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Preface

This book is the outgrowth of both a research program and a graduate
course at the University of California, Irvine (UCI) since 1966, as well as
a graduate course at the California State Polytechnic University, Pomona
(Cal Poly Pomona). The research program, part of the UCI Pattern Recogni-
tion Project, was concerned with the design of trainable classifiers; the
graduate courses were broader in scope, including subjects such as feature
selection, cluster analysis, choice of data set, and estimates of probability
densities.

In the interest of minimizing overlap with other books on pattern recogni-
tion or classifier theory, we have selected a few topics of special interest for
this book, and treated them in some depth. Some of this material has not
been previously published. The book is intended for use as a guide to the
designer of pattern classifiers, or as a text in a graduate course in an engi-
neering or computer science curriculum. Although this book is directed
primarily to engineers and computer scientists, it may also be of interest
to psychologists, biologists, medical scientists, and social scientists.

We give special attention in this book to linear trainable classifiers and
the extensions of these “linear machines” to nonlinear classifiers. The techni-
ques for designing such classifiers were first developed in the late 1950s and
early 1960s. Several inadequacies of these techniques moved us to the dis-
covery of new design concepts—such as window training and close opposed
pairs of prototypes—and to the development of the continuous-state model
of Markov training processes. These results, as well as several other here-
tofore inadequately published topics within the scope of pattern classifiers
and trainable machines, are included in this book.
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A graph of the interchapter dependencies is shown below. In this graph,
the circle at each node encloses a chapter number. A branch directed from
node i to node j indicates that Chapter j depends on Chapter i.

Thus for a short course the reading rﬁay be restricted, for example, to
Chapters 1, 2, 4, and 5. Further shortening is possible by deletion of portions
of chapters. For example Sections 2.2, 2.3, and 2.4 may be omitted in chapter
sequence 1, 2, 4, 5.

Exercises for the student are placed at the end of each chapter.
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CHAPTER 1

Introduction and Overview

Just as the successful invention of the airplane stimulated the study of
aerodynamics, the modern digital computer has stimulated the study of
intelligence and learning.

A frequently occurring form of intelligent behavior is the sorting or clas-
sification of data. The process of distinguishing poisonous objects from
food is an example of such behavior. Extreme forms of the classification
process are scientists’ transformations of observations of nature into “laws”
of nature.

Because of the difficulty of many practical classification tasks, it is no
surprise that this form of intelligent behavior often depends on a learning
process. For example, the accuracy with which a radiologist classifies the
image of a lesion in a radiograph as either benign or malignant is highly
dependent on an extended period of training. Since the late 1950s the growth
of the technology of digital computers has spurred both a technology of
pattern classification machines and a mathematical theory of simple forms
of human and machine learning.

Pattern classification is an information-transformation process. That is,
a classifier transforms a relatively large set of mysterious data into a smaller
set of useful data. It is not surprising, therefore, that computing machines,
as well as living organisms, exhibit the ability to detect and classify patterns.
Examples of such machines that have been constructed and used effectively—
including a few commercial successes—are blood cell classifiers, chromo-
some analyzers, analyzers of aerial photographs, speech analyzers, postal
zone readers, fingerprint analyzers, and radiograph analyzers.
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In this book we describe several mathematical methods for the design of
artificial pattern classifiers, with special attention given to training techni-
ques. We also describe the mathematics of continuous-state and Markov-
chain learning models—which are applicable to both artificially constructed
classifiers and human decision processes.

In this first chapter we develop a few preliminary concepts and notation,
and discuss the utility of machine learning in a broad sense. We start with
a few basic definitions.

1.1 Basic Definitions

A classifier is a device or a process that sorts data into categories or classes.

A trainable classifier is a classifier that can improve its performance in
response to information it receives as a function of time. Let € denote
such a classifier and let I denote the received information. € may be a
machine, a biological organism or human being, a biological species, a
man-machine system, a business organization, or a nation’s economic
system. I is often a mathematical function of €’s past performance; some-
times it is just a special sequence of observations and correct classifications;
usually it is a combination of all three: a special set of observations, associated
correct classifications, and the value of a function of some or all of the past
performance of %.

Training is the process by which the parameters of € are adjusted in
response to I. (If € is a human, these parameters are usually parts of a
psychological model of the learning process.) A training procedure is an
algorithm—often a computer algorithm—that implements the training
process.

Learning is the motion of a system’s effectiveness (or performance) from
one level to another. Learning is positive if the motion is in the direction
of increased effectiveness. (Implicit in this definition is the existence of a
procedure for computing effectiveness or performance quantitatively. We
will take up the subject of these performance measures later.) Learning is
often associated with feedback, and provides a means by which humans
may control their technologies, machines may adapt automatically to
changing environments, and species may survive.

The social utility of learning in intelligent machines is particularly evident
in the following ways:

1. Models of learning can lead to the construction of machines that learn
and relearn the users’ goals, even when these goals change over a
period of time. It is only by such a feedback process that the human
users can have assurance that these machines will serve the users’
purposes, and avoid the sorcerer’s apprentice syndrome.

