Lisp feature. In other cases, we have
retained the developmental material in order to explain the underlying principles.

CoMMON Lisp is a “‘large’’ language, and we cover only part of it; some of
the best-designed features allowed us to remove material from the first edition
that dealt with the friendly but limited dialect we used then, UCI Lisp. Gone are
the sections on FEXPRs and LEXPRs; while we still discuss the issue of
extending the language by adding new data types, COMMON LisP’s
DEFSTRUCT is an example of a tool that we had to build from scratch in UCI
Lisp.

We considered both SCHEME and T for this edition. SCHEME has the right
essential semantics for programming, such as lexical scoping and closures, and
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xii Preface

T extends that to include the right primitives for object-oriented programming
and language-extension via macros, as well as a host of well-designed support
features. (The next edition (!) will probably be in T.) Happily, many of these
ideas are also present in COMMON Lisp, and given its greater visibility, we chose
it instead. In particular, the availability of lexical closures has allowed us to
re-implement a number of disparate ideas in a uniform manner.

One problem with CoMMON Lisp is that it is not yet widely available. Most
implementations exist only on very large machines. While this situation will
certainly change in the next few years, we have tried to ameliorate the problem
in two ways. First, we have used only a subset of CoMmmMON LIsP in our code.
Second, we have provided a glossary describing the subset we used.

In the Lisp chapters in Part | and in the Al topics in Part 2, five years’ additional
experience has led us to provide completely new explanations, examples, and
implementations. The original chapter on alternative control structures, which
described the implementation of a variation of SCHEME, served two purposes: to
introduce some of the power behind lexically scoped languages with procedures
as first-class objects, and to give an example of how other languages with very
different control structures could be implemented in Lisp. Since COMMON LISP is
lexically scoped, there is no longer any-need to treat that topic separately. The
topic of control structure in SCHEME is now described briefly in a new chapter on
higher-order functions, continuations, and coroutines. Some of the flavor of
implementing interpreters can be gleaned from a new chapter on production
systems. (For more information on SCHEME and implementing a SCHEME inter-
preter, the interested reader is referred to Abelson and Sussman [2].)

The chapter on production systems illustrates several aspects of Al program-
ming. A production system is much easier to implement than a deductive
retriever, and correspondingly more limited in power. Production systems,
however, have proved to be very useful in the development of expert systems,
which are the basis for most of the commercial Al work at the moment.

As before, the intended audience of Artificial Intelligence Programming
remains the advanced undergraduate or early graduate student in Al. Although
the material involved requires only modest knowledge of programming, the
student who has had the most experience in creating Al programs already will
understand best the benefits of the techniques described. In addition, in response
to the changing nature of Al in industry, we have changed the text to be a bit
more like a cookbook. It has turned out that many people learning Al
programming are doing so on their own, either at home or at work. Many of them
prefer to begin with working pieces of code that they can then extend, rather than
inadequate pieces of code that are then corrected in the text and exercises. This
latter technique works in classrooms, but not in a self-study situation. Therefore,
we have eliminated almost all figures with deliberately incorrect code, and added
an appendix with the answers to nearly all the exercises in the book. We have
also removed the chapters on the sample course project.
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PREFACE TO THE FIRST EDITION

Artificial Intelligence (henceforth Al) is still a field where disagreement is
more common than solid theory, and interesting ideas more common than
polished programs. Yet there is slowly coming into being a small core of
accepted (though not universally accepted) theory and practice. This book is an
attempt to gather together the ‘‘practice’” aspect of this *‘core’’ Al.

The “‘practice’” of Al is, of course, the writing of programs. Al problems are
usually ill-defined and the theories proposed are often too complex and
complicated to be verified by intuitive or formal arguments. Sometimes the only
way to understand and evaluate a theory is to see what comes next. To find this
out, and to check for obvious inconsistencies and contradictions, we write
programs that are intended to reflect our theories. If these programs work, our
theories are not proved, of course, but at least we gain some understanding of
how they behave. When the programs don’t work (or we find ourselves unable
to program the theories at all), then we learn what we have yet to define or
re-define.

With this emphasis on programming, it becomes important that an Al
researcher have a wide library of programming tools available. This is particu-
larly true because of the *‘level’” problem. That is, your theory describes what
to do at a fairly high level, but you need to tell the machine what to do at a low
level. So a theory of, say, coherency in conversation, will in all probability say
nothing about pattern matching or efficient data retrieval. It is not that these
topics are not worthy of their own theory. How people manage to retrieve
knowledge efficiently under a wide variety of circumstances is a fascinating
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question. But if you are worried about conversation, it is simply not your
department.

The intent of this book is to give you a wide variety of commonly used tools
for programming Artificial Intelligence theories: discrimination nets, agendas,
deduction, data dependencies, backtracking, etc. By having these tools, we hope
you will find that your programs better reflect your intentions.

