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1. Introduction

The classical theory of the transformation of complex sequences by complex
infinite matrices is associated largely with the names of Toeplitz, Kojima, and
Schur. The basic results of this theory may be conveniently found in the books
by Hardy [19], Cooke [ 9], Maddox [40].

In Hardyxs book one also finds detailed accounts of numerous special
matrices, or means, e.g. the means of Cesdro, N&rlund, and Borel. Particular
attention is given by Hardy to theorms of inclusion and consistency, as well as
to theorems of Mercerian and Tauberian type.

Apart from the basic Toeplitz-Kojima-Schur theorems, Cooke, unlike Hardy,
tends to deal with some of the more general aspects of the theory of infinite
matrices, though like Hardy his treatment is essentially classical. Non-
functional analytic methods are employed, and the sequences and matrices
considered are restricted to be real or complex.

A decisive break with the classical approach was made by Abraham Robinson
[66] in 1950, when he considered the action of infinite matrices of linear
operators from a Banach space on sequences of elements of that space.

Our object in the present work is to give an account of some of the main
developments which have occurred since Robinson's paper of 1950.

Most of our notation and terminology will be described in Section 2.

In the classical theory of matrix transformations, one of the basic problems
is the characterization of matrices which map a sequence space (or merely a set
of sequences) E into a sequence space (or set of sequences) F. The first step in
this characterization is the determination of the K6the-Toeplitz dual of E, also

called the B-dual of E, where
EP={aes: % a %, converges for all x e E}.
k=1

As usual, s denotes the linear space of all infinite sequences a = (ak) of



complex numbers a .

The idea of dual sequence spaces was introduced by K&the and Toeplitz
[ 28 1, whose main results concerned a—duals; the o-dual of E c s being defined
as

a (o]
E ={aes: % |akxk| < o for all x € E}.

k=1

An account of the theory of a-duals in the scalar case may be found in
Kéthe [ 27 ].

Anotherdual, the y-dual, is defined by

n

Y = . (o]
E'={aes: supn|k£1 akxkl < o for all x € E}.

Certain topologies on a sequence space, involving B- and a-duality have been
examined by Garling [ 15 ].

For certain special sequence spaces there are some interesting results
given by Lascarides [ 34 ].

In Section 3 we investigate several generalized K&the-Toeplitz duals which
arise when the complex sequence (ak) is replaced by a sequence (Ak) of linear
operators. Thus, if X, Y are Banach spaces, each Ak is a linear operator on
X into Y, and E is a nonempty set of sequences X = (xk), with xk € X, then we
define

B % )
E™ = {(Ak) : kilAkxk converges in the Y-norm, for all x € E}.

Section 4 is devoted to the characterization of a number of classes of
matrix transformations of linear operators. Inter alia, one finds operator
analogues of the theorems of Toeplitz, Kojima, Schur, and of the recent theorem
of Crone [ 11 ] on infinite scalar matrices which map the Hilbert space 12 into
itself,

In Sections 5, and 6 there is a discussion of Tauberian theorems, and the
famous bounded consistency theorem of Mézur—Orlicz-Brudno. Section 7 introduces
a new concept of operator N&rlund means and gives some results on the

consistency of certain classes of these means.



2. Notation and terminology

By N,R,C we denote the natural, real, and complex numbers, respectively.
Some frequently occurring sequence spaces are:
s, the linear space of complex sequences
&_+ the space of finite complex sequences,
c_r the space of null complex sequences,
€, the space of convergent complex sequences,
[£], the space of strongly almost convergent complex sequences,
f, the space of almost convergent complex sequences,
2.+ the space of bounded complex sequences,
% _, the space of p-absolutely summable complex sequences,
where O < p < =,
wp, the space of strongly Ces3ro summable complex sequences of
order 1 and index p, where O < p < «.
Of the above spaces, only [f], f and wp are not perhaps as standard as the
others.
The space f was introduced by Lorentz [36]. We say that (xk) e £ if and

only if there exists % € C such that

ptr
z X5 > 2 (r » », uniformly in p > 0).
i=p+1

K|~

The space [f] was defined by Maddox [48]. we say that (xk) e [£] if and

only if there exists £ € C such that

pt+r
z lxi—ll > O (r > =, uniformly in p > 0).
i=p+1

K|~

We have ¢ ¢ [f] ¢ f ¢ & with strict inclusions, and c,[£], f are closed sub-
spaces of £ , which is a Banach space with ||x|| = sup|xkl for each x = (xk) € .-
The space wP has been considered in [39] and [40]. wWe say that (xk) € wp

if and only if there exists £ € C such that



n
X |xk—z|P + 0 (n » ).
k=1

Sl

If (X,||.||) is any Banach space over C then we may define c(X), the
convergent X-valued sequences; f(X), the almost convergent X-valued sequences,
etc. Thus, e.g. x = (xk) € 2_(X), where X, € X for k e N, if supl]xkll < g
Consequently & (X) becomes a Banach space, with the natural coordinatewise

operations, and

||x|| = SuPllxkll, for x € &_(X).
Similarly, x = (xk) € wp(x), 0 < p < =, if and only if there exists ¢ X such
that

1 B

T IxellP v 0 e

k=1
Every space of complex sequences listed above may be generalized to a
space of X-valued sequences merely by replacing the modulus in C by the norm in
X, when appropriate.