2. Models of learning can lead to the construction of machines that learn
to overcome the inadequacies and failures of the machine’s own
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structures and parts. These self-organizing and self-repairing properties
may contribute significantly to the economy of designing and operating
a complex intelligent machine.

3. Models of human learning provide a basis for the construction of
machines that can share with humans the task of learning. We envision
here a learning loop consisting of two learn—teach sequences. In one
sequence the machine learns those aspects of a task that it is best
suited for, and teaches some of what it has learned to the human user.
In the second learn—teach sequence, the human learns a task at which
he or she is efficient, and teaches the machine a task based on what he
or she has learned.

1.2 Trainable Classifiers and Training Theory

In this section we refine our view of pattern classifiers and define and discuss
training theory. Recall that we defined a classifier as a device that sorts
data into categories. These data are often structured as vectors in feature
space. Every point in this space is called a feature vector. Each component
x; of the feature vector x is usually a feature, attribute, or property of an
object under analysis. For example, the classifier may be analyzing the
chromosomes of a single human cell, and sorting these chromosomes into
23 pairs (a karyotype). The feature vector of each chromosome may have
components consisting of, for example, the width of its centromere (its
“waist”), the average length of its lobes, the distance of its convex hull’s*
centroid to its mass centroid, etc. [3].

It is often assumed that the feature vectors of a given class are in some
sense nearer to all feature vectors in that class than to all or most of the
feature vectors in other classes. This is the compactness hypothesis [4].

The feature vectors in a given class occupy a region in feature space which
we call a class region. It is often assumed that every class region is bounded.
Another common assumption is that none of the class regions overlap.
(However, in most practical problems, some overlap exists.) When the class
regions don’t overlap, the classes are said to be separable, and to have the
property of separability. If, for every class region, a hyperplane can be placed
so that it separates that region from all other class regions, the classes are
said to be linearly separable. Much of the early work on the theory of pattern
classification was concerned with linearly separable classes. Recently, how-
ever, a significant amount of work has been concerned with nonseparable
(i.e., overlapping) classes and classes which are not linearly separable.

* The convex hull of a plane region Z is the smallest convex region that contains #. One
can visualize the convex hull by imagining a rigid board cut in the exact of # and a stretched
elastic band placed around the edge of the board. The band lies on the boundary of the convex
hull.
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The classifier assigns every feature vector to a particular decision region
Z; in feature space by means of a set of decision hypersurfaces (Figure 1.1).
Each such assignment may or may not correspond to a correct or desirable
classification. A trainable classifier is a classifier which attempts to make
the number of incorrect classifications small or zero by adjusting the set
of decision regions {Z;} in response to observations on a sequence of
feature vectors, {x(n)}. This sequence of observations is said to take place
during a learning or training phase.

X2

Figure 1.1. An example of a set of decision regions {#;} in two-dimensional feature
space.

Along with the feature vectors, the observations may include information
that correctly classifies these feature vectors. If the observations include
the correct-classification data, the training is said to be supervised or with
a teacher. These correct-classification data are sometimes referred to as
reinforcements. If no reinforcements are included in the data, the training
is said to be unsupervised or without a teacher. The process of forming a
computer program that classifies various forms of heart enlargements in
radiographs in response to radiologists’ diagnoses is an example of super-
vised training [5]. The process by which a botanist learns to classify new
forms of plant life into families, genera, species, etc., is an example of un-
supervised training.

The procedure or algorithm by which the members of {#;} are adjusted
in response to the observed feature vectors is called a training procedure.
Each adjustment of {#,} takes place in response to one or more feature
vectors. Each such adjustment, together with the associated observations
and reinforcements is called a trial, following the terminology of psycholo-
gists and psychophysicists. The number of trials is an index of the length of
training,

After a classifier is trained, it is usually presented with input data whose
classes are unknown. This mode of operation of the classifier is referred to
as the working phase, while the mode during which training takes place is
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known as the training phase. The set of feature vectors or observations used
as input data during the training phase is referred to as the training set.
Sometimes the training phase and working phase can coincide or overlap.
This is often the case when the training is unsupervised.

Often the decision hypersurfaces of a classifier are determined by a set
of discriminant functions {g;(x)} as follows:

R; = {x|g;(x) = g,(x) for all i}. 1.1)
When g;(x) is of the form
gi(x) = WX + wo, (1.2)

where w] denotes the transpose of a weight vector w;, then g;(x) is a linear
discriminant function and the classifier is referred to as a linear classifier.
An advantage of linear over nonlinear classifiers is that the available training
procedures for linear classifiers are relatively simple and well understood,
and the number of weights w;; to be adjusted during the training phase is
relatively small.

We define training theory as a body of insights into the relationship
between training procedures and learning. The types of insights provided
by training theory include relationships among expected performance [6],
length of training, stability in the large [ 7], and the dimensionality of feature
space. For example, certain parts of this theory permit us to predict the
average performance of trainable classifiers as a function of the length of
training [ 8].

