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PREFACE

This volume contains the proceedings of a NATO/London
Mathematical Society Advanced Study Institute held in Oxford from
25 July - 7 August 1982. The institute concerned the theory and
applications of systems of nonlinear partial differential
equations, with emphasis on techniques appropriate to systems of
more than one equation. Most of the lecturers and participants
were analysts specializing in partial differential equations, but
also present were a number of numerical analysts, workers in
mechanics, and other applied mathematicians.

The organizing committee for the institute was J.M. Ball
(Heriot-watt), T.B. Benjamin (Oxford), J. Carr (Heriot-Watt),
C.M. Dafermos (Brown), S. Hildebrandt (Bonn) and J.S. Pym
(Sheffield).

The programme of the institute consisted of a number of
courses of expository lectures, together with special sessions on
different topics.

It is a pleasure to thank all the lecturers for the care they
took in the preparation of their talks, and S.S. Antman,
A.J. Chorin, J.K. Hale and J.E. Marsden for the organization of
their special sessions.

The institute was made possible by financial support from
NATO, the London Mathematical Society, the U.S. Army Research
Office, the U.S. Army European Research Office, and the U.S.
National Science Foundation.

The lectures were held in the Mathematical Institute of the
University of Oxford, and residential accommodation was provided
at Hertford College.

Valuable assistance with the organization of the institute

and with the typing of the proceedings was given by Maureen
Gardiner, Anne Hodgson and Janice McClelland.

J.M. BALL
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ALGEBRAIC AND TOPOLOGICAL INVARIANTS FOR REACTION-DIFFUSION
EQUATIONS

Charles C. Conley and Joel A. Smollerl

University of Wisconsin and University of Michigan

§ 1 INTRODUCTION

In the last few years, a good deal of progress has been
made in the understanding of the qualitative properties of
solutions of reaction-diffusion equations. This has been due
to the introduction of new topological techniques into the field;
in particular, we mention the concept of an isolated invariant
set, and its index, as developed in [2].

This index is a homotopy invariant associated with an
isolated invariant set. It is a generalization of the classical
Morse index of an isolated rest point for a gradient flow in
Rr" , but it is applicable to a far wider class of invariant sets;
in fact, it is even relevant for partial differential equations,
as we shall show here.

Under some very reasonable and natural hypotheses, one can
decompose an isolated invariant set into its so-called Morse sets.
This immediately implies the existence of certain exact sequences
of cohomology groups defined on these Morse sets. Thus one obtains
algebraic invariants associated with the given isolated invariant
set. As is the usual case with algebraic invariants, they are
discrete, and since they "depend continuously on the topology",

a change in the algebraic structure reflects a change in the
underlying topology - e.g., a bifurcation can occur. Moreoever,
the exact sequence can also be used to compute indices. Finally,
we point out that the aforementioned index actually has a
"dynamic" aspect to it, in that it carries stability information.
That is, one can use it to obtain precise statements on the
dimensions of unstable manifolds.

3

J. M. Ball (ed.), Systems of Nonlinear Partial Differential Equations, 3—24.
Copyright © 1983 by D. Reidel Publishing Company.



4 C.C.CONLEY AND J. A. SMOLLER

In this paper,we want to point out the relevance of these
ideas in the study of reaction-diffusion equations. The reader
will see that there is involved only a bare minimum of algebraic
topology, and that the "rewards" one obtains far exceed the
effort involved in learning the topology.

§ 2 THE ABSTRACT FRAMEWORK

A. Algebraic Topology

We begin with some (very elementary) ideas from algebraic
topology. The reader can consult any standard textbook in the
field for motivation, background, and details.

We denote by (A,B) a pair of topological spaces where
ADB. To any such pair, there is associated a sequence of
Abelian groups {H" (A,B):n=0,1,2,...}, and H (A,B) is called the
nth (integral) cohomology group of the pair (A,B). If S is a
k-sphere then it turns out that

Z, k=n

B .ok, 3 =
O:k#n

If A, B, and C are topological spaces, ‘and ADB>C, then
there is a so called exact sequence of cohomology groups:

_ ¢ Y 0
o5 w0 B 1A, )" wa, 0) B e B,0)—P ... .

This means that the above maps are all linear, and the image of
any map is the kernel of the following map. For example,

-
=

ker wn = im ¢n—l =

This is basically all of the algebraic topology that we
shall need.

B. Isolated Invariant Sets and Morse Decompositions

Let T be a metric space, and let F be a flow on T;
F:TxIR->T . We denote F(y,t) by vy*t. For NC€T, set

IMN) = {yeN:y+* RcN} ;



INVARIANTS FOR REACTION-DIFFUSION EQUATIONS N

I(N) is called the invariant set in N. For yel' , we define
the alpha- and omega-limit sets of Yy by

aly) = ct{y (==, )} , w(y) =) cily (£, } .

