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PREFACE

During August 27-29 1980 a Geometry Symposium was held at the University of
Utrecht in honor of Professor Nicolaas H. Kuiper on the occasion of his sixtieth
birthday. The topics of the lectures covered much of Nico Kuiper's (research)

interests:

Th.F. Banchoff: Double tangency theorems for pairs of submanifolds,

- N. Desolneux-Moulis: Some new applications of the geometry of infinite

dimensional manifolds in variational calculus,

- J. Eells : A conservation law for harmonic maps,

- W.T. van Est: Manifold schemes: motivation and application,

- H. Grauert: Complex Morse singularities,

- W. Pohl: The probability of linking of random curves,

- D. Sullivan: Harmonic functions and geometry of limit sets,

- R. Thom: Generic approximations of collapsing maps,

- J. Tits: Coxeter graphs and incidence geometry: a survey.
The reader will agree that the Geometry Symposium was aptly named. The non-scientific
program included a wonderful piano recital by Regina Albrink, a reception offered by
the Rector and an enjoyable symposium dinner in one of Utrecht's picturesque places.

To consider organizing a meeting like this there must be at least one good
reason. We thank our teacher Nico Kuiper for providing so many of them. Then, to get
started certain material conditions have to be fulfilled: we are grateful to the
Dutch Board of Education for generous financial support and to the University of
Utrecht for offering hospitality and secretari:1 help. But the most crucial part of
such a meeting are the lectures and its participants. We thank the lecturers most
heartily for making this event a mathematically inspiring one; we are indebted to the
audience for making it succesful. Our final thanks go to the secretariat of the
Institut des Hautes Etudes Scientifiques for its beautiful typing of the manuscripts
and to Nicole Gaume for acting as a go-between.

Eduard Looijenga
Dirk Siersma
Floris Takens
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A CONSERVATION LAW FOR HARMONIC MAPS

P. Baird and J. Eells

1. Motivation and background.

Gl 1) Relativity theory has shown that the laws of many stationary aspects of
physics should be enlarged to include time. That can be done in such a manner to
provide unification of various physical concepts, and to present them in invariant

form ; see [19,§3.2] and [33] . For instance,
a) energy and momentum are unified by forming the energy-momentum tensor ;

b) then the conservation of energy is just the time-component of a law which
is invariant under the Lorentz group - the other components beingthe space-components,

which express the conservation of momentum.

The case of stationary electromagnetic fields is carried out in [40;pp75,166].
We describe here briefly the case of stress-—energy, following the exposition of

Feynman [14,I1-31-9]

The stress at a point of an elastic body is described by a 2-tensor (Sij)
in 1R3 , where Sij is the i-component of a force associated to the j-vector in the

following way.

Consider a unit area S orthogonal to j at x . The material on the left
of S exerts a force on the material on the right and vice versa - these forces
are equal and opposite, and we suppose depend only on the j-vector. By choosing one
of this pair of forces, we obtain the stress S.lj at x corresponding to the
j-vector. We assume that Si' behaves like a tensor. Then one can show that the
law of conservation of momentum about some origin implies sij be symmetric, and

that the system be in equilibrium implies that Sij be divergence free.

Now a force is a time-rate of change of momentum, so we could as well

describe Si' as the rate of flow of the i-component of momentum through a unit



-
N

area orthogonal to j . Thus (S..) are the space components of a 2-tensor
l<£i.3's3
in four dimensional Minkowski space with components (Si') ; thus the O--compo-
OSi’j <3
nents sio are those of energy flow, and S00 is the energy density. The tensor

field S = (S is traditionally called the stress-—energy tensor

ij)
054,73 %3
of the system.
In intrinsic terms, we shall interpret a symmetric 2-covariant tensor
field S as a stress-energy tensor, as follows : for any timelike vector v at a

point, we interpret

a) S(v,v) as the energy density as measured by v ;
b) S(v, ~) as the momentum density (of the mass/energy distribution) as
measured by v ;

e) § as the stress tensor as measured by v .

1
\4

(1.2) If the field equations of the physical system are derivable from a varia -

tional principle

ok
(1.3) I(s) = IL(J s)dx ,
then by restricting attention to special variations we proceed to define the stress-

energy tensor S ; at an extremal s of I it can be shown that S 1is conservative :

(1.4) div s =0 .

