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PREFACE

IN accordance with the tradition which allows an author to make his preface
serve rather as an epilogue, I submit that my aim has been to introduce the
student into the field of Ordinary Differential Equations, and thereafter to
guide him to this or that standpoint from which he may see the outlines
-of unexplored territory. Naturally, I have not covered the whole domain
of the subject, but have chosen a path which I myself have followed and
found interesting. If the reader would pause at any point where I have
hurried on, or if he would branch off into other tracks, he may seek
guidance in the footnotes. In the earlier stages I ask for little outside
knowledge, but for later developments I do assume a growing familiarity
with other branches of Analysis. '

For some time I have felt the need for a treatise on Differential Equations
whose scope would embrace not merely that body of theory which may now
be regarded as classical, but which would cover, in some aspects at least,
the main developments which have taken place in the last quarter of a
century. During this period, no comprehensive treatise on the subject has
been published in England, and very little work in this particular field has
been. carried out; while, on the other hand, both on the Continent and in
America inyestigations of deep interest and fundamental importance have
been recorded. The reason for this neglect of an important branch of
Analysis is that England has but one school of Pure Mathematies; which
implies a_high development in certain fields and a comparative neglect of
others. To spread the energies of this school over the whole domain of
Pure Mathematics would be to scatter and -weaken its forces; consequently
its interests, which were at no time particularly devoted to the subject of
Differential Equations, have now turned more definitely into other channels,
and that subject is denied the cultivation which its importance deserves.
The resources of those more fortunate countries, in which several schools
of the first rank flourish, are adequate to deal with all branches of
Mathematics. For this reason, and because of more favourable traditions,
the subject of Differential Equations has not elsewhere met with the neglect
which it has suffered in England.

In a branch of Mathematics with a long history behind it, the prospective
investigator must undergo a severer apprenticeship than in a field more
recently opened. This applies in particular to the branch of Analysis which
lies before us, a branch in which the average worker cannot be certain of
winning an early prize. Nevertheless, the beginner who has taken the pains
to acquire a sound knowledge of the broad outlines of the subject will find
manifold opportunities for original work in a special branch. For instance,
I may draw attention to the need for an intensive study of the groups of
functions defined by classes of linear equations which have a number of
salient features in common, .

Were I to acknowledge the whole extent of my indebtedness to others,
I should transfer to this point the bibliography which appears as an appendix..
But passing over those to whom I am indebted through their published
work, I feel it my duty, as it is my privilege, to mention two names in

v
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particular. To the latc Profcssor George Chrystal I owe my introduction
to the subject; to Professor E. T. Whittaker my initiation into research
and many acts of kind encouragement. And also I owe to a short period of
study-spent in Paris, a renewal of my interest in the subject and a clarifying
of the idcas which had been dulled by war-time stagnation.

In compiling this treatise, I was favoured with the constant assistancc

of Mr. B. M. Wilson, who read the greater part of the manuseript and eriticised
it with helpful candour. The task of proof-correction had hardly begun
when I was appointed to my Chair in the Egyptian University at Cairo,
and had at once to prepare for the uprooting from my nativé country and
transplanting to a new land. Unassisted I could have done no more than
merely glance through the proof-sheets, but Mr. S. F. Grace kindly took the
load from my shoulders and read amd re-read the proofs. These two former
colleagues of mine have rendered me services for which I now declare myself
deeply grateful. My acknowledgments are also due to those examining
authorities who have kindly allowed me to make use of their published
questions ; it was my intention to add largely to the examples when the
proof stage was reached, but the circumstances already' mentioned made
this impossible. And lastly, I venture to record my appreciation of the
consideration which the publishers, Messrs. Longmans, Green and Co., never
failed to show, a courtesy in harmony with the traditions of two hundred
years, : .
If this book is in no other respect worthy of remark, I can claim for it
the honour of being the first to be launched into the world by a member of
the Staff of the newly-founded Egyptian University. In all humility I
trust that it will be a not unworthy forerunner of an increasing stream of
published work bearing the name of the Institution which a small band of
enthusiasts hopes soon to make a vigorous outpost of scientific enquiry.

