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PREFACE

This handbook presents in one volume a concise collection of the major matrices encountered in
the preparation of micro-, mini-, and main-frame computer programs for the analysis of structural
and mechanical systems. It was prepared to serve as a professional, users-orienied, desktop reference
book for engineers and architects.

The subject matter is divided into four major parts arranged in a logical sequence, each covering
a distinct class of structural and méchanical elements.

The first part (Chapters 1-16) presents the matrix models of straight, circular, and parabolic
bars and of straight interactive bars subjected to mechanical and thermal causes in a state of static
equilibrium. .

The second part (Chapters 17-21) shows the lumped- and distributed-mass matrix models of
straight bars in a state of free and forced vibration.

The third part (Chapters 22—-26) displays the matrix models of circular and rectangular plates
subjected to mechanical and thermal causes. The finite-segment, finite-difference, and finite-ele-
ment matrices are included. b

The fourth part (Chapters 27-30) introduces the matrix models of cylindrical, spherical, and
conical shells subjected to axisymmetrical causes. Again, the finite-segment, finite-difference, and
finite-element matrices are included. '

The form of presentation follows the telescopic pattern of this author’s Engineering Mathematics
Handbook and shows the same special features, facilitating an easy and rapid location of the desired
information. )

1. Each page presents the information in a graphical arrangement pertinent to the specific type

of material, designated by a title and section number. Consequently, each page is a table.

2. Left and right pages of the book present related or similar material, with all ‘matrices and

their load functions arranged in logical sequences.

3. Matrix coefficients are expressed in analytical forms and, if applicable, their series expansions

and graphs are included.

4. A consistent system of symbols is used throughout the book, allowing a rapid familiarization

with the material and ensuring an easy use of this material.

Even a casual reader will observe that this book is not just a mechanical compilation of available
formulas but represents an organized effort to present the matrix analysis in a new and unified
form.
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Preface

The preparation and organization of the material presented in this book spans a period of 12
years, during which the author has been assisted by many individuals and has relied on an extensive
wealth of reference material forming a body of knowledge known as matrix structural and mechan-
ical analysis. The space limitation prevents the inclusion of a complete list of references, yet a great
effort was made to credit those sources which were directly used or were used for comparative
purposes. &

In closing, the author expresses his gratitude to his former assistants Dr. L. A. Hill, Dr. A. J.
Celis, Dr. K. S. Havner, Mr. C. Martin, Dr. J-w. Gillespie,'Dr. J-w. Harvey, Dr. Ch. O. Heller,
vir. H. C. Boecker, Mr. J. W. Exline, Dr. S. E. French, Mr. T. L. Lassley, Dr. H. S. Yu, Dr. J. T
Oden, Dr. R. K. Munshi, Dr. J. H. Talaba, Dr. E. Citipitioglu, Dr. F. A. Frusti, Dr. M. N. Reddy,
Dr. M. E. Kamel, Dr. P. L. Koepsell, Dr. M. M. Douglas, Dr. E. P. Dallam, Dr. J- Ramey, Dr. G.
Alberti, Dr. A. Lasker, and Dr. S. M. Aljaweini for their help in the development of this material.

Particular thanks are extended to Dr. C. G. Date for the preparation of graphs in Chapter 10
and for the calculation of tables in Chapter 31, to Dr. N. A. Seyedmadani for the preparation of
graphs and tables in Chapters 6, 8, 23, 32, and to Mr. A. A. Mages for the permission to use his
tables and graphs in Chapter 12. Although every effort was made to avoid errors, it would be
presumptuous to assume that none had escaped detection in a work of this scope. The author
earnestly solicits comments and recommendations for improvements and future additions.

Finally, but not least, gratitude is expressed to my wife Hana for her patience, understanding,
and encouragement during the preparation of this book.

