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§0. INTRODUCTION

The residue symbol introduced by Grothendieck [RD, pp. 195-199] has been found
useful in various contexts: duality theory of algebraic varieties, Gysin homomorphisms
of manifolds with vector fields having isolated zeros, integral representations in several
complex variables, just to mention a few (cf. for example [L], [AC], [AY], and their
bibliographies).

However, in spite of its broad interest, the theory of the residue symbol does not
seem to have been written down in a really satisfactory manner. One difficulty is that
Grothendieck’s approach depends on the global duality machinery developed in [RD];
and furthermore proofs are not given there. (A more detailed version is presented in
[Bv]; and for a complete treatment of the case of algebraic varieties, with a somewhat
different slant, cf. [L].) Grothendieck considers a smooth map f:X — Y of locally
noetherian schemes, with g-dimensional fibres, and a closed subscheme Z of X
defined by an ideal I which is locally generated by q elements, and such that Z is
finite over Y. With i: Z — X the inclusion, and g = f-i:Z — Y, there is a residue

isomorphism i'f' = g', or, more concretely, a sheaf isomorphism:
g, (Homo,(AY(I/1%), i*Q%y)) = Homg, (g, Oz, Oy)

(QqX/Y = relative differential q-forms) upon which the theory of the residue symbol is
built.

But in fact the residue symbol can be viewed as a formal algebraic construct,
which can be defined and studied directly with only the elements of ring theory and
homological algebra. Indeed, while duality theory may provide the primary motivation
for residues,(!) eliminating it from their theoretical foundation results not only in
greater simplicity, but also in greater generality, and ultimately, one hopes, in more

1980 Mathematics Subject Classification: 13D99, 14F10, 16A61, 32A27.
Partially supported by NSF' Grant MCS-8200624 at Purdue University.
(1) and that is why [L] appeared before this paper. (The relation of this paper to [L] is

made explicit in Appendix A of §3 below.) My own interest in the subject was inspired
by p. 81 of [S], and by §§10 and 15 of [Z].
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interconnections with other areas (see the end of this Introduction). In any case, the
purpose of this paper is to provide an elementary development of the theory of residues .

The possibility of carrying out such a development of residues was known long ago
to Cartier. He proposed a local definition, which could, in principle, be used to estab-
lish the properties listed in [RD], just as an exercise. It turned out to be quite a long
exercise [L, p. 137]. In print, a beginning along these lines was made by Hopkins in
[H]. The definition in [H], somewhat simpler than Cartier’s, uses Koszul complexes,
Ext functors, etc. I personally was uncomfortable with this definition, because Koszul
complexes seem somehow too specialized; but I knew of no alternative. Then, around
1980, in an attempted proof of the ‘‘exterior differentiation” formula (R9) of [RD, p.
199] (given here in Appendix B of §3), the formalism of Hochschild homology began to
extrude itself. It quickly became clear that this formalism provided a very convenient
and surprisingly natural framework for the whole theory. Such, in brief, is the back-
ground of this paper.

The basic situation considered is the following: A is a commutative ring, R is an
A-algebra (not necessarily commutative), and there is given a representation of R, i.e.
an A-algebra homomorphism R — Homy(P, P), where P is a finitely generated pro-
jective A-module. For each q > 0, there is then a natural R®-linear pairing
(R® = center of R):

HYR, Homy(P, P))® e Hy(R, R) — Hy(R, Hom,(P, P))

where H? and H, denote Hochschild cohomology and homology (reviewed at the
beginning of §1). The usual trace map Homy(P,P) — A factors through

Hy(R, Homy (P, P)) = Hom,(P, P)/{commutators},

and composing with the preceding pairing we obtain the residue homomorphism (cf.
(1.5)):

Res%: HY(R, Hom,(P, P))®@ g Hy(R, R) — A
which is our basic object of study.

To get the residue symbol , we need to relate HY and H, to more concrete
objects. Suppose for simplicity that R is commutative. Assume further that P = R/I
for some ideal Iin R, and set

(1/12)* = Homp(I/12, P).