£<0 t>0
Definition 1. (Morse Decomposition): Let I be a compact
invariant set in I' . A Morse decomposition of I is a finite

collection {M, }1 of disjoint, compact invariant sets 1n I
which can be %rdered (Ml'MZ""'M ) such that if y e I\\J M ,

then there are indices i<j with a(y) e M. and w(Y) eMl % The
above ordering will be termed admissibl

For example, if I consists of two rest points M and M
which are connected by an orbit (see figure 1), then (M M ?

is a Morse decomposition of I.

S
1y
P
s
MZ
FIGURE 1

The reason that Morse decompositions are of interest to
us is that many "sensible" properties of the equation are
reflected in the Morse decomposition of its (isolated) invariant
sets. Here sensible means stable under small perturbations.

In order to make our abstract theory applicable to partial
differential equations, we introduce the concept of a local flow.

Definition 2. (Local Flow). A locally compact subset Xc€T is
called a local flow if for each Y € X there exists an €>0, and
a neighborhood U of Yy such that (XNU) * [0,e)CcX.

For example, we may think of X as a Sobolev space WS; then
our definition means that if the data is in W , the same is true
for the corresponding solutions for small time.

From now on, we will always assume that X is a local flow
in T .

Definition 3. (Isolated Invariant Set): Let N be a compact
subset of X. If I(N)Cint (N), relative to X, then I(N) is
called an isolated invariant set and N is called an isolating
neighborhood.
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The proof of the next lemma follows easily from the
definitions, see [5].

" ’ . . n .

Lemma 4. If S is an isolated invariant set, and {M.}. is a
Morse decomposition of S, then each Mi is an isolated invariant
set.

For a given isolated invariant set S, we can associate
to it an "index". To this end we require the following notion.
Recall that by a pair of subsets (A,B) we mean ADB .
Definition 5. (Index Pair): Let S be an isolated invariant set
and N an isolating neighborhood for S. A compact pair of subsets
(N.,N ) of N is called an index pair for S provided the following
three conditions hold:

a) c1(N.\N_) is an isolating neighborhood of S .

b) N_ is positively invariant relative to N_ ; ie if
YeN, and ¥+ [0,£] €N , then y * [0,t]CN, - 1

c) If yeN, and vy * 1R+¢N , then there is a t>0 with

Y * [O,t)ch, ané Y'teNO :

The definition takes into account that we have only a local flow.
Note too that c) implies that the orbit through Yy exits N only
through NO.

To illustrate this definition, consider the picture in
the figure below. Here we can take the square B

N

FIGURE 2

to be N_ and the "top" and "bottom" sides to be NO . Of course
S is the hyperbolic rest point at the origin.

The desired topological invariants will be described in
terms of index pairs. Before giving this description, we need
to recall a few standard topological notions. First, we say
that two topological spaces X and Y are homotopic if we can
continuously deform one into the other. Next, if A is a closed
subset of X, the quotient space X/A is the topological space
obtained from X by identifying all points a €A to a single
point. We can now give the main theorem.
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Theorem 6. i) Index pairs exist; ie, given an isolated
invariant set S, one can always prove the existence of an index
pair for S.

ii) For any index pair (N_,N_ ) of S, the homotopy
type of the quotient space Nl/N is independent of N, N_, NO,
and depends only on S. It is ghus a topological invarilant
associated with the isolated invariant set S.

In view of ii), we may unambiguously define the (homotopy)
index of S, by

h(s) = [Nl/N2] v

where the brackets denote the homotopy equivilence class.
Observe that for the above example Nl/NO = X7, a (pointed)
l-sphere.

Now it is not difficult to check that this index
extends the Morse index in the sense that if x_ is a non-
degenerate rest point of a gradient system of ordinary
differential equations, and k jis the dimension of the unstable
manifold at x_, then h(x ) = £ . Furthermore, there is an
addition formula far the index. Namely, if S, and S
are disjoint isolated invariant sets, then SlUS2 is an isolated
invariant set, and

h(s) = h(s;) v h(s,) , (*)

where by v, we denote the operation of "glueing" the two
(quotient) spaces together at their distinguished point.

Note that if S = ¢, then it is easy to_see h(s) = 5, the
one point (pointed) space. Thus if h(S) # 0, then S # ¢ .
This is how the index is used as an existence tool.

Next, we turn to a useful result which can be viewed as a
generalization of the first part of the last theorem.