Tempe, Arizona Jan J. Tuma



-

14

e  CONTENTS

4

Preface ix

PART | STATIC ANALYSIS OF BARS

O NG E WN =

©0

11
12
13

14
15

16

Notation, Signs, Basic Relations

Transport Matrices, Free and Interactive Bars

Flexibility and Stiffness Matrices, Free and Interactive Bars

Free Straight Bar of ‘Order One, Constant Section

Free Straight Bar of Order One, Variable Section

Free Circular Bar of Order One, Constant Section

Free Parabolic Bar of Order One, Constant Section

Straight Bar of Order One Encased in Elastic Foundation, Constant
Section

Free Beam-Column of Order One, Constant Section

Beam-Column of Order One Encased in Elastic Foundation, Constant
Section

Free Straight Bar of Order Two, Constant Section
Free Circular Bar of Order Two, Constant Section

Straight Bar of Order Two Encased in Elastic Foyndation, Constant
Section

Free Beam-Column of Order Two, Constant Section

Beam-Column of Order Two Encased in Elastic Foundation, Constant
Section

Bar Analysis by Finite Differences

25
49
77
131
155
175

185
205

227
247
263

287
299

309
319

vii



viii

Contents

PART I DYNAMIC ANALYSIS OF BARS

17
18
19
20
21

22
23
24
25
26

Notation, Signs, Basic Relations

Lumped-Mass Models, Single Degree of Freedom
Lumped-Mass Models, Several Degrees of Freedom
Straight Bar of Order One, Constant Section
Straight Bar of Order Two, Constant Section

.PART Il STATIC ANALYSIS OF PLATES

Notation, Signs, Basic Relations

Circular Isotropic Plate of Constant Thickness
Rectangular Isotropic Plate of Constant Thickness
Plate Analysis by Finite Differences

Plate Analysis by Finite Elements

PART IV STATIC ANALYSIS OF SHELLS

27
28
29
30

APPENDIX A GLOSSARY OF SYMBOLS

APPENDIX B PROPERTIES OF NORMAL

Notation, Signs, Basic Relations

Circular Cylindrical Shell of Constant Thickness
Spherical Shell of Constant Thickness

Shell Analysis by Finite Differences and Finite Elements

SECTION

. APPENDIXC REFERENCES AND .

BIBLIOGRAPHY

Index

547

325
327

- 333

347
353
369

379

381
395
415
431
453

475"

477
487
501
515

529

537

543



Parf I

Static Analysis
of Bars




Sow of

/\

/
A

W i e

aia\(!snA'oﬂsta




.

Analysis of Bars
Notation, Signs,
Basic Relations

STATIC STATE

1.01 INTRODUCTION

(1) Systems considered in Chaps. 1-16 are finite bars of given geometric shapes. Their cross-
sectional dimensions are small in comparison to their length (< 1/10), and if curved, the
radius of curvature of the undeformed bar axis is large in comparison to the largest dimension
of the cross section (> 10/1). Each bar and its loads are in a state of static equilibrium and a
state of time-independent elastic deformation.

(2) Assumptions used in the derivation of analytical relations are

(@) The material of the bar is homogeneous, isotropic, continuous, and follows Hooke’s law.

(b) All deformations are small and do not alter (significantly) the initial geometry of the bar
and of the load applications. .

(¢) The initial plane cross section of the bar remains plane during the defo: mation of the bar.

(@ The material constants (modulus of elasticity and of rigidity, spring constants of connec-
tions and of foundations, and volume change coefficients) are known from experiments
and are independent of time.

(3) Symbols are defined where they appear first and are all summarized in Appendix A.



1.02 POSITION AND LOAD VECTORS

(1) Position of a point j is given by the position vector sy;, represented symbolically by three coor-
dinates xq;, yo; Zo; and related to the right-handed orthogonal axes x, y, z. In column matrix
form,

s = (%o yoj» 2o} - (S0 in m)

All coordinates are positive if measured in the positive direction of coordinate axes (Fig. 1.02-

1):

QX'

'Fig. 1.02-3

(2) Concentrated load and applied moment are single force P and single couple Q represented
symbolically by three orthogonal single- and double-headed vector components P,, P,, P, and
Q.. Q,, and Q, respectively. In column matrix form,

P={P,P,P} (PinN) and Q={Q.0,Q) (QinN-m)

All concentrated-load and applied-moment components are positive if acting in the negative
direction of coordinate axes (Figs. 1.02-2, 1.02-3).