There are then natural homomorphisms of graded R-algebras
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n 2y%] _, n
(1.8.3) So@’ [(/1%)*] nGZBO H'(R, Hom,(P, P))
(1.10.2) nezao Q°g/a — nezao H,(R, R)

so that, via Res9, we get a natural map
14 ® IY(I/I)*|®@ g V% /4 — A

(equal, when q=0, to the trace map P —A) For veNy and
ap,y . v vy g € (I/I2)*, we set

v
Res [al, L aq} — 1Yy ® " ® @ v).

Finally, if I/I* is free over P, with basis, say, (f; + I?),<i<cq (fi€1I), and if

(@1, - -+, @) is the dual basis of (I/I?)*, then we set

v v
By B =Ry, o0, o

Details are worked out in §1, which culminates with the ‘“determinant formula”
(1.10.5) and its corollaries.

Res

Sections 2, 3, and 4 are more or less independent of each other.

In section 2, we study the behavior of Res? when the data (A, R,P) vary. In

particular we prove a ‘base-change” formula relative to a ring homomorphism

P A — A _
g L -
@yl v 5 G =9 |Res By « 3 @y

means ‘“apply the functor @ , A’ to everything in sight”. (Cf. (2.4) for an

Res'

[T L]

where
exact formulation.) We also show how the residues in this paper lead to the residues in
[H]; and then deduce the ‘‘transition formula” (2.8):

det(rij)l/
Res = Res
q

gl""’gq fl,..-,f

for regular sequences g = (g1, ..., g f=(f, ..., f

g in R, with
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fi=§:rijgj r; €ER, 1<i<aq,
=1
and such that R/gR and R/fR are finite and projective over A. (For this formula,

at least, Koszul complexes remain unavoidable.)

At this point, we will have, among other things, reworked and extended most of
the material in [H].

The first “hard” result appears in §3 (Corollary (3.7)): it is a formula for residues
with respect to powers of the members of a quasi-regular sequence f = (f;, ..., fq) in
the A-algebra R, with R/fR finite and projective over A. Such a formula in the case
of power series rings is well-known; and we relate our ‘‘formally Cohen-Macaulay”
situation to this case by embedding R into a power series ring in (f;, . .., f;), with
coefficients in the (usually) non-commutative finite projective  A-algebra
Hom(R/fR, R/fR). As a corollary we obtain in (3.10) a relation between Jacobian
determinants, traces, and residues, which enables us, in particular, to derive the resi-
dues defined in [L] from those in this paper (cf. Appendix A). We also use (3.7) in
Appendix B, to obtain the “exterior differentiation’ formula alluded to above.

The second ‘‘hard” result is the trace formula (4.7.1), expressing a kind of adjoint-
ness relation between certain ‘‘trace’” and ‘‘cotrace’” maps in the Hochschild formalism.

In terms of residue symbols, one consequence is the following.

We consider as above a commutative A-algebra R, and an ideal I C R such that
P = R/I is finite and projective over A. We consider further a finite projective com-
mutative R-algebra R’, and set I' =1R’ (so that P’ = R'/I' is also finite and projec-
tive over A). Then, for any o« € Homp(I/I?,P) there exists a unique
o € Homp(I'/I%, P') (the “cotrace” of @ ) making the following diagram (with horizon-

tal arrows representing obvious maps) commute:

B —— s P12

P— s P

Furthermore, under suitable hypotheses (e.g. R smooth over A, or R’ étale over R)

there is a ‘‘trace map”
Tq:QqR'/A g Qq'R/A;

and we have, for any v € Qg//s:
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The problem of defining a trace map 7, for differential forms is indicated in [RD,
p. 188]. Considerable work has been done on this problem, best documented in [K,§16].
A novel definition was discovered by Angéniol [A, pp. 108 ff]. His approach was com-
putational; but it turned out that the definition could best be understood via
Hochschild homology (cf. (4.6.5)). In fact, with R and R’ as above, and
H = Homg(R/, R’), there is a trace map on homology, defined to be the composition

natural

(0.1) H (R, R') — HyH, H) — Hy(R,R),
where the second arrow comes from ‘“Morita equivalence*’. (We give a different descrip-
tion in §4.5). D. Burghelea has informed me that this type of composition also arose
independently in work on Chern classes in cyclic homology. Differential forms are
brought into the picture through the natural map Q%4 — Hy(R, R) (cf. (1.10.2)); but
since this map is not fully understood, several hard questions concerning conditions for
the existence of a trace map for differential forms remain (cf. §(4.6)). Anyway, once
residues and traces are both defined via Hochschild homology, the road to the ‘‘trace

formula’ in (4.7) is open.