That result is due to Hilbert [20] ; for an exposition, see [19,§3.3]

(1.5) During a most instructive conversation many years ago (in April 1963), Profes-
sor A. H. Taub suggested that the stress-energy tensor should be useful in the theory
of harmonic maps. Although that prospect has lain dormant in the meantime, recent

developments have confirmed Taub's prediction.

Indeed, if ¢ : (M,g) - (N,h) 1is a map between Riemannian manifolds (here
and henceforth we shall use the notation and terminology of [10]), then its energy

density e¢ : M ->R(>0) is defined at each point x €4 by



el 2
C1.6) - e ¢(x) -3 lde ) |°,
where the vertical bars denote the Hilbert-Schmidt norm in the space L(Tx(M),T¢( %N)}
3%

For any compact domain M' in M we define the energy of ¢ in M' by
1::7) E(¢,M') = I ,e(b(x)dx 5
u O

The Euler-Lagrange operator associated with E 1is called the tension field

of ¢

(1.8) T¢ = div d¢ ,

-1
where div is the divergence operator of the Riemannian vector bundle ™M) o ¢ T(N).

And the stress energy tensor of ¢ is found to be

1.9 S =e ~ ¢*h .
()¢¢g¢
A map ¢ : (M,g) > (N,h) 1is harmonic if T¢5 0 on M . Such a map then
satisfies the conservation law
(1.10) div S¢ =0
Here div S is alternative notation for V*S , where v* is the adjoint of the

¢ ¢
covariant differential V : C(T*(M) o ozT*(M))->C(T*(M)) 3

The purpose of this paper is to derive that simple law (Theorem 2.9 below),
and to show how it unifies and simplifies various properties (both old and new) of

harmonic maps.



2. Derivation of the stress-—energy tensor.

Let us first consider the effect of variations induced by a vector field

X € C(T(M)) . If (&(t)) denotes its trajectories, set g(t) = E*(t)g 5

We derive two standard facts.

(2.1) Lemma. B_de_tafﬂ = Trace (LXg) det g .

t=20

Proof. First of all, in charts we have

gijag
9 det g(t) T _ dg
2-2) e e ———BE——-det g(t) Trace 7t det g(t)
t=20 t=0 0
Let m = dim M . If we take an orthomormal base (e.) with respect
—— 1£§sm
to g =g(o) on T (M) , let n€A T, (M) be the m-covector dual to eAA e,
so n(el,...,em) = 1 . Then
det. g(E) = n(g(t)e‘,-.-,g(t)em) , with g(o) =1 .
Then using (2.1) .
d _ ag(t)
= det g(t) = gl n(g(t)el,..., 5t ek,...,g(t)em)
t=0 t=0
- 3g(0)
- gl n(el,..., °F ek,...,em)
98, (o)
- k _ 9g(o) .
= g 3t Trace 5t 3

thus (2.2) follows at once.

Secondly, by definition, the Lie derivative

£ g-g
L.g - og(t) = 1lim it "
X ot (S
t >0
o

so (2.1) follows from (2.2).
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(2.3) Lemma. If n(t) =[det g(t)] LA A dx™ is the volume element of

g(t) , then n(t) = £Xt)n ;

(2.4) _an (£) = L

1
¥ % 3 Trace(LXg) N

Proof. At t =0,

—gn'(:t) %[det g(t)]l/2 &eta—%(—-—t)- dx' A...a dx®

1/2 Trace (Lxg) [ det g(t)]l/2 dic! Aeoon dx

Now, for any vector field X €C (T(M)) let N X € C(¢_1T(N) be that varia-

tion of ¢ given by x-¢, (x) X(x) , for all x €M .

(2.5) Lemma.

Lyeg = <dé,V (6 0>- 1/2 <Lyg,6*h>

Proof. LXe¢ = (de¢ Y(X) = <?X(d¢),d¢>~

A direct calculation gives (2.5), using the standard identity (in any chart)

(2.6) (Lgg) = % . + X, . . (gijgm
ij > >

(2.7) Lemma. For any map ¢ ¢ (My,g) » (N,h) and vector field X € C(T(M)) we

1
have LX (e¢n ) =<d¢, V(¢*X)> n + §»<Lxg,S >1n, where

¢
* 2 %
(2.8) S¢ “ey 8 ¢ h € C(OT (M)).