(3) Intensity of distributed force and distributed moment are force and couple per unit length
p and q represented symbolically by three orthogonal single- and double-headed vector com-
ponents p,, p,, p. and ¢, g,, ¢. respectively. In column matrix form,

p = {potpp} (pinN/m) and 9=1{99 ¢} (ginN-m/m)

All intensities of distributed-force and distributed-moment components are positive if acting
in the negative direction of coordinate axes (Figs. 1.02-4, 1.02-5). =

(4) Sign convention of loads introduced above offers simplification in numerical calculations
since many physical situations call for loads acting in these directions.

4  Static Analysis of Bars



1.03 STRESS AND REACTIVE VECTORS

(1) Stress-resultant force vector is a single force acting at the centroid of the section and rep-
resented symbolically by three orthogonal single-headed vector components along the prin-
cipal axes of the section. They are

U = normal force (N) V, W = shearing forces (N)

(2) Stress-resultant moment vector is a single moment acting at the centroid of the section and
represented symbolically by three orthogonal double-headed vector components along the
principal axes of the section. They are

X = torsional moment (N-m) Y, Z = bending moments (N-m)

z
’ f
Right side ? £ Right side

Left side

WL Fig. 1.031

(3) Stress-resultant vectors in column matrix form are
- {ULr Vi, Wi, X1, Yy, ZL) Sz = {Um Vi, Wi, Xg, Yg, ZR}

where the subscripts L and R identify the left and right ends, respectively. All stress-resultant
components acting on the right side (far side) of the section are positive if acting in the positive
direction of the principal axes. For their left-side (near-side) counterparts, the opposite is true
(Figs. 1.03-1, 1.03-2).
z
Right end f

Left end
Fig. 1.03-3

. (4) Reactions are force and moment vectors developed by loads and/or other causes at the pomts
of support. In column matrix form they are

;‘\

= {Uuz, Vizs Wire Xigs Yirs Zuz) Sp = (Um., Ve, Wee, Xees Yres ZRL) =y

where the first and second subscripts identify the near and far ends, respectively. All reactions
are positive if acting in the positive direction of the respective axes (Figs. 1.03-3, 1.03-4).

Chapter One 5
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1.04 DISPLACEMENTS

(1) Elastic curve. The deformation of abaris.defined as Lhc change in its shape caused by loads
and/or volume changes. As the bar deforms, its centroidal axis takes on a new shape, called
the elastic curve. The coordinates and the slopes of this curve measured from the initial axis
i the undeformed bar are designated as the linear displacements and angular displacements,
respectively.

(2) Linear displacement is a directed segment represented symbolically z
by a single-headed vector resolved into three mutually perpendicu- T

lar components u, v, w (m) measured along x, y, z axes, respectively y

(Fig. 1.04-1) w /
(3) Angular displacement is a directed segment represented symboli- v

cally by a double-headed vector resolved into three mutually per-

pendicular components ¢, ¥, 8 (rad) measured in the right-handed

direction about x, y, z axes, respectively (Fig. 1.04-2). Y- X,
(4) Displacement vector in column matrix form is Fig. 1.04-1

= (u, v, w, ¢, ¥, 6} g

All displacements are positive if acting in the positive direction of T "

the respective coordinate axis.
(5) Geometry of small displacements. allows the following 0 /

simplifications: ' v

| ds = dx sing = tan ¢ = ¢ cos ¢ = .

=1
siny = tany = ¢ cosy =1
=1

sinf =tanf =6 cos.0 Fig. 1.04-2

where ds is the elemental length of the elastic curve and dx is the correspondmg elemental
length of undeformed bar axis.

1.05 STATIC EQUILIBRIUM

(1) Definition. A system is in a state of static equilibrium when the resultant of all forces and
moments is equal to zero. If a system is in a state of static equilibrium, any part of it is also in
the same state.

(2) Equations. For such a state to exist, six conditions must be fulfilled simultaneously:

ZF,=0 £F, =0 IF, =0
IM,=0 IM,=0 EIM, =0

where Fand M designate the forces and moments, respectively. The subscripts x, y, z represent
the axes along which force and moment components are added algebraically.

(3) Characteristics. A system is statically determinate if its reactions and stress resultants can be
computed from the conditions of statie equilibrium alone. A system is statically indeterminate
if its reactions and stress resultants cannot be computed from the conditions of static equilib-
rium alone and deformation conditions must be considered. The superfluous forces and
moments (which are not necessary for static equilibrium) are called redundants, and their
number defines the degree of static indeterminacy of the system.

