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2.

I T 1+41ix
arctan x = 51 log T:IE v

This may be deduced from the serles
2 3

= 2.4 2.
log(l + z) = z - 5 + Tt e

by substituting the values ix and -ix for z and then subtract- .
ing, the result being 21 times the familiar szeries for arctan x.
Not surprisinzly, this uninnibited vse of formel calculation |
occasionally led to paradox.*

Nonetheless, it was not until the 19°® century that this
naive approach to mathematical analysis was replaced by the
critical attitude of today. TFunctions of a complex variable were
then studied systematically for the first time. The subsequent
progress of mathematics has been largely in this field of function
theory and the study of function theory has come to be regarded
as the first step for any student of mathematics after he has
mastered the elements of calculus.

81 Complex numbers

"Imaginaries" emerged in algebra as early as the Middle
Ages when mathematicians sought a general solution of quadratic
equations. The choice of the word "imaginary" is unfortunate,

# Suppose, for example, that the function tan a can be zeneral-
ized so as to take on any glven complex value, opecifically, let
us suppose a is a complex number such that tan a = 1. Then, for
all complex values B 7 * & we heve, according to the elementary
trigonometric identity:
- Yt+ttan - -
tan(a-!»ﬁ)—ma-ﬁ-@-g—i i,

1-1 ¢

1-1 ¢ 6
But this 1s plainly absurd. ''e are therefore led to a contradic-
tion if we assume the ordinary tangent addition laws to hold for

such a quantity; hence, If we wish to retain these laws, such an
angle cannot e:ist.
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but it indicates the distrust in which complex numbers wuere held.
These unwarranted suspicions were finally dispelled at the end of
the 18%B ‘century- when Gauss in his doctoral thesls® gave a simple
geometrical representation to complex numbers. Imaginaries could
then be handled by the intuitive devices of geometry and they
soon lost their awkward artificiality. In recent years mathe-
maticians have turned the other way, prefcrring to define com-
plex numbers abstractly as symbols subject to certain algebrailc
operations.

1.1 Definition of comple:: numver

To the set of real numbers ue adjoin a new symbcl 1, the
imaginary wnit, with which we add and multiply as for ordinary
real numbers uith the additioncl provision that [1.10] i2 = L.
The set of complex numbers consists of ell possible finlte pro-
ducts and sums of 1 with 1tself and with real numbers. Thus a
complex number z 13 a polynoinial in i uith real cosfficients

_ 2 ' n
2 = a, + ali + azi + oo + ani .

Applying the rule 12 = -1 we obteoin

Z=[a.o"9.2+al+"uno]+[31-33+35-000 ]1.
Any complex numbher can therefore be represented in the form
(1.11] z=2a+Dbi, a,b real.

This mode of represcntation is unique, 1.c., if
then a = ¢ and b = 4. For sumnose

+ bl = ¢ + 41

o

a+bl=c+dl

then  (a-c)+ (b-d)i=

# Helmstadt (1799).
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But 0 + 01 is the only representation of 0 in the oprescribed form,

For if a + £i = C then (a+p1i)(a-f1) = o + pz = 0., Hence

a=pf=0., It follows that
@ -c=b-d=0 or a=c¢ and b=4d .

Sums and prcducts of complex numbers are clezxrly given by
the formulae

[1.12a] (a + bi) ¥ (c + ai)

(a3 ¢c)+ (bta)t

[(1.12b] (& + bi) « (c + 41) (ac - bd) + (ad + bc)i;

Division is defined as follous:
If 2z = ¢ + di is ony comnlex number z # O, then z
possesses a unique recinroczl, a comnlex number z'1 such that

27tz = 1. It is easy to show that

=1 _ 1 _ ¢c-ci
2 B

i

Hence for any complex numbeir & a + i we define the quotient,

| bi c~Ci. ac+bd be-ad
[1.12C] 5 = 'a"t— = (a+bi)("~--—;5) = & + i .
2  c+dl c“+a® c2:c;2 c2+d2

Every complex number z can be uniquely described in the
form '

2 =48+ bl a,b real .