E. L. INCE.

HELIOPOLIS,
December, 1926.
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PART 1

DIFFERENTIAL EQUATIONS IN THE REAL DOMAIN







CHAPTER I
INTRODUCTORY

1-1. Definitions,—The term equatio differentialis or differential equation
was first used by Leibniz in 1876 to denote a relationship between the
differentials dz and dy of two variables # and y.* Such a relationship, in
general, explicitly involves the variables # and y together with other symbols
a, b, ¢, . . . which represent constants. _

This restricted use of the term was soon abandoned ; differential equations
are now understood to include any algebraical or transcendental equalities
which involve either differentials or differential coefficients. It is to be under-
stood, however, that the differential equation is not an identity.}

Differential equations -are classified, in the first place, according to the
number of variables which they involve. An ordinary differential equation
" expresses a relation between an independent variable, a dependent variable
and one or more differential coefficients of the dependent with respect to
the independent variable. A partial differential equation involves one
dependent and two or more independent variables, together with partial
differential coefficients of the dependent with respect to the independent
variables. A fotal differential equation contains two or more dependent
variables together with their differentials. or differential coefficients with
respect to a single independent variable which may, or may not, enter
explicitly into the equation.

The order of a differential equation is the order of the highest differential
coefficient which is involved. When an equation is polynomial in all the
differential coefficients involved, the power to which the highest differential
coefficient is raised is known as the degree of the equation. When, in an
ordinary or partial differential equation, the dependent variable and its
derivatives occur to the first degree only, and not as higher powers or products,
the equation is-said to be linear. The coefficients of a linear equation are-
therefore either constants or functions of the independent variable or variables.

Thus, for example, dy

@ ty="
is an ordinary linear equation of the second order ;

(w+y)’2—z=l

is an ordinary non-linear equation of the first order and the first degree ;
* A historical account of the early developments of this branch of mathematics will

be found in Aj dix A.
t Anexanf;?l:nofadiﬂerenﬁalidenﬁtyis:

da\t dy  (dy\* de | Ldly dB

(&) & +(@) & ozt Go:

thig is, in fact, equivalent to : ay.da_, .
38



4 ORDINARY DIFFERENTIAL EQUATIONS

1+(2Y' 1 a2y
() § =t

is an ordinary equation of the second order which when rationalised by squaring
both members is of the second degree ;
. 0z | 0%
Lyt _z—0
‘oz +Y oy #
is a linear partial differential equation of the first order in two independent variables ;
oW oW 0
oy T
is a linear partial differential equation of the second order in three independent
variables ; ’
o 0 ony_,
ox® 0yt \owxdy)
is a non-linear partial differential equation of the second order and the second
degree in two independent variables ;
udz +vdy +wdz=0,
where u, v, and w are functions of z, y and 2, is a total differential equation of the first
order and the first degree, and
x2dr® 4 2xydedy +y2dy? —22dz?=0
is a total differential equation of the first order and the second degree.

In the case of a total differential equation any one of the variables may be regarded
as independent and the remainder as dependent, thus, taking = as independent
variable, the equation

udz +vdy +wdz =0
may be written

dy  dz __
u+va+w%—0,

or an auxiliary variable ¢ may be introduced and the original variables regarded as
functions of {, thus
di

de  dy dz_
ud_t +vE +wEi =0..

1-2. Genesis of an Ordinary Differential Equation.—Consider an equation

(A) fl@, g, e, .« oy ¢,)=0,

in which z and y are variables and ¢y, ¢, . . ., ¢, are arbitrary and independent
constants. This equation serves to determine y as a function of z ; strictly
speaking, an n-fold infinity of functions is so determined, each function
corresponding to a particular set of values attributed to ¢;, ¢, . . ., c,.
Now an ordinary differential equation can be formed which is satisfied by
every one of these functions, as follows.

Let the given equation be differentiated » times in succession, with respect
to x, then n new equations are obtained, namely,

f if 4 0
a] ayy ’
v +2_y:y +_2y 2+_yy _0’

L N

ox® .
~ where
Ay . 2y dry
y—d—w’ ] =ﬂ2’ e ey y(")=d7ﬂ-.
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Each equation is manifestly distinet from those which precede it;*
from the_ aggregate of n1 equations the n arbitrary constants ey, e, . . ., ¢,
can be eliminated by algebraical processes, and the eliminant is the differential
equation of order # :

P,y y,y, ... ym=o0.