S is the stress—energy tensor of ¢ .

¢

Proof. Apply (2.5) and (2.4) to

1 * 1
LX(e¢n) = (L Lyn=<d¢ , V(0 X)>n -5 <L g,¢ b>n+5 e <l g,g>n.

e¢)n+e 7 %

X ¢

*
We shall denote the divergence of S¢ by div S¢ or by V S¢ . In a chart,



) < Thus div 'S € C(T*M).

(div S,) = (S
4 i1,3 ¢

1

¢

(2.9) Theorem. The stress—energy tensor S¢ € C(GZT*(M)) of any map ¢ :(M,g)>®,h)

has divergence

(2.10) div S¢ = -<‘r¢,d¢> .

Consequently,

a) if ¢ is harmonic, then S

is conservative (i.e,div S¢EO) "

¢

b) if ¢ is a map which is a differentiable submersion almost everywhere on M,

and if div S, = 0 , then ¢ is harmonic.

¢

Proof. From (2.6) we obtain

1 -
7 <Lyg:8,> =< VK5, >

Applying the divergence theorem and integration by parts to (2.7), assuming

that X has compact support we obtain

= L = d¢,V(¢ X VX, S, >n =- 5 :
0 jM x(e¢r1) JM <d¢ (¢* )>n +JM< ¢>” jé«‘? dé> + V*S¢)Xn

Because that is true for all compact X , we find (2.10) satisfied ; the rest of

the Proposition follows immediately.

(2.11) Remark. 1In case b) it suffices to assume that ¢ is C2 . If ¢ is a
Cl-diffeomorphism between compact surfaces, then div S¢ = 0 1insures that ¢ 1is

harmonic [34, Chapter 5]. In view of the basic regularity theorem [10,§3.5] , it

seems natural to pose the

(2.12) Problem, If ¢ is a continuous Lf—map satisfying the hypotheses of b)

above, then is ¢ harmonic ?

(2.13) Corollary. Let X be a Killing field of (M,g), and S¢ the contravariant

representation of the stress—energy tensor of a harmonic map ¢ :(M,g)+ (N,h) . Then

the contraction Y = <S¢ ,X> is a vector field with div Y=0 .

In particular, the total flux over the boundary of any closed domain

M' in M of the X-component of S¢ is 0
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<Y,v> dx'=‘[ div Ydx =0, where v is the unit outward normal field of aM'
oM' M'

Proof. Killing fields X are characterised by Lxg = 0 . Thus from (2.6)

we get div Y = <div S¢,X> + %—<S¢,Lxg>s 0.

(2.14) There are various instances where stress-energy appears in the variational

theory of Riemannian fibre bundles. For example,

a) in the derivation of extremal Riemannian metrics ; that is in the spirit
of Hilbert's work [20]; see [25] and [28].
b) in the study of the extremals of the elastic-energy functional (for

fixed A,u€R)

2
ge * |2
EL(4) =I [—2_?1 + i.l%i_] dx ,
M

as given in [35] .
c) in the theory of functionals of the elementary symmetric functions g

of the eigenvalues of ¢*h with respect to g [41] . If

E, ($) =IM o (876" dx,

then its Euler-Lagrange equation is
-1, %
Trace V[d¢eT, (g ¢ h)] =0 ;
and its stress—energy tensor
5.9 =3 0 (g " g - o*heT _ (&7 '6*n)
g =3 %8 g k-1°8 .

where is the Newton tensor field [29,30,41] .

Tl

d) in recent work of Toth [36] , using the stress-energy tensor to study

geodesic variations of harmonic maps into locally symmetric Riemmanian manifolds.



3. Various illustrations.

L 1,2 ) Dy’
(3.1) Example. If dim M= 1 , then S¢ = - 7|¢'| and div S¢= -< E%— B

1 2 "
(3.2) Example. If N =1R , then S¢ = EI d¢[ g - dp e dp and div S¢ = - <A$, d¢> .