The real numbers a and b are said rezpectively to be the real
and imaginary nart of z and are denoted by

[1.13) & = Re 2z b=Im g

alter Welerstrass. The c¢omplex number
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[1.1’4-] zZ = a = bi

is called the conjumate of z and has the property that both the
sum z + z and the product z . z are real. Evidently

2 (z - z) .

(z +2), Im 2 5T

=

[1.15] Re z =

1'ith every complex number z = a + bl we assoclate a
real, non-negative number called the absoluvte val ue or modulus

of z, written [z|, and defined as

[1.16] lz| = \/32 + b5

We ‘heve |z| > 0 and |Z| = lz] = \/ 22 . It is easy f verify.
z

that Izl > Izll Iz?l and, provided z, £ 0, IE_ =-r

Clearly lzl = 0 implies z = 0 and conversely.

It is possible to give a complete axiomatic definition
of complex number without introducing the auxiliary symbol 1.,
A complex number is defined as a pair of real numbers (a,b)
glven in some definite order. Two complex numbers (a,b) and
(c,d) are. saild to be equal (a,b) = (c,d) if and only if a = ¢
and b = d. The imaginary unit is the ordered pair (0,1). The
real numbers correspond to the ordered pairs (a,0). By de-
veloping the algebra of ordered pairs of real numbers in this
fashion we may introduce complex numbers wlthout recourse to
the imaginary elements uhich once were considered so disturbing.

1.2 The complex number plane

The comp_eX numvers moy be represented geometrically by
the points of an ordinary czrtesian plane - each complex number
z beling represented by the point with absclissa Re z and ordinate
Im z. The representation 1is clearly o- -to-one; that is, every
point of the plane 1is used to represant some complex number and
no two complex numbers are represented by the same point.

Y

#Cfe E« Landau: Grundlagen der Analysls.
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'je shall thersfore adopt a certain looseness of language and use
the words "point" and "comnlex number" interchangeavly. This
description of complex numbers may be regarded as an extension
of the representation of the real number system by the points

on a line, since here the real numbors apnear simoly as the
points on the x-axis. ‘

z
| r= |z| -
z . + .
1 '1./"'{.' zl 22 ' . Y
A A _
ARy {6 x
/' /’4/ ,/ ..“C'Q
AL N
///, \"é 55
=TT "2 \\\\\12

Fige 1 Fig. 2

Each point of the complex plane determines 2 vector (directed
line segment) from the origin to the point. Since addition of
two complex numbers is performed by addition of thelr x and y
components, 1t is seen that addition of complex rnumbers cor=-
responds to geometric vector addition in the complex plane,
according to the parallelogram leaw. (Fig. 1).

It 1s natural to introduce polar coordinates (r,8) in the
complex plane. ''e then have (Fig. 2)

(1.21] r= \/x+y° = |z
X=rcos 8, y=rsinsd ,

Using these relatlons we may write z in the polar form:

(1.22] 2 = rl{cos 6 + 1 sin 6) .
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The angle 6 is called the amnlituie of z and denoted by am z.
The polar coordinates completcly define the complex number z,
On the other hand for a given z # 0, am z is only dotermined
to within an added multiple of 2m, while for z = 0, am z is
undetermined.

The conjugate z = x - iy has a simple geometric- interyre-
tation: 1t is the reflection of the point z in the real axis,
Clearly, we have am z = - am z, |z| = |z]|; hencs

[1.23] z = r(cos 6 - 1 sin 8),

The product of two complex numbers is most simply expressed
in polar form: ’

292, = T {(cos 61 cos 92 = sin Gl sin 92)

-

\\
[1.2L] + 1i(cos 81 sin 62 + cos 82 sin 813;
= r1r2[°°s(61 + 62) + 1 sin (el + 62)].