It is clear from the very manner in which this differential equation was
formed that it is satisfied by every function y—d(z) defined by the relation
(A). This relation is termed the primitive of the differential equation, and
every function y=d¢(z) which satisfies the differential equation is known as a
solution.t A solution which involves a number of essentially distinet arbitrary
constants equal to the order of the equation is known as the general solution.}
That this terminology is justified, will be seen when in Chapter HI. it is proved
thgt one solution of an equation of order » and one only can always be found
to safisfy, for a specified value of 2, » distinct eenditions of a particylar type,
The possibility of satisfying these n conditions depends upon the existence of
a solujslon containing » arbitrary constants. The general solution is thus
essentially the same as the primitive of the differential equation.

It has been aggumed that t] p;imitive actually contsins o distinet constanta
€15 €9 « .« €, IF there are o apparently » copstynts, that is to ssy if two.or
more constants can be replaced by a single constant without essentially modifying
the primitive, then the order of the g@b}npmg d_ﬁ’tereptia{quuﬂpn will be less than
B FIar. (otace, Suppase that the Drimitive s given i the farm

toessan bl {ﬂ:,i?’m-' i f{%ﬂlﬁ(ﬂﬁ B mf;- o

then it apparently depends upen twe copstants a and &, but. in seality upon ene
constant only, namely c=4(g, b). In this case the resylting. differential equation
is of the first and net of the second order. o

. Again, if the primitiwe is reducible, that is to say if fl2,y,e,, . . ., c,) breaks up
inin tye factors, each af whioh comtains y, the ordar of the resulting differentinl
ﬁlm“!qu mpy be Jess thap n. For if émithgx facter containg all the n constants

en each factor will give rise to a differential equatian of arder legs than », an,
it may occur that these two differential equatioqé‘a(.;l"e igentical, or that one of them

its of all the sqlutions of the othen, and thérgfore is satisfied by the primitive
H4Elf. Thos let the primitive be: - T P
4* —(at+blay fahz*=a;
it is reducible and equivalent to the two equations
y—ax=0, y—bx=0,
each of which, and therefore the primitive itself, satisfies the differential equation
y—ay’'=0. : ‘

1:201. The Differential Equation of a Family of Confooal Conics.—Cansider

the equation

P v
—_— —_— = 1’
aira e
where a and b are definite congtants, snd A an srbiteasry parameter which can
assume all real values. This equation pepresents a family of confocal conics, The

* Needless to say, it is assumed that all the partial differential coeflicients of [ exist,
and that - is not identically zero.

} Originally the terms integral (James Bernoulli, 1689) and particular integral (Euler,
Inst. Calc. Ini. 1768) were used. The use of the word solution dates back to Lagrange
- (1774), and, mainly through the influence of Poincaré, it has hecome established. Tine
term particular integral is now used only in a very restricted sense, cf. Chap. VL. infra.

1 Formerly known as the complete inlegral or complete integral equation (cequatio integralis
completa, Euler). The term integral equation has now ap utterly different meaning (cf.
§ 82, infra), and its use in any other connection should be abandoned.
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differential equation of which it is the primitive is obtained by eliminating A between
it and the derived equation
22 2y _

AT BT
From the primitive and the derived equation it is found that

a4 A= ‘yy, a‘y’ b'+t\=y’—ﬂ’yy,

‘and, eliminating A, :
==Y _r
yl
and therefore the required differential equation is
ayy’t (2 —y —at4:-bYy —ay=0;
it is of the first grder anq the second d

egree.
. When an equatlon is of the first order it 1s cugtomary to represent the dqnvstlve
v by the symbul p. Thys the differentfal equation of the family ofchpfwal

may be
(D" 1)+ @~y " +-30p =0.