The constructions in §4 suggest some tantalizing possibilities with respect to recent
developments in other areas. One connection with cyclic homology has been indicated
above (following (0.1)). Secondly, there is a natural homotopy class of maps, C, defined
in (4.1), which underlies both the trace and the cotrace. A concrete — but highly non-
canonical — representative of this class is described in (4.2). From this description, one
can see that the ‘“‘intermediate fundamental classes’ recently defined by Angéniol and
Lejeune-Jalabert [AL] could conveniently (i.e. with little or no computation) be formu-

lated in terms of homotopy classes like C.

Further connections with cyclic homology might come out of arguments in Appen-

dix B of §3; but I am unable to say more.

This Introduction began with the claim that there has not yet appeared a really
satisfactory exposition of residues, a situation which this paper is meant to remedy, at
least in part. The preceding remarks indicate that there might well be a more funda-
mental approach to the subject, encompassing a great deal more than we have dealt
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with here. If this paper helps someone toward such a discovery, it will have served its

purpose.

Judy Snider typeset this manuscript via TROFF, with the unstinting helpfulness
of Brad Lucier. I am glad for the opportunity to acknowledge their patience and skill.



§1. THE RESIDUE HOMOMORPHISM

The general definition of residues, due basically to Cartier, has numerous formula-
tions in terms of homological products. In this section we give a concrete description,
more or less self-contained, of one such formulation (Definition (1.5.1)) via Hochschild
homology and cohomology of associative algebras. The reader may wish to begin with

(1.11), where the main results of §1 are summarized.

We begin with a quick review of some basic notions in the Hochschild theory (as
presented in [M, Chapter 10]).

Let A be a commutative ring, and let R be an A-algebra (associative, but not
necessarily commutative), i.e. R is a ring together with a ring homomorphism
h: A — R such that h(A) C RS, the center of R. An R-R bimodule is by definition an
A-module M equipped with compatible left and right R-module structures both of
which induce (via h) the A-module structure; in other words there are given A-bilinear
“scalar multiplication” maps R x M — M (respectively M x R — M) satisfying the
usual conditions for left (respectively right) R-modules; and ‘‘compatibility”’ means
that (with self-explanatory notation) (rm)r’ = r(mr’) for all r,’ € R and m € M.

With R°P the opposite algebra of R (that is, the A-module R together with the
multiplication p:R x R — R given by pu(x,y) = yx), and R® the “enveloping alge-
bra” R® 4, R°’, an R-R bimodule M is essentially the same thing as a left RS-
module, the scalar multiplications being related by

(r&@r')m = rmr’ (r,¥ € R; m € M);
and also the same as a right R®module, with scalar multiplication
m(r'® r) = rmr’.

(Via the antiautomorphism of R® taking r®r to ®r, every left R®-module
becomes a right R®-module and vice versa.)

(1.0) The ‘“‘bimodule bar resolution” e: B.(h) — R:
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03 02 e €
- =By, =B, —=-By=R*—>R

is defined as follows [M, p.282]. For n > 0, B, = B_(h) is the left R®-module
Re® o TA(R/A) where “R/A" denotes the cokernel of h, and

TAR/A) = (R/A)® (R/A)® - - -® (R/A) (n factors; @ =@ ,).
With r* the natural image of r € R in R/A, we denote the element
r®r®[r'® - - ®@ry] €B,
by
ey | | o | 7).