If X, Y are Banach spaces then we denote by
B(X,Y)

the Banach algebra of bounded linear operators on X into Y, with the usual

operator norm. Thus, if T € B(X,Y) the operator norm of T is

||| = sup {||Tx|| : x € s},
where S = {x € X : |]x]| < 1} is the closed unit sphere in X.
By U we mean the set of all x € X such that ]lel = 1l. The zero element

of X, and Y, is denoted by 0.

The continuous dual of Y, i.e. the space of continuous linear functionals

on Y, is B(Y,C), and is written as Y*. If f € Y* and Yy € Y we use the notation
(£,y) = £(y).

For each T € B(X,Y) we denote the adjoint of T by T*, where T* is defined by



(£,Tx) = (T*f,x), for all f ¢ Y* and all x € X.
We shall also write
S* = {f e Y* : ||£]]| = 1},
and make use of the well-known fact that, by the Hahn-Banach extension theorem,
for every y € Y there exists f € S* such that |lyll = f(y).
The following concept was introduced by Robinson [66] and was termed the
group norm by Lorentz and Macphail [37].

2.1 Definition. Let (Tk) = (Tl’ T2, ...) be a sequence in B(X,Y). Then the

group norm of (Tk) is
[l lln i
(T,) = sup I T x
k k=1 k'k

where the supremum is over all n € N and all X, € S.

It may happen that the group norm is not finite, though we are usually

concerned with problems which give rise to finite group norms.

2.2 Summation convention. A sun)Zxk without limits will always be over k € N,

i.e.

Some elementary properties of group norms are given in:

2.3 Proposition. (i) E;_(Ak) € s(C*) then the Ak may be identified with

complex numbers a, and

k

@l

zla |,

whence the group norm is finite if and only if a € zl.

(14) EE'(Tk) is a sequence in B(X,Y) and we write

R = (Tn,T —

T
n n+l’ "n+2’

then



(a) ||Tm|] < [|Rn|| for all m > n,

(b) ||Rn+l|| < ]IRnl| for all n € N,

(c) || Z T) II < ||R |[ max {||xk|l :n<%k<n+ p},
for any Xy and all n € N, and all non-negative integers p.

(11id) EE-(Tk) is a sequence in B(X,Y) then E||Tk|] < « implies

|l¢x) || <« Aalso, |[(T)]|] < = implies sup,|[T, || < =.

(iv) If Z denotes the set of all sequences T = (Tk) such that each group

norm ||Tl| is finite then Z becomes a Banach space, with the natural operations,

under the norm ||T|].

Proof. (i) There exist complex numbers a, such that Akz = a ,z for all z € C.

k k

Now for all n € N and all xk € S,

n
| £ ax| < le
k=1akk =ak
Also, if n € N, and we define sgn z = |z|/z (z # 0), sgn O = 1, then
| Z apz | = Z Ia |
K= k
for z, = sgn a (L < k <n). It follows that Il(Ak)ll = Z[ak|, with the

understanding that the group norm is not finite when Z[akl diverges.

(ii) Let x € S and define x. = X, xk =0 (n £k <m). Then

x| | = || ZT ol = TR I

which yields (a).

Now take xk € S forn+ 1 < k < m, so that



i x| =[]0 + : Tﬁ”—lh”
k=n+1 k=

which yields (b).
Let M denote the max in (c). The case M = O is trivial. If M > O then

xk/M is in S for n < k < n + p, and (c) follows.

(i1i) 1If zllTkl| <oandne N, x_ e S, then

k
L Emesdl = 2 Il L] = ol
| Z T Z e x || <z||T
k=1 x*k k=1 k k
whence ]](Tk)|| < Z|lTk|I. We note that the converse implication is generally

false. For example, define Tk € B (Em, lm) by

T X = Oy O s xl, Oy 04 weiw)

k
with X, in the k-position, where x = (xk) € L, Then it is clear that
llTkll =1 for all k € N, so E'!Tkll diverges. However, if
x(k) = (x{k), xék), vse) €8
for k € N then lxén)| < l'x(n)ll < 1 for all n and k, and so for any n € N,
s mx ™) = |, <2, . ™, 0,0, ..o <
k=1

whence ll(Tk)ll < 1. Moreover, on choosing x(k) =(1,1,1, ...) fork e N
we see that ||(Tk)|| =

Now suppose that Il(Tk)|| < ®@. By (ii) (a) above we have
||Tmll < ||R1|| = |](Tk)l] for all m € N, whence supmlle|| s l|(Tk)||.

The converse implication is always false in B(X,X), where X is a non-trivial

Banach space, since we may take Tk as the identity operator for every k.

(iv) With the natural operations T + T' = (Tk + Ti) and AT = (ATk), for



A € C, it is routine to check completeness. The proof uses the fact that

B(X,Y) is a Banach space with the usual norm.