Almost all of the ideas that are described here are in common use, particularly
at the larger Artificial Intelligence centers. But very few of them have ever been
written down in one place. There are a number of books that introduce you to
Lisp (although none of them are completely satisfactory), and there are a number
of books on theories and algorithms in Artificial Intelligence. Until now,
however, there have been no books that fill in the middle ground and present the
methods that all the old-timers know for getting from theory to practice. That is
what this book is all about.

The major problem in writing a book such as this is that of selection. In some
cases it is easy. It seems unlikely that anyone would seriously contest our
inclusion of discrimination nets, pattern matching, or agendas. These techniques
have been used by many researchers in the field and in a variety of problem
areas—from natural language comprehension to problem solving to medical
diagnosis. However once one moves beyond this handful of topics, or even starts
getting specific about the type of pattern matching, or agenda, then consensus is
not so easy. So to some degree the selections made in this book are personal
ones. Of course, to say they are personal is not to say they cannot be defended
on scientific grounds, but rather that the defense would take the form of an
extended debate on the nature of Al and where it is going. For example, data
dependencies receive a chapter to themselves here in spite of the fact that they are
fairly new on the scene and hence relatively untested, at least compared to
something like unification pattern matching. Naturally we try to show the
usefulness of these ideas, but only to show how the ideas are motivated, not to
defend particular approaches against competitors. Such a defense would be well
worth having, but it would be out of place in a text such as this.

Selection also implies that some things are omitted, and there are at least two
notable omissions from these chapters. One of these is inadvertent. The
techniques discussed here all come from what might be thought of as ‘‘abstract’’
Al That is, if we think of Al programs on a spectrum from ‘‘concrete’’ programs
which must deal with the real world in terms of sound and light input (or sound
and muscle output) to ‘‘abstract’” programs which only deal with abstractions,
the techniques described here fall most naturally towards the abstract end. This
book does not have the space and the authors do not have the expertise to do
justice to the concrete end of things.

A second omission is quite deliberate. We have made no attempt to survey,
much less teach, the many Al languages (CONNIVER, QA-4, KRL, etc.). This
stems from our conviction that at present there is no commonly agreed-upon set
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of functions above the level of list processing which everyone would agree is
useful in a wide variety of Al settings. Experience has shown that each major
project has found it necessary to build up its own tools, starting, typically, from
Lisp. We do not see this situation as likely to change in the foreseeable future.
Hence rather than covering the basics of the various languages we have tried
instead to explain the techniques which typically lie behind these languages.

The book is divided into two parts. Since almost all serious programming in
Artificial Intelligence is done in the language Lisp, Part 1 tells you how to
improve your general abilities as a Lisp programmer. [The first chapter covers]
most of the basic Lisp concepts needed for the rest of the book. We intend the
introductory material to cover all the concepts of Lisp needed later, but if you
have never programmed in Lisp before, we recommend that you spend some time
writing simple LISp programs until you get a feel for the language.

The [second through seventh] chapters are concerned with the many features
found (or lmplementable) in Lisp that make the language an attractive one to use.
Many of the ideas that pass under the rubric of ‘‘structured programming’’ will
be found here. Although Lisp is almost as old as FORTRAN, it is surprisingly
amenable to things like top-down programming and data types.

Part 2 contains more advanced and complex techniques. Since this book is
intended not just to be a description of ideas, but also to give you a chance to
learn the craft of Artificial Intelligence, we present actual Lisp implementations
of all the ideas discussed, along with exercises which modify and extend the
code. These exercises are intended to make you familiar, in a practical hands-on
way, with the techniques involved. We hope that the exercises will inspire you
to experiment and learn on your own.

This book is intended mainly for use as a textbook for an Al course in which
programming is emphasized. This ceuld be either an advanced or a fast
elementary course. The book might also be used as an auxiliary text for a systems
course; for this purpose, the chapters on macros, structured programming, and
alternative control structures would be most useful.
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Lisp REVIEW

Lisp has jokingly been called ‘‘the most intelligent way to misuse a computer.’’ |
think that description is a great compliment because it transmits the full flavor of
liberation: it has assisted a number of our most gifted fellow humans in thinking
previously impossible thoughts.

— Edsger Dijkstra

Lisp was the world’s first elegant language, in the sense that it provided a
parsimonious base with rich possibilities for extension. Lisp has been applied
mainly to problems of symbolic manipulation and artificial intelligence, partly
because manipulating symbols is so easy in Lisp, and partly because Al
programmers tend to be lazy and undisciplined, like pilots who refuse to file a
flight plan before taking off, and LisP’s interactive structure allows them to get
away with this.

1.1 Data Structures

Lisp data structures are called ‘‘S-expressions.”” The S stands for ‘‘sym-
bolic.”” In this text, the terms ‘‘S-expression’ and ‘‘expression’’ are used
interchangeably. An S-expression is

1. a number, e.g., 15, written as an optional plus or minus sign, followed
by one or more digits.

2. asymbol, e.g., FOO, written as a letter followed by zero or more letters
or digits.