I
o

(3.3) Example. Suppose that ¢ ¢+ (M,g) > (N,h) is a nonconstant map. Then S¢

iff m =2 and ¢ is weakly conformal (i.e. there is a function u 2 Mo IR(30)

such that ¢*h = ug). Indeed, if S¢ = 0 then ¢ is weakly conformal with y = e¢ A

and 0 = Trace S¢ = (m—2)e¢ , so m = 2 . Conversely, if ¢*h = ug, then 2e¢ = my ,
so

-2
(3.4) Sy mT g -«

Furthermore, if m>2 and ¢:(M,g)~> (N,h) is harmonic and weakly conformal,

then ¢ is homothetic (i.e. y is constant). For Theorem 2.9. asserts that div S¢: o,

and from (3.4) we find 0 = E%E “’j gij (l <1 <m), whence dy=0 on M.

(3.5) Remark. We first learned of that property in a letter from Professor
J.H. Sampson in 1975. Special cases can be found in the literature ; e.g., if m = n
see [15, Theorem 8b] and [23, Theorem 5.7] . And [21] for the general case with the

requirement that p has isolated zeros.

(3.6) Example. If ¢ :(M,g)~> (N,h) 1is a totally geodesic map (i.e., WVd¢$ = 0) ,

then ¢*h is parallel. Consequently, e¢ is constant and S¢ is parallel
Vs, =0 .
¢

Proof. For any X,Y,Z € C(T(M)) we have
(3.7) V" (,2)] = (ve™h) (1,2) + (0*h)(,¥,2) + (¢*n) (¥, v,2) ;

(3.8) Ve[(dp)Y] = (Vo) (X,Y) + (do) (VYD) = (d¢) (V,Y)

because ¢ 1is totally geodesic. Now specialize X,Y,Z so that

{(3.9) VXY = 0 = VXZ

at a prescribed point x € M . Then from (3.7) evaluated at x we obtain



(vx¢*h)(Y,z) = Vg <do(¥),d9(2)>= <V, (d$)Y, (d9)Z> + <(d¢)Y,V, (d$)Z> = 0

by (3.8). We conclude that V(¢*h) =0 on M.

*

Now 2e¢ = <g,¢*h> , SO V(2e¢) = V<g,¢ h> = 0 ; and consequently VS¢ =0
too.
(3.10) Example. If ¢:(M,g)% (N,h) is an isometric immersion, then S, = E%z (als
whence

*
vs. = 0= Vs, ,
¢ o

whether or not ¢ 1is harmonic (i.e., is a minimal immersion).

(3.11) Let ¢:(M,g) > (N,h) be a Riemannian submersion. Then S¢ = % g = ¢*h

and

a) V'S = 0 1iff the fibres of ¢ are minimal ; that reaffirms

[38, Prop. 4D] . Such a ¢ is an example of a harmonic morphism, of which more will

be said in §5 below.

b) VSd> = 0 iff the fibres of ¢ are totally geodesic iff the second fun-

damental form Vd¢ of ¢ vanishes on pairs of vertical vectors [38 §3] .
Proof b), the Proof a) being similar. Use indices

l € d;bs5¢ sy 1%1;] €1, 0¥l £ 158 < m .

Take a local orthonormal frame field (Xa) with (Xi) horizontal and (Xr) vertical

Then (vxbs¢)(xc,xa) = (™) (v X_,X) + (¢*h)(XC,V X)) . Taking a =71 andc =i

% %

: _ * _ . s : .
gives (vas¢)(Xi’Xr) = (¢ h)(Xi,VXer) . Thus VS¢ = 0 1implies that the horizon

tal component (VXr)H =0 .

: H_ o gk
Conversely, if (VXr) =0, then (V S¢)(Xi’xr) (¢ h)(Xi,V

%

Xer) =0 . Si-

milarly, S )(Xs’xr) = 0 . Finally,

(be 0

(be5¢)(Xj,Xi)

(") (Ty X, + (67h) (X, 7

X

g(Xj,Xi) =0 .

X;gf)

_ H
X;) = 8((Ty X)X + 8K, (7

X, X,
%,

In summary, (VXI_)H =0 implies =0 forall 1 <b <m.