This verirfies the relation Izlzal = rr, = Izll.lzzl. The rule
for multiplication may nov be stated as follows: To multiply tio
complex numbers ue rultinly their absolute vilues and add their
amplitudes. Setting

e(€) = cos 8 + 1 sin 8 ,
we use the above relation to find
{1.25] o(8,).0(6,) = o(6;, + 6,)
which is known as De lMoivre's formmula. This ldentity 1s similar

to the addition theorem for the erxponential function and, in
fact, 1t will Le established later that
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e(8) = ejg‘e

At present we wish merely to state a few simple proporties

of e(6): e(8) is periodic with period 2, i.e., e(® * 2n)= o(6).
Furthermore, e(0)= 1, e(%) =i, e(wn) = -1, and if z = e(6), then
E = e(‘e)o_

Ir z4 and z, are any two complex numbers or points, then

the distance betireen two points is given by lzl - ZZl’ (see Tig.l).
Thus |z|] = 1 is the equation for points z on the circle of racius
1 about the origin, the so-called unit circle. More generally,

the points z for uhich lz - zol = R form a circle of radius R

about the point Zye
In conclusion we prove an imnortant inequality which we
shall use very frequently; it is knoun as the trianp:le inecuality:

[1.26] lzll + |22| > |z1 + Zgl‘i [lzll - |z2||

Geometrlcally thic Inequality is quite obvious, since the vectors
245 2o and zy + 2z, define a triangle. It simply states that the
length of any side of a triangle is not greater than the sum of
the lengths of the other two sides and not less than their dif-
ference in absolute value. To prove [1l.26] analytically set

z, = a, * 1b1, 2y = 85 + 1b2- Then for the first inequality in
[1.26] we have

é 2 2 2 2 P
Vgl + by +\/;2 + by 2 (a1+a2) +(b1+b2) .

But by squaring both sides we see that this is equivalent to

2 2 2 2
a8, + b1b2 < anl + bl)(a2 + b2)

which is a direct consequence of the Schwarz Inequality*

“'cf. Couirant: Calculus V. I, p. 13.
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)2 2

1

2 -

(aa +bb 2)0

2., 2
182 * Bybp)7 = (2] + p1)lay + b

To obtain the right side of the inequality we note that
l(zl + 32) - zzl < Izl + 7.2' + lzei °
Thus

| 2y + Iy l.z Izll - IZZ‘ s

Since zq and 2, occur symmetrically their roles may be inter-
changed in the argument. Conseguently

lzy + 250 2 [z = 2,01

Exercisqg

l) Prove by mathematical induction the following consequence
of De Moivre'!s formula

[e(8)]® = o(nb)

For positive Integers. Finally show that this relation is still
valid if n is any rational number whatever,

2) Prove the identity
fa+ 1%+ la-8l%=2(lal®+ 8]%)

where a, B are arbitrary complex numbers,; interpret this result
ceometrically. ’

3) Urite the follouing expressions in stondard form a + bi:

3 3 -
a) VT+1, b)) /T, c) vYp+ail .
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4) In 3c thers ar= thres solutions aJ + bji,(j = 1,2,3)

Find the cubic equation whose roots are 2, 2y, a3 .

1.3 The Complex Number Snhere; Stereogrankic Projection.

For certain purposes it 1s simnler to represent complex
numbers by the points on a sphere rather than those of a nlane.

To this end we use the unit srhere

S: 52+"*k2+;2=1
Where g,’% s & are rectangular coordinates in space. For the
complex number plane we choose the equator plane ¥ = 0 and take
the real axis iIn, the direction of &, the imaginary axis in the
direction of 7( .

Figo 3:
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The ray which joins each point z = v + 1y of the equator plane

to the ndrth‘pole, N: & =’l =0, ¥ =1, intersects S in another
point Pz which 1s then tasken as the geometrical representation of
z on the sphere. In thils manner, the number plane 1s mapped on
the unit sphere in a one-to-one way except that the north pole N
does not correspond to anyvpoint of the z-plana. However, 1if Pz

on S approaches N tie distance Izl of the corresponding point of
the plane from the origin increases without bound. Accordingly we
sometimes denote N by the symbol co and call N the point at
infinlty of the complex number sphere S. It Is advantageous to
employ the notion of the point 2t infinlty of the z-plane, an
ideal point which 1s assigned to N in order to complete the
one=-to-one correspondsnce between the z-plane and the z-sphere.

In 1like fashion, we sneak of the value co attained by a complex
variable z although such a value cennot be included in the com-
plex number system without violating the ordinary rules of algebra.

The purpose in introducin:; the pnrase "point at infinity" is to
obviate the necessity of differentiating speclal cases in cer-
tain discussions concerned uith limits, It 11111 be recalled that
an analogous device 1s used in projective geometry where, in order
to avold special cases in discussions involving the intersection
of lines, we Introduce not merely an ideal noint but an entire
ideal line consisting of points at infinity. However, it should
not be forgotten that the concept .of poéint at Infinity'is a
natural and convenient invention but not a logical necessity.

