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Preface

This volume consists of five research articles, each dedicated to a significant topic
in the mathematical theory of the Navier-Stokes equations, for compressible and
incompressible fluids, and to related questions. All results given here are new and
represent a noticeable contribution to the subject.

One of the most famous predictions of the Kolmogorov theory of turbulence
is the so-called Kolmogorov-Obukhov five-thirds law. As is known, this law is
heuristic and, to date, there is no rigorous justification. The article of A. Biryuk
deals with the Cauchy problem for a multi-dimensional Burgers equation with
periodic boundary conditions. Estimates in suitable norms for the corresponding
solutions are derived for “large” Reynolds numbers, and their relation with the
Kolmogorov-Obukhov law are discussed. Similar estimates are also obtained for
the Navier—Stokes equation.

In the late sixties J. L. Lions introduced a “perturbation” of the Navier—
Stokes equations in which he added in the linear momentum equation the hyper-
dissipative term (—A)u, 8 > 5/4, where A is the Laplace operator. This term
is referred to as an “artificial” viscosity. Even though it is not physically moti-
vated, artificial viscosity has proved a useful device in numerical simulations of
the Navier—Stokes equations at high Reynolds numbers. The paper of of D. Chae
and J. Lee investigates the global well-posedness of a modification of the Navier—
Stokes equation similar to that introduced by Lions, but where now the original
dissipative term —Au is replaced by (—A)*u, 0 < a < 5/4. Existence, uniqueness
and stability of solutions is proved in appropriate Besov spaces depending on the
parameter o.

Space averaged Navier-Stokes equations are the basic equations for large eddy
simulation of turbulent flows. In deriving these equations it is tacitly understood
that differentiation and averaging operations can be interchanged. Actually, this
procedure introduces a “commutation error” term that is typically ignored. The
main objective in the paper of A. Dunca, V. John and W. L. Layton is to furnish
a characterization of this term to be neglected. The authors go on to provide a
justification for neglecting this term if and only if the Cauchy stress vector of
the underlying flow is identically zero on the boundary of the domain. In other
words, neglecting the commutation error is reasonable only for flows in which the
boundary exerts no influence on the flow.

Since the appearence of the paper of J. G. Heywood in the mid-seventies,
the problem of a flow through an aperture (the “aperture domain” problem) has
attracted the attention of many researchers. But even now, a number of basic
questions remain unresolved.The article of T. Hishida provides a further, signifi-
cant contribution. Specifically, the author proves L9 — L7 estimates for the Stokes
semigroup in an aperture domain of R™, n > 3. These estimates are then used to
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show the existence, uniqueness and asymptotic behavior in time of strong solu-
tions of the Navier—Stokes equations having “small” initial data in L™ and zero
flux through the aperture.

The mathematical analysis of the well-posedness of the Navier—Stokes equa-
tions in the case of a compressible viscous fluid is a relatively new branch of math-
ematical fluid mechanics, its first contribution dating back to a paper of J. Nash
in the early sixties. Many problems remain to be solved in this area, despite the
significant contributions of many mathematicians. In particular, there remain very
interesting problems concerning steady flow in an exterior domain, especially re-
garding the asymptotic behavior of solutions. This latter problem is analyzed in
the paper of T. Leonavi¢iené and K. Pileckas, in the case when the velocity of
the fluid is zero at large distances and the body force is the sum of an “arbitrary
large” potential term and a “small” non-potential term.

We would like to express our warm thanks to Professors H. Beirdo da Veiga,
A. Fursikov and Y. Giga who recommended the publication of these articles.

Giovanni P. Galdi John G. Heywood Rolf Rannacher
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On Multidimensional Burgers Type
Equations with Small Viscosity

Andrei Biryuk

Abstract. We consider the Cauchy problem for a multidimensional Burgers
type equation with periodic boundary conditions. We obtain upper and lower
bounds for derivatives of solutions for this equation in terms of powers of the
viscosity and discuss how these estimates relate to the Kolmogorov—Obukhov
spectral law. Next we use the estimates obtained to get certain bounds for
derivatives of solutions of the Navier—Stokes system.

Mathematics Subject Classification (2000). 35B10, 35A30, 76D05.

Keywords. Kolmogorov—Obukhov spectral law, bounds for derivatives, degen-
erate state.