Static Analysis of Bars



1.06 STATIC DETERMINACY AND INDETERMINACY

(1) Beams, arches, rings, and frames. For a system of bars connected together by joints, some
or all of which are rigid, the total number of independent conditions of static equilibrium is

e=6b+6j+s

where & = number of bars, j = number of joints, and s = number of releases (number of
zero forces and/or moments at supports and in connections). Since there are 12 unknown
-end stress resultants in each bar and r unknown reactions at supports, the number of redun-
dants is

n=120+r—e=6b+r—6;—s>0

If n = 0, the system is statically determinate, and if n < 0, the system is geometrically unsta-
ble. In these equations the number of joints j includes all internal joints and all points of

support.
(2) Trusses. For a space system of bars connected together by frictionless hinges, the total num-

ber of independent conditions of static equilibrium is
e=b+3+s

where b, j, and s have the same meaning as in (1). Since there are only two unknown end stress
resultants in each bar and r unknown reactions at supports, the number of redundants
reduces to

3 n=2+r—e=b—3—5>0

If n = 0, the truss is statically determinate, and if n < 0, the truss is geometrically unstable.
As in (1), the number of joints j in both equations includes all internal joints and all points of

. support.
(3) Internal releases included in (1) and (2) are results of special conditions imposed on the sys-

tem. Five typical releases at point j are:

(a) Free end

U=0 V,=0 W=0 X=0 Y=0 2Z=0

1

uw, # 0 v, #0 w, #0 ¢ #*0 ¢ #0 6, #0
() Spherical roller normal to x, y plane

U=0 V=0 W#0 X=0 Y=0 -Z=0

J

w#*0 u #0  w =0 ¢*0 ¢#*0 6 #0
(c) Spherical hinge

U#0 V,#0 W,#0 X,=0 Y,=0 Z=0

w =0 v =0 w, =0 ¢, #0 ¥; #0 6, #0
(d) Cylindri'éal hinge along x axis

U #0 V,# 0 W, # 0 X;=0 Y, #0 3

= u, =0 v, =0 w; =0 ¢ #0 nﬁ!:o 6,=0
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1.06 STATIC DETERMINACY AND INDETERMINACY
(Continued)

(e) Linear guide along x axes

U=0 V,#0 W,#0 X =0 Y, #0 Z#0
u#0 v =0 w=0 ¢+*0 ¢=0 06=0

This summary shows that the number of releases equals six in all cases. The conditions stated

<% . in the first row are used in (1 06—1 -2), and the conditions stated in the second row are used
in (1. 07-2, 3 SR
B .; S teetea. g el
1.07 KINEMATIC DETERMINACY AND INDETERMINACY = ¥

(1) Definitions. Any system of bars can be always visualized as a system of joints connected
together by elastic springs. Since each joint may have as many as six degrees of freedom (three
linear and three angular), the kinematics of the system is defined by the displacements of each
joint, which may be introduced as the kinematic redundants. The degree of kinematic inde-
terminacy of the system is then equal to the number of admissible, indcpendem and unknown
joint displacements. }

(2) Beams, arches, rings, and frames. For a 3ystem of b bars connected together by j joints (some
or all of which are rigid), with s internal releases, g internal constraints, and r reactive con-
straints, the total number of admissible and independent joint displacements is

=6jt+s—g—r

where the internal releases are those defined in (1.06-3). The total number of joints includes
all internal joints and all points of support. The internal constraints aré given by the type of
connections, and the reactive constraints equal the number of reactions.

(3) Trusses. In a space truss with b bars and j frictionless hinges connecting these bars, the num-
ber of admissible and independent joint linear displacements is

d=8 Fs=pg=7x

where s, g, r have the same meaning as in (2) above.

1.08 CLASSIFICATION OF SYSTEMS

(1) System of order one is a coplanar system of bars acted upon by loads in the system plane.
Typical examples of systems of order one are planar trusses, beams loaded in the plane of
symmetry of the cross section, planar frames, and arches loaded in their plane. Chapters 4—
10 show the matrices of straight and curved bars of order one.