A!b]l. 21. Forma.hon ot Parha.l Differentigl E%:atu&ns thrgusél vﬂ;:l Eéllmjmtl o
m Gomﬁm dependen gbles, and le
3, the depm#egt Vaﬁéb‘lq, 'bé !,iéj;l,ed ﬁy he eqt;q,;};n :
C f(En®as B} B5.0p Ony - i 0y 0g) 50, :
where ¢y, €3 . . ., &, Te 7 arbitrary constants. To this equaﬁon ma.y be
adjoined the m equations obtained by differentiating partially w1th respect
tneadgofgmﬂadahlasgpmg, -..,m,,;mmcccsqon,nmpd» G )

sdeiy i f;"J:_lbf bz «:-"~‘. %‘
BN S: xm IR a"fl % m e J AP ]
'svﬂeient aat:oné aré Do wéi!ablé ity énm ﬂw comtaﬁtb

ROl R 's rey 35
g ﬁ:%:r H <n e wgﬂiaﬂ) ecbnd dérived’ ¢g tkfgs e ﬂﬂﬂ

H:h p
f o 6% ok
rg,z-r-éaw,az aw' 622 ( a'z aw'2 _rQ LTTYIS* gﬂ * ’)im;f

of L Of & o B mj B o o2

dejom, | on,0n o0, " a,da’ om, T B B, B ?*“az o,

: (r,8=1,2, ... m; r=t=s)

“'This process ‘is * oritinued untit enough équations have 'been ‘obtaitied to
enable the elimination to be carrled wut.” In general, when this stage has

to eﬁﬁmﬂ&%ﬂtﬁ ﬁm hf%%% m&‘ﬁ&?ﬁ ﬁfi‘s"},ﬁeﬁ"‘

ential equation but to a system of slgmltangous partial differentiaf Equa%? 31'

1211, ThoParHalMerenﬁalEmhomo!lehnesandoiallSphem—
As a firet: mmmme the equation ‘

F=ait}-dy+c,
pw pRoper f , th
2‘; %?q‘égbewnt ‘tanyph?x%?nspseeequd‘zg:p ) gth:
z-axis. The first denved equatlons are :
, , oo _ 33 =h,

Fhese are npt sufficient to ¢limiqate a1, b, and ¢, and therefore the seqond dmved :
=aueﬁ9mmnkm nal

: -.Q, W-O 5‘—
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They are free of arbitrary constants, and are therefore the differential equations
required. It is customary to write
] _ oz 0% 9% oo O
p—‘.a—E’ g= a‘;s =W, s=aw—_5y! =W'
Thus any plane in space which is not parallel to the z-axis satisfies simultaneously
the three equations - ‘ ’

T

r=0, 8=0, {=0.
In the second place, consider the equation satisfied by the most general spherey;

it is
(x—a)*+(y—b)* +(z—c)*=r*,
where a, b, ¢ and r are arbitrary constants., The first derived equations are
: (x—a){(s—c)p=0, (y—b)+(z—c)g=0,

and the second derived equations are

1+p2(z—e)r=0,

Pq+(%—c)s=0,

1+4¢34(z—c)t=0. .

When z—c is eliminated, the required equations are obtained, namely,
' - 14+p%_pg_1+¢°
T 8 t " .

Thus there are two distinct equations. Let A be the value of each of the members of

the equations, then
A¥rt—33%)=1+p34¢3>0.
Consequently, if the spheres considered are real, the additional condition

i > 8t
must be satisfied.

1-22. A Property of Jacobians—It will now be shown that the natural
primitive of a single partial differential equation is a relation into which
enter arbitrary functions of the variables. The investigation which leads up
to this result depends upon a property of functional determinants or
Jacobians. ‘

Let ug, ug, . . . U, be functions of the independent variables z;, zg, . « -
@,, and consider the set of partial differential coefficients arranged in order
thus: :

ouy 0wy oy
a—a‘l, amz, o .oy a._Z',_‘
Oug Ous Ouy
ou,, ou, o,
a—ml, "5‘@, . e ey 'a—w';'

Then the determinant of order p whose elements are the elements common to
p Tows and p columns of the above scheme is known as a Jacobian.* Let
all the different possible Jacobians be constructed, then if a Jacobian of
order p, say i

duy B
oz, " 7 oz
duy up
om,,’ " " 7 oy
is not zero for a chosen set of values &, =£y, . . ., ®y==En bul if every Jacobian

 of order p-+1 is identically zero, then the fumctions w;, Us . . . Up GT¢
* Scott and Mathews, Theory of Determinants, Chap. XIII.
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independent, but the remaining functions Upiy, - .- - U @re expressible in

terms of wy, . . . Up. . )

Suppose that, for values of 2y, . . ., #,,in the neighbourhood of £y, . . ., Ens
the functions u,, . . ., 4,.are not independent, but that there exists an
identical relationship,

¢(’UI1, . e ey up)=0.
Then the equations ' ' "
o ouy éb ou,
— . . . =0,
3u1 3«zl+ +aup awl '
o ouy 08 ouy _
ou,y "oz, T T3 "oz, =0
are satisfied identically, and therefore
T I T
Xy -+ v @p)” | B’ "7 Omy
ouy duy
ory " 7 om,

identically in the neighbourhood of §,, . . ., £,, which is contrary to the
hypothesis. Consequently, the first part of the theorem, namely, that
Uy, . . ., Uy, are independent, is true.