1. Introduction

We study the dynamics of m-dimensional vector field v = u(t,x) on the n-
dimensional torus T™ = ¥ /(ZZ)n described by the equation

hu+V,, u=vAu+ h{t,x). (1.1)

Flu)
Here v is a positive parameter (“the viscosity”), f : R™ — R” is a smooth map,
h is a smooth forcing term and Vy(,,) is the derivative along the vector f(u), i.e.,

Vit = (f(u) - V)u.

If m = n and f(u) = u, we have the usual forced Burgers equation. In a
potential case (i.e., if the initial state wo(x) = u(0, ) and the field h are gradients
of some functions) this equation can be reduced to a linear parabolic equation.

As it is shown in [1], [12], appropriate bounds for derivatives imply estimates
for averaged spectral characteristics of the flow. The purpose of this work is to
obtain such bounds for solutions of the Cauchy problem for the generalised m-n
multidimensional Burgers equation {1.1).

We describe notations used in this article. If v is a vector in R*, Z° or C°,

then |v| denotes its Euclidean (Hermitian) norm |v|* = pINE |v;|*. If we have to
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stress the dimension, we denote the norm in R® as |v|g., etc. By B(r) we denote
the ball of radius r centered at the origin. If 4 : Rt — R*? is a linear map then
||All denotes the operator-norm of this map associated with the Euclidean norms
|- on R*t and R®2. If v = v(x), then we write

1/2
|v| = sup |v(x)| = sup (Z lvi(m)[2> . {1.2)
€ x
Sometimes we will denote this norm by |- |p.. If v = v(¢,x), then |v| =
sup, |v(t, z)| is a function of ¢. For a multi-index a we denote |a| = 3 |ay].
We set
t
H(t) =/ sup |h(7, x)|gm d7 . (1.3)
0 xeT"

We also denote

2)1/27 (1.4)

[f]ck(,y) = max sup (Zn: ‘%fj

1BI=F {ueR™ |u|<r} j=1

and

i = [ S ul-arude =3 3 (|00,
i=1

=1 |(,y|:k

m n . ,
= 3"y

=1 ji,.,je=1

|ee| ) — (a1+-+a,)!
Ap

o T are coefficients

Here £ > 0 is an integer and (Igl) = (4

yeeesy

in the generalised binomial expansion (z; 4+ o + ...+ z,)* = Elalzk (z)w"‘ CIf
u = u(t, ), then ||u||y = [|u(t,-)|, is a function of ¢.

Our main results are stated in the following two theorems, where u(t, x), t>
0, is any smooth solution for the equation (1.1):

Theorem 1. For any k > 0,t > 0, and v > 0 we have
( SUpqg,¢ IRl e 1
M < R(t) max { e, ok, il L (L6)

Here ||h||_, =0, Ro(t) = (|ug| + H(t))£7* and

k
Rk(t) = (1 + Ck’"”"'”s:rg.l%)ﬁil{[f]os(|uo|+11(t)) (|U0| + H(t))s}) (|U0| —+ H(t))ﬂ /27
where the constant Ci , n depends on k, m, n only.

Definition 1. The vector field u, is degenerate with respect to equation (1.1) if
the matrix %}:‘J) (this is an 7 x n matrix, which depends on x) is everywhere
nilpotent, i.e., for each point & some power of this matrix is equal to 0.
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Theorem 2. Suppose that the initial state uq is a non-degenerate vector field. Then
there exist v-independent positive real constants T, ¢ and ro, 13, T4, ... such that:
If H{T) < § then Vv > 0 and Vk 2 2, we have:

Tk

(1.7)

Bk:
(:“)EJ (t w)‘Rm dt 2 UA/Z ’