1.3 Assumptions and Notation

It is usually assumed in this book that the data enters the classifier as a
sequence of statistically independent d-dimensional random vectors
{X(n)|n =0,1,..., T — 1}, each component of X(n) denoting a feature,
property, or measurement of an object under observation. The quantity
T denotes the number of trials in the training process. Often we use a lower-
case form, namely x(n) or x, for this vector when the indication of a random
process is not important. Unless stated otherwise, it is assumed that the
objects under observation change at random as n increases, and that the
sequence of classes to which these objects belong is a statistically independent
random sequence.

Let w(n) denote the class to which X(n) belongs. In this book the discus-
sion is usually restricted to two classes: w; and w,, so that the range of
w(n) has just two elements. However, two-category classification techniques
can often be extended to multiclass cases. One way in which such cases may
be handled is by assigning a weight vector to each class, and training each
weight vector of the classifier to distinguish between members of the assigned
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class and members of all other classes. Another technique, devised by Kesler,
constructs a single two-category problem from the multiclass problem. For
a description of the Kesler technique see Section 2.6.

1.4 Tllustrative Training Process

The fictitious scenario described below illustrates a few of the types of
tasks involved in the design of a simple pattern classifier. Real design pro-
cesses are usually more complex than this one.

Scenario of a Simplified Design Process. A medical instrumentation manu-
facturer (MIM) wants to construct a pilot model of an artificial classifier
that, using microscopic images of blood cells as the only input data, can
distinguish malignant cells from benign cells with an accuracy comparable
to or better than that of human pathologists. MIM wants the classifier to
be capable of being trained by examples of malignant and benign cells, with
each example labeled M or B, according as it is malignant or benign, res-
pectively. To obtain these examples MIM enlists the services of a competent
pathologist, PA, and a person skilled in the design of automatic pattern
classifiers, KL.

Let .4 denote the class of all malignant cells, and let # denote the class
of all benign cells. The pathologist analyzes N cells, and labels the ith cell
M; or B;, denoting membership in .# or 4, respectively. (The choice of N
is made under the advice of KL.) Let us assume that all of these labels are
correct, so that {M;} < .# and {B;} = #. Let N,, = number of members
of {M;}, Ny =number of members of {B;}. Thus Ny + Ny= N. The
quantity N, is chosen equal to the expected number of members of .# in a
sample of N cells, and Ny is the expected number of members of £ in a
sample of N cells.

PA and KL discuss the problem of assigning physical measurements to
the components of a feature space. They decide on the following two-
dimensional feature space. (In practice the dimensionality of the feature
space is likely to be much higher than two). Let ¢, denote a closed’ plane
curve lying on the boundary of the image of the nucleus of the nth cell.
Let r, denote the region enclosed by c,. Let X,(n) denote the ratio of the
area of r, to the square of the length of c,. Let X ,(n) denote the ratio of the
area of r, to the area of the convex hull of r,. The feature vector X(n) is

X(n) = [X(n), X,(m)]".

A training input sequence is then formed as follows. Using a table of
random numbers or the random number generator of a computer, .# or
2 is chosen at random in accordance with the estimated probability of
occurrence of .# or 4, respectively. For each choice of .# or # at trial n,
an example X(n) from .# or 4, respectively, is selected at random. Let
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(n) denote a function of n whose value is the label .# or & at trial n. For
the nth example, the components of X(n) are measured and recorded. In
this way KL obtains the sequence of pairs {[X(n),w(n)]} (n =0,1,2,3,...,
T — 1). This is the training input sequence obtained for the artificial classifier.

KL decides on the following form of classifier and training procedure
(many others could have been chosen). The classifier is of the form whose
output at trial n, namely R(n), is determined by

R@r) = {Jl, if W(n)"X(n) + Wy(n) > 0, (13)

B, if Wn)TX(n) + Wy(n) <0,

where W(n) = [W,(n), W,(n)]" = weight vector of a linear classifier. If we
define

(Wo(n)-
V(n) = [ Wi(n)
_Wz(n)_

[ 1]
Y(n) = [ X,(n)
| X5(n) ]

and

-

then Equation (1.3) may be simplified to

(M, VT () >0,
R(m = {ga, if V(n)"Y(n) < 0.

The chosen training procedure is the iorm in which the weight vector and
W(n) are adjusted in accordance with the following rule:

V(n) — pY(n), ifR(n)= M, wn)= 2B,
Vin+ 1) =<V(n) + pY(n), ifR(n) =B, wn) = 4, (1.9)
V(n), if R(n) = w(n),

where the step size p is any positive number. This is the proportional increment
training procedure—one of the most popular training procedures in the early
development of the technology of trainable classifiers [9]- The initial values
Wo(0), W;(0), W,(0) are chosen on the best available evidence for the shapes
of the class regions in feature space. Further discussion of this training
procedure appears in Section 2.4.

During the training process the augmented weight vector V(n) moves
toward an asymptotic value with a random sequence superimposed on its
expected motion. Thus V() does not necessarily achieve a final value with
certainty. It may interminably move at random in a neighborhood of the
limit of the expected value of V(n) as n > oo. This phenomenon is discussed
in detail in Chapters 4-7.