In Upsy, « - o Uy let the variables @y, . . ., @ Zpy1, - - . &y bereplaced
by the new set of independent variables %y, . . ., Up, Zps1, « + » Tp. It will
now be shown that if u, is any of the functions #p.+1, . . ., %y, and z, any one
of the variables ¢4, . . ., &y, then u, is explicitly independent of a;, that is

: oy
ox,
Let
uy=fi(®y, « « o Bl o o o U= m(@1 - < . Tn)y
and let #;, . . ., , be replaced by their expressions in terms of the new
independent variables uy, . . «, %p, Tp+1> - - .» Ty, then differentiating both
sides of each equation with respect to w,,
o= o o By | o
oxy, ozy ' " ' Omy Om, ' O
_f 0z, op Oty | Uy
O—Ewl 6m,+ e +a:c, oz, +6w,’
ou, _. 0f; om; ofy ozp | of,
7 or, Oz, 6:c,+ o +6a:, 3w,+3w,'
(r=p+1, . . ., m).
The eliminant of 22, . . ., % g
o, o,
o o o o,
o' " Oxp’ Omg

o U
oz’ " " 7 ow,’ oa,
o, o oo
oz, ' " 7 omy Oxy Owm,
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or
fre -+ s S 1) _ O Ut + - o Jp)

@1y o v v @y, @) OBy A2y, .+ . . X))
But since, by hypothesis,

a(fl’ M) fi’s fr)=0 a(fl’ M f?)

? O’
ey, . o . Xp, Ty) ‘8(.221, c e @p) +

it follows that

a—u'=0 (r=p+1, .. .,m; s=p+1, . . ., n).
oz,
Consequently each of the functions up+1, . . ., %,, is expressible in terms
of the functions u;, . . ., 4, alone, as was to be proved.

1-23. Formation of a Partial Differential Equation through the Elimination
of an Arbitrary Function.—Let the dependent variable z be related to the
independent variables @, . . ., z, by an equation of the form

F(uy, ug, . . ., u,)=0,
where F is an arbitrary function of its arguments u,, %s, . . ., %, which, in
turn, are given functions of z;, . . ., @, and 2. When for z is substituted its
valuein terms of #;, . . ., 2,, the equation becomes an identity. If therefore
D,u, represents the partial derivative of u, with respect to z, when 2 has been
replaced by its value, then
Dlul, .« e ey D,,ul =0,

‘

Du,, . .

s Dy,
But
ouy,  Ou, 0%

o, * oz "oy
and therefore the partial differential equation satisfied by 2 is
“Ouy  Ouy o2 ouy  Ouy o3

ox, 0z omy’ " " dw, ' O3 Oxy

Dau,=

Oty | Otiy O uy | Oun 92

oxy ' oz "omy’ " 7 éw, ' 0z 0w,

1231. The Differential Equation of a Surface of Revolution.—The equation
F(z, 2*+y?)=0
represents a surface of revolution whose axis coincides with the z-axis. In the
notation of the preceding section,

T, =2, Xz=Y, U=%, Uy =a? 4y~
and therefore z satisfies the partial differential equation :
o3 02

w ay |70
2z, 2y

or
oz _ 02 _,
You %oy~

Conversely, this equation is satisfied by
z=¢(®*+y?), - . .
where ¢ is an arbitrary function of its argument, and is therefore the differential
equation of all surfaces of revolution which have the common axis x=0,y=0.
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1:232. Euler’s Theorem on Homogeneous Fﬁncﬁom.eLet
z=d¢(z, ¥),

- where ¢(x, y) is a homogeneous function of # and y of degree n. Then, since' (. y)

can be written in the form

z-na=y(Y).