1 T
g [ s
The constants T', ¢, 73, 3,. . . depend on the non-degeneracy of the initial state
ug in quite complicated way (see (3.11), (3.16), (3.19), and (3.33)). The nearer is
uy to set of degenerate vector functions, the bigger is T and the smaller are ¢, rs,
rg,.... If ug = Mg and A — 0, then T oc A71, 7y o k2 e does not depend on .
In Section 3 we give an example of a degenerate non-constant initial state for
which derivatives of the solution are bounded by v-independent constants for all
t > 0. Moreover, for the two dimensional case (m = n = 2) and for f(u) =u,h =0
we show that any solution with a degenerate initial state retains bounded deriva-
tives. This fact is based on a result from the classical geometry due to Pogorelov—
Hartman—Nirenberg, known as the “Cylinder Theorem”. In Section 3 we show
that in the case m = n and f(u) = u, any non-constant potential initial state is
non-degenerate.
The exponents of viscosity v in inequalities (1.6) and (1.7) are not sharp.
In the one-dimensional case (m = n = 1) sharp values for the exponents can be
obtained. Namely, it is shown in [1] that for £ > 1 we have

k— 1 7 "t A
lulle <G () (G [ Tulid) " > e ()"

As a consequence of these inequalities one can get bounds for magnitudes of the

derivatives:

i LR s

dz* |, S 1/" ’ Z vk
The first inequality for k = () follows by the maximum principle and for k > 1
— by the inequality |v|L_ |'U|1/ 2|Uz 12 which holds for any periodic function v

with zero meanvalue, see [1], Sect. 3. To derive the second inequality (see [1] and
formula (3.7) there) we use the well-known fact that for periodic solutions of 1D
Burgers-type equations the quantity | I L. is bounded uniformly in t (see e.g.
the appendix in [1]). Then for k£ = 1 the second estimate follows by the Hoélder
inequality |u, ﬁz < |uzl, - 2| Ly while for k > 1 it follows by interpolation with
the upper bound for £ = 0.

This article is organised as follows. In Section 2 we prove the upper estimates
(1.6) (theorem 1). Section 3 is devoted to proving the lower bounds (1.7) {theorem
2). In Section 4 we obtain some results on behaviour of Fourier coefficients of solu-
tions that can be extracted from the bounds (1.6) and (1.7). Assuming that there
is a Kolmogorov-Obukhov type spectral asymptotics for the Fourier coefficients of
solutions of (1.1}, we get bounds for the exponents of the spectral law and for the
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Kolmogorov dissipation scale. In Section 5, treating the Navier—Stokes system as
a partial case of (1.1), we derive lower bounds for derivatives of its solutions.

The author is grateful to Professor S. Kuksin for constant attention to this
work.

2. Upper estimates

In this section we prove Theorem 1. The componentwise representation of (1.1) is
T
%ui + ij(ul,...,um)%? =vAu; + hi(t,z1,...,20), (2.1)
j=1

where t = 1,...,m.

Lemma 1. Let T' and v be any positive numbers. Let v = v(t,x) be a continuous
function on [0, T]xT" with the continuous derivatives ve, vz, and vy, for any j =
L...,n. Let V; = Vi(t,x), j =1,...,n and g = g(t, x) be continuous functions on
[0,T] x T™. Suppose that on [0,T] x T™ we have the following partial differential
inequality:

Ut+ZV}-6‘9—ij SvAv+ gt z1,. .., 1,).
j=1
Then for any (t,x) € [0,T] x T" we have
t
t,2) < 0, L y)dr.
v(t, x) gggv( y)+/0 ﬁ@@gg(r y)dr

Proof. Making the substitution v(¢,x) = 0(¢, @) + ¢(¢), where ¢:[0,7] — R is a
function such that ¢’(t) = maxyer» g(t, y), we reduce this lemma to the case g = 0.
Now the statement of the lemma becomes a classic maximum principle, see e.g.
[4]. d

Applying this lemma for v(t,x) = > au(t, ) and g(t,x) = Y a;hi(t, x)
with appropriate unit vector @ € R™ we obtain
|u(t, ) < |uo| + H() . (2.2)
Here the norm |-| is defined by (1.2) and H(t) is defined by (1.3).
Since ||u||, < £72 |u|, we have

llealt, Mo < £7(Juo] + H(2)) - (2.3)

This proves (1.6) for k = 0. Next, we multiply (2.1) by (—A)*u;, take the sum
over i = 1,...,m, and integrate over the period {over the torus):
3 mlluli = o(F,w, (~A)*u) = —vllulf,, +T5.