S
be 6

To prove the second equivalence in b, take y € N and let Fy = ¢—1(y),
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and iy s (Fy,k|F ) > (M,g) the isometric inclusion map. From the composition law

[11,(4.1)] we find

0 =Vvd(¢-1i = vdi + Vd¢ (1 3! 5

(95,) = 04(Vi ) + VO(E i)

whence for X,Y’GC(T(Fy)) , Vd¢(X,Y) = —¢*(Vdiy)(X,Y) . Since (Vdiy)(X,Y) is hori-
zontal and ¢, is an isomorphism on horizontal vectors, the right member vanishes
iff Vdiy =0 . I.e., Vd¢ vanishes on pairs of vertical vectors iff the fibres

are totally geodesic.

(3.12) Example. Let ¢ : (M,g)~> (V,h) be an isometric immersion of (M,g) into a
Euclidean space V . Let G denote the Grassmannian of m-planes in V through
the origin - and endow G with its standard Riemannian metric k . If y : M > G

is the Gauss map of ¢ , then

a) the second fundamental form B, of ¢ can be identified (using the repre-

¢

sentation of the tangent vector bundle T(G) = K a Kl , where K-+G 1is the vector

bundle whose fibre over L € G is L 1itself) with the differential of ¥y

(3:13) B¢ = Vvd¢ = dy ;

b) the third fundamental form of ¢ is y*k . Then we have the basic inter-

relationship [27]

(3.14) y*k = <8,,7,> -Ricci &,

i.e.
a b - T - W
Ts V4 Bai = Biy T H g Ry

1f RrR® = glJ Rij is the scalar curvature of (M,g) then we calculate

2eY = |T IZ - R . Consequently, the stress-energy tensor of y 1is

¢
- g8

l
(3.15) s = "jl“TZ'““‘ g - B,.T, * Ricci

g

If the immersion has constant mean curvature, then div Syi 0 . That is an applica-
tion of the theorem of Ruh-Vilms characterising such immersions via harmonicity of

their Gauss maps [31] .



1

Let us now interpret that : First of all, Einstein's field tensor [19,p.74]
Rg
-38 is divergence free :

R,i

Rt~ 7 8% 0

as a consequence of Bianchi's second identity. Secondly therefore,

Ricci®

.1 oo = <T, R h - %) =-g% A
A4 16 Slj,k <Top® €ij Bij,k ™A Ble’k haA Bij,k T hax
since ¢ has constant mean curvature. The interpretation (3.13) gives VB, =B s

the second fundamental form of the map y » so (3.16) becomes

Vs = =B 5 TS
Y Y

¢
Therefore, with the interpretation T(G) = a K‘L 5

div S = =<t ,1,>=0
o Y ¢

(3.17) Remark : For any space form (V,h) of constant curvature c , the analogue
of (3.14) is [27].

g

y*k = <B¢, T¢> - Ricei® + c(m-1)g , and we can proceed with that as above.

(3.18) Remark. Harmonicity of Gauss maps YE of a Riemannian foliation F is stu-

died in [39] . That should be taken into account in consideration (5.7) below.



4. Maps from Kdhler manifolds.

(4.1) Let (M,g) be a Kdhler manifold of dimmM = m . Then the complex structure

induces a decomposition of its complexified tangent bundle

en = T 8 TVQD)
and hence a type decomposition of all tensor fields on M . In particular,
if ¢ : (M,g) >(N,h) 1is a map into a Riemannian manifold, then its stress-energy

tensor has the decomposition

6.2 s, = sZ0 L gD, 5O

and

Similarly, the complex extension of the covariant differential of (M,g) ,

treated as a Riemannian manifold now, decomposes

4.3) v = v+

where V' : C(T'(M)) x C(aT*M) > C(aT™) , and similarly for v"

These decompositions provide greater precision in the assertion of Theorem 2.9 ;

indeed, write out

s, = @ e w0 5D 502,

and compare types, noting that V'¥* carries (p,q)-types into (p-1,q)-types ; and

similarly for V"* . We conclude that V*S¢ =0 iff

@.4) v* 530 g (LD -6 and/or
V'* S(]’l) 4 V"* S(Oyz) =0

Thus we obtain the

(4.5) Proposition. If ¢ : (M,g)~> (N,h) is a harmonic map of a Kdhler manifold

into a Riemannian manifold, then equations (4.4) are satisfied.