(2) System of order two is a coplanar system of bars acted upon by loads normal to the system
plane. The most typical systems in this category are arches and rings loaded normal to their
plane, grids, planar frames loaded normal to their plane, and plane curved (bent) bars loaded
normal to their plane. Chapters 11-15 show the matrices of straight and curved bars of order
two.

(3) System of order three is a nonplanar system of bars acted upon by loads of arbitrary direc-
tions. A space truss, space frame, and circular helix girder are typical systems of order three.
Chapters 2 and 3 show the matrices of straight and curved bars of order three.

(4) Resolution. A planar system of bars acted on by loads of arbitrary direction can always be
resolved into a system of order one by taking the in-plane load components and into a system
of order two by taking the normal-to-plane load components.

Static Analysis of Bars



1.09 GEOMETRIC TRANSFORMATIONS

(1) Two coordinate systems are introduced in the analysis:

®)

(@) Reference system (datum, global system, 0 system) is an arbitrarily selected set of orthogonal

axes x, j’, z whose direction is fixed and common for all parts of the structure.

Member system (local system, S system) is
given by the principal axes x’, ¥, z* at the
station of investigation. The position coor-
dinates of a joint, support, or cross section
Jj related to these systems are directed seg-
ments, so that

z‘ﬂ)}=

X = X Yy = Ty ~Zp
¥ = X Yy = TV =

where the superscript and first and second
subscripts identify the system, origin, and

position, respectively. They form the posi- X Fig. 109-1
tion vectors defined in (1.02-1) and are

related to each other by the angular trans-

formation matrices.

(2) Angular transformation matrix equations are
x3; a, a, a || x x5 a, By e | )<y
¥ | = B. B, B Yo Y | = | B m Yo
z:,,.J Yo Yy fYe Zy; Zo; a B. 1. z;
" I 7 \ J

saj R* f(y Sf)} R* 531

3)

where s; and s;; are the position vectors of j in the 0 and S systems, respectively, and R", R”
are the angular transformation matrices whose coefficients are the direction cosines of angles
between the respective axes (Fig. 1.09-1).
Relations of angular transformation matrices are

R® = R*" = R~

R* = BT = R

where the superscripts )T and )—1 identify the transpose and inverse of the matrix,

respectively.

(4) Relations of direction cosines are summarized below (Ref. 5, p. 17).

Diagonal terms of
matrix product R*R*

Off-diagonal terms of

Off-diagonal terms of
matrix product R“R*

Diagonal terms of
matrix product R“R*

af+a§+af
g+ g + 62
oy d od

= +1
= +1
= +1

matrix product R*R*
af, +aB, +af, =0
B.v:+ By + By =0

v + v, + 12, = 0

aa, + B8, + vv, = 0
ap, + B8, + 7,7, =0
ae + B+ vy =0

a2+ B+ = +1
&+ 6+ =+1
abkf HemfiE 41

Chapter One



1.10 DIRECTION COSINES BY ROTATION.

(1) Procedure. The numerical values of the dgirection cosines in'(1.09-2) can be obtained by suc-
cessive rotation of coordinate axes. Symbols used in this procedure are

a, b, ¢ = right-handed angles (rad) 3
S. =sina, §; =sinb, S, = sin¢, C, = cosa, C, = cos b, C, = cos ¢

S\
This procedure requires a, b, ¢ to be given angles.
(2) Successive rotations (subscript 0j omitted in x, y, z)
Rotation ¢ about z° Rotation b about y* Rotation a about x*

G S, 1%, 0 o0
R® = 0 1§ w0 Re=l 0 | € '-s,
=8, & 8l Sslc

[ ¢ 0 25 1 0 0 |
R* = 0 1 0 B = 130, .80 S,
8}o 11013546 015 =S, 151hC,

(3) Space angular transformation matrices introduced in (1.09-2) are equal to the chain product
of the component matrices (2) executed in the order of rotation. Thus

a|a|a- GC.| —CS. + $.5G | S.S. + CSC.
R=|8]8]8 | =] S| GCC+SS88 | —SC+CS8
Yl % v b =S S.C, C.C, |
ReRR>
By (1.09-2),

R” = RYT = R*R*R”
(4) Planar angular transformatien matrices are the component matrices in (2) above.

10 Static Analysis of Bars