Here we denote

b(f, u,v) :_/ > fjg—;‘]?vida:. (2.4)
Cj=1..n )
i=1...m
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and
15 —/ Z hi(—AYru;da .
i=l...m

Lemma 2. For the functional b introduced above we have
b(f(u), w, u) < [Fflooqu) lully el (2.5)
b(f(w), u, (=A)u) < [Fleoqy) llully ull,, (2.6)
and for any k = 2 we have

b(f(u),u, (—A)*u) < Ck,m,ns (l)max {{fle- “(ul) |u|L Hlullg llullpyy - (2.7)

Proof. First we prove a general inequality on b(-, -, -):
[6(f, w, )| < [Fully o]l » (2.8)

where |f] = sup(3_7_, fj2)1/2 and the norms || - || are defined in (1.5). Up to
a constant factor this inequality is obvious. Below we show that for the chosen
norm the constant is equal to 1. By the definition (2.4) of b(-, -, -) and the Cauchy—
Schwartz inequality we have

o< (5 0) (5 (5 g0 )
j=1 j=1 i=1

now we again use the Cauchy-Schwartz inequality (3" ;)2 < (32 a2)(3°b?) to
continue as follows:

n m

<ir (S (@) (zmjvg))”%x

j=1 i=1 i

= |f|/< li(%)z)m(iﬁ)mdm

i=1 =1

<1 ([ Z (g2)7a0) ([ o) " = 1l ol

The inequality (2.8) and therefore (2.5) are proved. Using ||Aullo = ||u|2 we arrive
at (2.6).
Consider the case k > 2. By (2.4) we have

k23 T
_ 2 2
b(f, u, (_A)ku) = (_l)k l/ E E fjo (u17 s um)c’)zm 62 ) %.Tuidx'
Josemge=11i=1 o
Integrating by parts & — 1 times we obtain

b{f, u, (—A)ku)
T
_ 3 i) . du; d i) 8%
= Z 6:['7'1 ..._ﬁ—_aﬂijk,1 (f]o(ul,..-7um)a;;())ale mwuz d:l:
Joyeje=11i=1
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Using the identity

8? 2
lul,, = / Y (S st

Flaeees Je—1=1,..., ni=1 jr=1

we get

|b(F,u, (—A)ku)|

([ L (e wt a2 i)

JosJre—1=11i=1

Now to prove the lemma it suffices to verify the inequality

5] O
7= ...—F}A (fjo(ul,...,um)awq;“)]dm

< Chomon s:g)l?fu,‘i_l{[f]cs(|u|) Iul;m} full, . (2.9)

(Indeed, (2.9) implies (2.7) with Cx o, = (mn*~ )1/2Ck m.n-) Expanding the
brackets in (2.9) we get no more than (m+ 1)(m+2).--(m + k — 1) terms of the
form

GLO Gy &1 4
/ Dy fo Dz’ ui D’ wy, -+ D'y, dee,
'H‘n

where |ag| + o | + -+ + [o5)| = k and the indexes i, (where s =1,...,|8|) vary
between 1 and m. The modulus of this integral is not bigger than

| D20 u;

\Da] ug, l . lD;'”'Uim, lLL

|u0| Toe, | o)1

A= lDﬁijle(B(luf)) iL 24

Here B(r) denotes the ball in R™ of radius r in the Euclidean norm, centered at
the origin. Using the Gagliardo-Nirenberg inequality (see [9], pp. 106-107)

Jorg |

B 1~ losl R
\D&eug |, <Al oDy, 1 )

oy

b

and the inequality lﬁ‘:l aglk — |a)? "B‘ o,k — |as|) = k2 — k we obtain
s=0 =0
2_ 3
2 < 4F leﬁflew(B 1L Tl -

Now using the fact that left hand side of (2.9) < (m +1)---(m + k — 1) max{2A},
we arrive at (2.9) with Cy = A k(1) m 4+ 2) - (m+ k — 1), O

Corollary 1. For k 2 1 we have:
b(f (), u, (—A)"u) < Bi(t) llwlly Jlulliy »
where Be(t) = Chomn 1% ([l (a1 (ol + H ()7},
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Integrating T5 by parts, we obtain T5 < [|h|l,_, lwll,y > So we have

Ll < lullopr (<2 l[ullegr + Be(@ Tull + I1Alle) -

1/k
Now using the interpolation inequality in the form |jull, ., = ||l (HZ“Q) , we

have

. . N1/k
bl < fallcy (Tl (v (i) + B0 + Ihles)

It follows from this relation that

Bi(t) + 1)k
if ull, > w—;k—)ku—o and )jull, > ||h|l;_, then [Jul|; is decreasing.