Stercographic projection.

This mapping of the sphere onto the plane is the familiar
stereographic projection of ths cartographers who, in view of its
special properties, find it indisnensable for navigational maps.
Before we considoer these properties let us formulate the analyti-
cal description of the mapnlng: _

By elementary geometry we obtain relations between z and
the coordinsates of Pz, namely
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= =& =
(1.31) Xx=-q2 eand y I}z .
2, 1242 =
From [2.31] and &,” + /i " + ;= 1 we obtain the inverse trans-
formation:
R e T Ll
. = y (5 ’ =
X 4y +1 X +y +1 X +y +1
or, alternatively,
‘ z+2 : 1 2-2 2|%-1
[1.33] E= —=—, Il = —_—, {= —
lz |<+1 ’ I [z]c41 |z |“+1

Stereographic projection is characterized by the following
property:

Every clrcle In the z-nlane corresponds to a circle on the
z-sphere and every straight line to a circle passing throuzh the
north pole. Conversely, every circle on the z-sphere is proiected
into a straight 1line or a circle (in the z-plane), accorcing to
whether 1t passes through the north pole or not.

If -2 straight 1line is regarded as a special kind of circle,
namely, a "circle" through the point at infinity, we may express
the theorem simply: Stereographic nrojection preserves circles.
Proof: Let

(1.34] a(x? + yz) +bx+cy+d=20

be the equation of any circle in the z-plane. To find the image
of this circle, we substitute the transformation formulae [1.31],
.giving

32 ¥
a ;31—1—2 + Db ng +c TéZ +d =0,

(1-%)

Remembering that 52 +’(2 =1 - (2 , we reduce this to
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(1,351 a(1+Z) + bg + c{ + d(1-2) = O,

the equation of a plane, which, together with that of the unit
sphere, determinesa circle. For the straight line case let a
be zero in [1.34]. The corresponding plane [1.35] becomes
bZ + c?L + d(1<%) = 0, which contains the north pole
g =’l = 0, =1, The converse of the theorem is proved similarly,
The mapping defined by stereographic projection is confor-
mal or angle-preserving., By this we mean that the Images on the
sphere of any two intersecting curves have the same angle of
intersection as the original curves. The proof of conformal ity
can be demonstrated analytically. Here we glve a simple geometri-
cal argument.
Let z be the point of intersection of the two curves,
z' the corresponding projection point. It is sufficient to
show that the angle between the tangent plane T at z! with the
projection line Nz!'! z is the same as that made with the equa-
torial plane E. Donote the angle between E and zz! by ¢, T and
zz' by Yy« Now in the dlagram i

Z ~—_
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¢ = ¥ NOS since they are both complementary to the same angle.
But ¥ NOS = y since both subtend the same arc. The theorem
follows from the fact that T and E are mirror images in the plane
P which bisects the angle between themn.

Exercises

5) Show that the segment joining two points Pl and P2 on S
i1s permendicular to the z-plane 1f and only if thelr respective
images 24 and z, are inverse "ith respect to the unit circle

lz| =1, 1.0, if |zll |22| = 1 and 21/22 is real and positive.

6) Show that the endpoints P, and P2 of a dilameter of S are

1
mapped onto two points 2 and Z5 with |2122| = 1 and zl/zz real
and negatilve.

7) Characterize the image on the sphere under stereograpnic pro-
jection of

a) A family of parallel lines
b)j A pehcil of lines
'¢) A set of concentric circles

Also characterize the image in the z-plane of 2 set of
great circles through a fixed point on the z-sphere.

8) Give a geometrical proof of conformality by investigating
the image of the pencil of circles passing through the north pole
and a fixed point P on S.

1.l Point Sets

With the geometrical internretation of complex numbers
in mind we shall consider a numbsr of useful coancepts of point
set theory. .

A set S of points of the complex plane is sald to be bounded
if S can be enclosed in a circle about the origin, i.e., if there
exists a positive number R such that the inequality Izl < R holds
for all points of S.