2.4 Definition (Generalized K8the-Toeplitz duals). Let X and Y be Banach

spaces and (Ak) a sequence of linear, but not necessarily bounded, operators

Ak on X into Y. Suppose E is a nonempty subset of s(X). Then the o-dual of

E is defined as

E” = {(Ak) : leAkxkll converges for all (xk) € E}.

The B-dual of E is defined as

EB = {(Ak) : ZAkxk converges for all (xk) € E}.

We remark that convergence is in the norm of Y, in the definition of EB.
In case X = Y = C and the Ak are identified with complex numbers ay s then

E ¢ s and

=
]

{a: Ilax | <= for a1l (x,) € E},

el

E- = {a : Zakxk converges for all (xk) € E}.

The a and B-duals of the commonly occuring sequence spaces are all

a_ B_ a_ B_,o_ B _
well-known, e.g. c0 = cO =c =c = Zm = lm = Zl.
2.5 Definition. Let X and Y be Banach spaces and A = (Ank) an infinite

matrix of linear, but not necessarily bounded, operators Ank on X into Y.

Suppose E is a nonempty subset of s(X) and F is a nonempty subset of

s(Y). Then we define the matrix class (E,F) by saying that A € (E,F) if

and only if, for every x = (xk) € E,

An(x) z:Ankxk = ElAnkxk



converges in the norm of Y, for each n, and the sequence

A = (ZAnka)neN

belongs to F.

In case X = Y = C, and the An are identified with complex numbers a

k nk

we shall make use of the following conditions in order to characterize some of
the important matrix classes. It is to be understood that a condition such
as (2.1) involves the convergence of Zlank] for each n. As usual, a summation

without limits is over k € N. unless otherwise indicated.

(2.1) sup Zla .| < =,
(2.2) suan[Aank] < «, where Aank =a, - B deri”
(2.4.3) Zlank| converges uniformly in n,
(2.4) sup_ la | <=,
(2.5) 1imnz]ank] = 0,
) ® p
(2.6) sup, z lankl < ®, where p 2 1,
n=1

(2.7) lim a exists for each k,

n nk
(2.8) lim a = O for each k,

n nk
2.4 i i
(2.9) llngank exists,
2 i =
(2.10) llngank 1
(2.11) sup I 2*/P max{]a_ | : 2" <k < 9T %

r=0

where O < p < 1,



10

1/q
& X/ D q
(2.12) sup. L 277 |a | < o,
r=0

+
where p 2 1, 1/p + 1/g = 1, and Zr is over 2F < k < 2F l.

2" 2k < 2r+1}

If p=1in (2.12) we interpret Zr as max{lankl :

2.6 Theorem. (R s2) = (c,8 ) = (co,lm), and A € (2 _,% ) if and only if

©

(2.1) holds.
A proof, along classical lines, may be found in Petersen [ 62 ].

2.7 Theorem (KOJIMA-SCHUR). A € (c,c) if and only if (2.1), (2.7), (2.9) hold.

See Schur [ 68 1, or Hardy [ 19 ], or Cooke [ 9 1.

2.8 Definition. If A € (c,c) we say that A is conservative. The

characteristic of a conservative A is defined to be

X(A) = lingan = Z(lim a . ).

k n nk

If x(A) = O, we say that A is conull, whilst if X(A) # O, we say that A is

coregular.

2.9 Theorem (TOEPLITZ). A ¢ (c,c), leaving the limit of every convergent

sequence invariant, if and only if (2.1), (2.8), (2.10) hold.

See Toeplitz [76 1, or [ 9], [19 1, [40].

2.10 Theorem. A € (y,c), where y = {x : Zxk converges}, if and only if

(2.2), (2.7) hold.

See Cooke [ 9 J.

2.11 Theorem (SCHUR). A ¢ (Qw,c) if and only if (2.3), (2.7) hold.



¥t

See Schur [ 681, or Maddox [ 401, p.169. Also, one sees from the proof

in Maddox [ 40], p.169 that A € (& _,c) if and only if (2.1), (2.7) and

(2.13) ling a, - lim a = 0.

k n nk[

We remark that another set of necessary and sufficient conditions for

Ae (& ,c) is (2.7) and

lim zla_ | = z| Lima  |.

2.12 Theorem. A € (Rw,co) if and only if (2.5) holds.

See, for example, Maddox [ 401, p.169. An interesting consequence of
Theorem 2.11 is that strong and weak convergence of sequences coincide in

21 (Maddox [ 401, p.170).

2.13 Theorem.

(i) A e (Ql,km) if and only if (2.4) holds.

(ii) A e (ll,kp), where p 2 1, if and only if (2.6) holds.

See Hahn [ 16 ] for (i) of Theorem 2.13, and Maddox [ 40 ], p.167 for (ii).

The condition for A ¢ (Zl,ll) was first given by Knopp and Lorentz [ 2¢ J.

2.14 Theorem. A € (lw,ll) if and only if

(2.14) sup Z| T a
k neE

< «,

nkl

where the supremum is taken over all finite subsets E of N.

See Zeller [ 82 ], Mehdi [ 54 ]:

Some remarks on Theorem 2.14 may be of interest. The condition

< oo

(2.15) zz]a
n

l
n k *