(2.10)

We denote the right hand side of (1.6) by Fi(t). It is clear from the definition of

the function F} that

(0, ), < F1(0)-

Using (2-3) we see that if |lull, > Fi(¢) then ||, is decreasing by argument

(2.10). Since Fi(t) is a non-decreasing function we obtain that |||, never can be

greater than F(t). We arrive at (1.6). Theorem 1 is proven.

3. Lower estimates

In this section we prove Theorem 2. Throughout this section we use standard facts
from linear algebra about linear transformations. For the convenience of the reader
we very briefly outline the proofs. See reference [7], for an elegant, coordinate free
presentation. We start from brief discussing of the notion of the degeneracy of a
vector field.

3.1. Degeneracy condition

Using the fact that an n x n matrix A is nilpotent iff A = 0, we can give a
definition of degeneracy that is equivalent to the previous one, but more robust.

Definition 2. The vector field ug is degenerate iff (mg;(—"’))) "=o.

Let f(z) = f(uo(x)). Consider the characteristic polynomial of the ma-

. 8F.
trix o

Xa(N) = det (3 — A1) = (=)™ + (=) Ni(@) + -+ (@),

Expanding the determinant, we obtain

afi fi,
m Bmik

In{x) = > det |+ .. 1. (3.1)
1<i1<i2<"'<ik<n (9f1-,k 6fik:

dr; e dx;
1 k
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Using the Jordan form of the matrix we see that if %(w) is nilpotent then
7

all I;(x) are zero numbers. From the Hamilton-Cayley identity (any matrix is a
root of its characteristic polynomial) we get the converse. Thus we have that the

i

matrix gjf : (x) is nilpotent iff I) () = --- = I,(z) = 0. We got another equivalent
definition of degeneracy which we will use subsequently:

Definition 3. The vector field ug is degenerate iff I () =0 forall k € {1,...,n}.

We also note that if m < n, then the matrix gf has rank < m, so for
k € [m + 1,n] we have I(x) = 0.

Lemma 3. For each k=1,...,n we have [, Ix(x)de=0 .

Proof. We need to show that

/ndet(

Since both the left hand side and the right hand side are polynomials in A, it is
sufficient to prove this equality for all integer X\. We write % (x)+A1 = %, where
the vector valued function ¥ is defined by the formula ¥ (2) = f(x) + \z. Since A
is an integer, then this function defines a map from T™ to T™. Since ¥ is homotopic
to the map @ v~ Az on torus T" (a homotopy is given by ¥,(x) = tf(m) + Ax),
we have deg W = deg{x — Ax} and hence deg ¥ = \". Using the formula

2L (2) + A1) da = (¢M)". (3.2)

/ det %%dm = deg ¥ dx
n ’I["n

(see (3], IL, chpt. 3) we arrive at (3.2) (since [;. dx = €"). a

It follows that any potential degenerate initial state is constant. Indeed, if
f(ug) = VU then the function U/ : R™ — R necessarily has no more than linear
growth (because f(uo(x)) is periodic) and is also a harmonic function (because
AU(x) = div f(up(x)) = Li(x) = 0); so U(x) = Bx + ¢ where B and ¢ are a
constant matrix and a constant vector, respectively.

Consider the case n =2, i.e., dimz = 2.

Theorem 3. Let n = 2. Then the vector field wgy is degenerate iff there erist a

function pg: R — R and real numbers by, by, ¢1, and co such that
{f(ug(:c))}l = bypo(bizy + baxe) + c1,
{f(uo(m))}z = —bipo(brz1 + bara) + ca.