(The notation suggests that we think of B, as an R-R bimodule.) Here we may omit

r if r =1, and similarly for r’. In particular we set
i /' =(r®r)®1 e ROQR® A = R®* = B,.
Then the R®linear maps e:R® — R and 8;: B, — B,_; (n > 1) are determined by
e ) = 1,

On(r[ry | o | oo | p]t’) = rryfrg | oo | g0

+ 3 Gy | rinigg | | el

=1
+ (-1)"r[ry | wr | Ppg]rar

B.(h) is a positive complex of left R®-modules (i.e. 8,0,,; =0 for n > 1, and we
take B, = (0) for m < 0), and e:B.(h) = R is a resolution of the left R®-module
R, R being considered as a left R®module (= R-R bimodule) in the obvious way. In
fact, with the right R-module homomorphisms

s.;:R—=R®* =B,

Sp! Bn - Bn+l (n > 0)
determined by
saf) = 1®¢ = [ ¢

(1l | e [ Talt?) = [ 1y | e | vl

we have
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es_; = identity
04S¢ + s_je = identity

On+15n + Sp_10, = identity (n >1);
in other words, the s; constitute a right R-module splitting (= contracting homotopy)
of the bimodule resolution e: B.(h) — R; and furthermore
SpSpo1 = 0 (n > 0).
(Our terminology is as in [M, pp. 41, 87].)

As indicated above, any R-R bimodule M can be considered as a left R®module
and as a right R®-module. The Hochschild homology and cohomology A-modules of the
R-R bimodule M are defined then by

H,(R,M) = H,(M® . B.(h))

H"(R, M) = H(Homg. (B.(h), M))().

[The notation Hy(R, M), H*R, M) is customary, though it would be more precise to
write Hp(h, M), H*(h, M)]. In particular

(1.0.1) Hy(R,M) = M®geR = M/{rm - m:}

where {rm — mr} is the A-submodule of M consisting of all sums of elements of the
form rm-mr (r€ R, m €M); and

(1.0.2) HYR, M) = Homg¢{R,M) = {m € M| rm = mr forall r € R}.

If re HYR,R) =R the center of R, then multiplication by r®1 is an R®
endomorphism of the complex B.(h) (or of the R®-module M); and hence H_ (R, M)
and H™(R,M) are left R°modules. Similarly multiplication by 1®r gives rise to
right R%module structures. These left and right R~module structures actually coincide
(i.e. rz=12r for all r € R® and z € H (R,M) or H*(R,M)): for given r € R®, if

t,: B, — B, is the unique R°®homomorphism satisfying

Ty | |1l = 35 (P Lo 1y [P Eip e | gl

=0

then we have (for n > 0, with t_; = 0):

O As in [M, p.42] we use the following sign convention: the coboundary of an n-cochain
f € Homge(B,, M) is the n+1-cochain (-1)**'f o Ont1-
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Ops1tn + t5-10, = multiplication by r® 1 -1,

so that multiplication by r® 1 in B.(h) is homotopic to multiplication by 1®r.
Thus we can just think of H*(R, M) and H (R, M) as being R°modules.

A basic component of our definition of residues will be a natural R-linear map
(L.1) pid: HYR, M)® e Hy(R, R) — Hy(R, M) (4> 0)
defined as follows. For any x € By, let
X=1Qx € R®peBg;
and for any R°®linear map f: By — M, let T be the A-linear map
T=1®f:R®g:B, > R®peM = M® g R = Hy(R, M).
If f is a g-cocycle representing &€ HYR,M) and X is a g-cycle representing

n € Hy(R, R), then f(X) € Hy(R, M) depends only on ¢ and 7, as we see at once from

the relation &g(¥) = +g(87) where & (respectively 8) is the boundary map in the
complex Hompge(B.(h), M) (respectively: in R® geB.(h)); furthermore f(X) depends
RCbilinearly on ¢ and #7; so we can set

P(E® 1) = T(x).

Remark (1.1.1). The map (1.1) “varies functorially” with M. In particular when
R is commutative (R®=R), then setting M = Hy(R, M) we can put (1.1) into a
commutative diagram

HYR,M)® g Hy(R,R) ——> Hy(R,M)=M

! ll

HYR, M)® g H(R,R) ——> Hy(R, M)

So when R is commutative, (1.1) is essentially determined by its restriction to the
category of R-modules, any R-module M* being considered as an R-R bimodule

with rm = mr for allr € R, m € M*.

Ezample (1.2) (q=0). As above, HR,M)C M and HyR,M) is a

homomorphic image of M. Denoting by ™ the natural image of m &M in