In the notation of § 1-23, -
) z=x, Ty=y, U;=2"%, u,=¢(g) ;
F(uy, uy) =ty —ty,
and therefore z satisfles-the partial differential equation :
—np—n— lz_'..a,»--naz w—ﬂé =0,

ox’ oy

—yrty, aty

it follows that

and this equation reduces to

oz 0z
® %% +y po =NZ. ,
Similarly, if uisa homogeneous function of the three variables #, y and z, of
degree n, - :
ou ou ou

. wa—w +ya—y +za—z =nu.
This theorem can be extended to any number of variables,

1-24. Formation of a Total Differential Equation in Three Variables.—The

equation
$(z, y, 5)=c
represents a family of surfaces, and it will be supposed that to each value of

~ ¢ corresponds one, and only one, sutface of the family. Now let (#,y,2) be a

point on a particular surface and (z -8z, y+8y, z4-8z) a neighbouring point
on the same surface, then '
d(x+8z, y+8y, z+8z)—d(a, y, z)=0.
Assuming that the partial derivatives
% o o
oz’ By o=
exist and are continuous, this equation may be written in the form
od(x, y, 2) } {6¢(w, Y, %) } ob(, y, 2) } _
{ sz T dz+ oy Te 8y+{ oz +es 8=0,
where €, €;, €530, as 8z, 8y, §2—>0.
Now let ¢€;, €; and €3 be made zero and let de, dy and dz be written for 8z,
dy and 3z respectively. Then there results the total differential equation

op , 0, o,

which has been derived from the primitive by a consistent and logical process.
If the three partial derivatives have a common factor u, and if

% o _ o _
o= PP gy =R gy =,
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then if the factor u is removed, the equation takes the form
' Pdz+Qdy+Rdz=0.

That there is no inconsistency in the above use of the differentials dz, etc., may
be verified by considering a particular equation in two variables, namely,
y—f(@)=c. '
The above process gives rise to the total differential equation
' I dy—f(x)dz=0,
and thus the quotient of the differentials dy, d is in fact the differential coefficient

dy/dz.

Ezample.—The primitive

' (@+2)y+r) _

&ty
gives rise to the total differential equation ‘
L x:—z 2taty ,
L EE PR Yt ey B0
which, after multiplication by (z-+y)?, becomes
(¥ —z%)da 4 (22 —28)dy +(2z -+ +y) e +y)dz=0.

1-3. The Solutions of an Ordinagy Differential Equation.—When an
ordinary differ;ntial equation is knowr ¥6 have been derived by the process
o ;:].}m ination from @ primitiv ining 7 arbitrary constants, it is evident
%t gt‘)‘g,g&fégéfigm; Rﬁ%ﬁ%ﬁgﬁ ent upon # arbitrary constants. But

cé it'i¢'not evident tha X 3 .-\%;%i’nary differential equation of order n can
be derived from such a pimitive, it does not follow that if the differential
equation is given a priori it possesses a general solution which depends upon
n arbitrary constants. In the formation of a differential equation from a

iven mgyi' itive itd to assume certain conditions of differentiabilit
gild con nu%ﬁ’goggﬁf%?ms. Likewise in the inverse problem of inte)-r
gration, or proceeding from a given differential equation to its primitive,
corresponding conditions must be assumed to be satisfied. From the purely
theoretical point of view the first problem which arises is that of obtaining a
set.p{ignanditions,.as simple ‘as possible, which when satisfied ensure the
existence of a solution. This problem will be considered in Chapter III.,
where an existence theorem, which for the moment is assumed, will be proved,
namely, that when a set of conditions of a comprehensive nature is satisfied
an equation of order n does admit of a unique solution dependent upon »
arbitrary #itial conditions. From this theorem it follows that the most
general solution of an ordinary equation of order » involves n, and only n,
arbitrary constants. . .
., Jt must not, however, be concluded that no solution exists which is not
&'mere particular case of the general solution. To make this point clear,
¢otifider the differential equation obtained by eliminating the constant ¢
Ttom between the primitive,

: P(, y, c)=0,
and the derived equation, o 5 p
_ =Y.
oot oy? =" , (r=2

The derived equation in general involves ¢; let the primitive be solved
for ¢ and let this value of ¢ be substituted in the derived equation. The
derived equation then becomes the differential equation

]l