Proof. The sufficiency is trivial. Indeed, if the vector fleld f(ug(z)) has the form
(3.3), then the Jacobi matrix

<5f1(uo)/3331 3f1(u0)/3$2):(b1b;>90() b )
Ofa(uo)/0x1  Ofa(ug)/dny —biph  —babig))

(3.3)

is nilpotent.
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Necessity. Let ¢; and ¢; be the mean values of fi(ug(2)) and fz(ue(z)),
respectively. Since div f(ug(x)) = 0, there exists a function ¢ : R*> — R such
that rot ¢ = f(uo(x)) — (£]), where rot ¢ = (_g%gi?). We note that the function
w(x1, 2) is T2-periodic, and hence bounded. Since the determinant of the Jacobi
matrix of f(ug(x)) is zero, we have that determinant of the Hessian of 1 is zero.
Consider the graph of the function 4 in R3. The Gaussian curvature of this surface

is given by the formula (see [3], I, chpt. 2)
— '%z%;y - f:y
(Q+92+9)
Therefore, K = 0. Now we use the fact that any complete surface of constant zero
Gaussian curvature is a cylinder over a flat curve (see [13]; [14], chpt. 5). Since the

function 1 is bounded, every generator of this cylinder is a horizontal line, hence
it’s equation can be written in the form

{blxl + bozo = const,

K

z = ¢{const).
We conclude that
WYz, 32) = h(brzy + bazo)
and (3.3) follows with @g = 7' O

Corollary 2. Suppose, m =n =2, f(u) = u, and h = 0; then the solution of the
Cauchy problem (1.1), (3.3) remains of the form (3.3):

b
u(t,x) = (—b?) p(t, iz + bazs) + (2;)

where the function p satisfies the equation
@i + (brer — baca)y’ = (b2 + b2y
In this case we have v-independent upper bounds for derivatives of the solu-
tion.

Further on we shall use the polynomial
Pa(t) = t"xa(52) = det(d;; + g_j;t) =1+ I(2)t + Io(2)t® + - - - + I (x)t™, (3.4)
rather than a characteristic polynomial.

3.2. General idea

In this subsection we present an auxiliary theorem from which we then derive
Theorem 2. This auxiliary theorem is technically complicated. Here we deal mainly
with general ideas, and postpone the technicalities to the next subsection.

We denote the right hand side of (2.1) by g;:

%ui + Zf](ula s 7“771)21:: = gi(tw'rla' .- 7"1:”) . (35)
i=1
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Theorem 4. Let f: R™ — R” be a C'-smooth map and let ug: T® — R™ be a
C'-smooth vector field.

1) If ug is non-degenerate, then there exist T = T(f,ug) < oo and ¢ =
c(f,uwo) > 0 such that for any C'-smooth vector field w: [0,T] x T* — R™ with
u(0, z) = up(x) we have

-
/ sup |g(r,z)|dr > ¢, (3.6)
0

xeT™

where g is given by (3.5).
2) If ug is degenerate, then there is a C'-smooth vector field u: [0,+o00) x
T" — R™ such that w(0, ) = up(x) and g;(t,x) = 0.

Proof. 1) Without loss of generality it can be assumed that u(¢, ) is defined for
all ¢ > 0. Consider the flow on the cylinder T™ x [0, 00) generated by the vector
field f(w). In other words we consider the Cauchy problem

%7(t7 &) = f(u(t,{))

with the initial state (0, &) = £. Here € is the Lagrange coordinate of the flow ~.
For any fixed time ¢ we have a map (t,-) : T® — T™. Since ~(t,-) is a
continuous family of diffeomorphisms, equal identity for ¢ = 0, then its Jacobian
is everywhere positive.
Combining the chain rule and (3.5), we obtain

Lu(t,y(t,8)) = g(t,v(t,£)).
Suppose g(-) = 0; then f(u(t,¥(,€))) = £(u(0,7(0,£))) and v(t,£) = 4°(t,£),

where

YOt &) = & + L (uo(8)) . (3.7)
It follows that if the function g is small, then the flow (¢, &) is close (in the
C%-norm) to the map (3.7). For a detailed proof of this fact, we refer to the next
subsection. For the time being we simply note that this is a consequence of the
following inequality:

e, 7(2,€)) ~ u(0.50.€)] < [ sup lg(ra)ar.

Since for each & = 1,...,n, we have [, Ix(x)de = 0 (see lemma 3) and
since some of the [ are not identically zero (due to the non-degeneracy of ug),
we obtain that there exists a point * € T" and a number [ € [1,...,n] such that
Ii(x*) <0 and Iy(x*) =0 for k > 1.

The Jacobian of (3.7) is expressed by polynomial (3.4). For the time ¢t = T
at the point £ = x*, we have

det (%}t T) =P (T) =1+ Li(ax*)T + Ly (x*)T? 4 - - - + L(x*)T".
£

x*