Theorem 7. ([2,5]). Let S be an isolated invariant set and let
(Ml,M r---,M ) be an admissible ordering of a Morse decomposition
of'S. Then there exists an increasing sequence of compact sets
N ecN C...€CN such that i) (N ,N ) is an index pair for S,

n . . 4
i M .
and ii) (Nk,Nk_l) is an index pair for -

We say that the sets NO, Nl, v -y Nn form a Morse filtration
of S.
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Now if N.€...CcN 1is a Morse filtration of S, we consider
the triple (N +l,N ,Nril). As we have seen above, there is an
exact sequencg, p P

n-1
...>H (N ,N
P

n
N - H
- ) (

N
+1'p Np+l' p-1

Y> s

)>H (N
P

Now under reasonable gypotheses, there is an isomorphism
" (a,B)~ H (a/B,4) =H (A/B), provided B is closed in A .
Applying this to the above exact sedquence gives

—+Hn(N ) >

p+l /

Ny

n-1 n
saw >H N /N N ) >H (N beie o
( p/ p_l) /! p p#L

In particular, referring back to our previous example of an

orbit connecting to rest points (see figure 1), we have the
important exact sequence in terms of indices:

e L (h(M))> " (h (M) >H (B(S)) > ... . (1)

It is useful to have a criterion for deciding when Morse
decompositions exist, as well as one for being able to find
isolated invariant sets. Both of these are difficult problems,
in general, but here is one useful result. Before stating it
recall that a differential equation is called gradient-like in
a region if there is a function which strictly increases on
orbits in the region.

Theorem 8. Let X be a gradient-like local flow.

1) If the flow has a finite rest point set C contained
in an isolating neighborhood N, then the rest points form a
Morse decomposition for I (N).

2) If y_ is an isolated rest point, then Yo is an isolated
invariant set.

Proof. 1) Let ¢ be the gradient-like function. If y e I(N)\C
and t>0, then ¢(y*t) >¢(y), and so ¢ is constant on w(y).
Consider the flow on the compact set I(N). The flow is gradient-
like on I(N); thus w(y) and a(y) both must be rest points. If
we now order C = {%_,...,Yi } in such a way that if k<73,
i 8 n

F(xi ) >F(xi ), then 1) easily follows. Let N be a compact

k J
neighborhood of Y. such that Y. is the only rest point in N.
Let U be any neiggborhood of Yy , U N. Since N\U is compact,
there is a §>0 such that F(y+1l) - F(y) > 6§ >0 for all yeN\U.
If yeN and Yy * RCcN, then w(y) and a(y) are rest points in I (N);
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thus wy) = Yo = a(xo) , and y* RCU. Since U was arbitrary,
Yy+* R ={y }. "Thus {y } is the only invariant set in N, and
this proves (2).

We turn now to the last general notion, that of continuation.
Like every "index" worthy of the name, our index is a
homotopy invariant. Thus, consider a parametrised family of
equations G = f£(A,u). Suppose that N is an isolating neighbor-
hood for all parameter values A in a closed connected set, say
an arc. Then the various so determined isolated invariant sets
are said to be related by continuation. By definition, if S' is
so related to S, and S to S", then S' is so related to S". 1In
this case one can prove the following theorem.

Theorem 9. If S and S' are isolated invariant sets which are
related by continuation, then h(S) = h(s').

Of course this result is often used to compute

indices; namely one continues the given equation to one in
which it is easier to compute indices.

§ 3 LOCAL FLOWS AND REACTION-DIFFUSION EQUATIONS

In order to be able to apply these general topological
methods to partial differential equations, it is necessary to
show that solutions generate local flows. We shall prove a
general theorem on the existence of local flows, and we then
shall show that the hypotheses can be verified for systems of
reaction-diffusion equations.

Again let ' be a metric space with metric p; by a curve on
' is meant a continuous function y: I > T, where I = dom(y) is
an open interval in IR. A curve is called regular if its graph
is closed in IRxI'. C(I',I'') denotes the set of regular curves
Y on I' such that I'cdom(y) and y(I')cT"'.

Let F be a flow on I'. The local flow X is called two
sided if for all y € X, there is an € > 0 and a neighborhood U
of Yy such that (UNX)+*(-e,e) € X. If vy € X implies Yy -]R+c:X,
X is called a semi-flow. If y € X implies y *IRCX, X is called an
invariant set; or mgzg—bonsistently, a sub flow. We give some
examples. Let C(I') denote the regular curves on T.

l. For any t € IR,C(t ,I') is a two-sided local flow.

2. C(r ,I) ?s a semi-flow.

3. Let C- consist of those curves which have an interval
of the form (-«,t) in their domain. Then C is an invariant set.



