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The Homotopy Type of a 4-Manifold

with finite Fundammental Group

by Stefan Bauer*

ABSTRACT: ... is dctermined by its quadratic 2-type, if the 2-Svlow subgroup has
4-periodic cohomology.

The homotopy type of simply connected 4-manifolds is determined by the intersection
form. This is a well-known result of J.H.C. Whitchead and J. Milnor. In the non-simply
connected case the homotopy groups 7, and 7, and the first k-invariant k € H3(m. ;)
give other homotopy invariants. The quadratic 2-type of an oriented closed 4-manifold
is the isometry class of the quadruple [m (M), 7, (M), k(M),v(A)], where (M) denotes
the intersection form on my(M) = H,(M). An isometry of two such quadruples is an
1somorphism of m; and 7, which induces an isometry on 7 and respects the k-invariant.

Recently [H — K] 1. lambleton and M. Kreck, studying the homeomorphism types of
4-manifolds, showed that for groups with periodic cohomology of period 1 the quadratic
2-type determines the homotopy type.

This result can be improved awav from the prime 2.

Theorem: Suppose the 2-Sylow subgroup of G has {-periodic cohomology. Then the
homotopy type of an oriented 4-dimensional Poincaré complex with fundamental group G
1s determined by its quadratic 2-type.

I am indebted to Richard Swan for showing me proposition 6. Furthermore | am
grateful to the department of mathermatics at the University of Chicago for its hospitality
during the last year.

* Supported by the DFG



Let X be an oriented 4-dimensional Poincaré complex with finite fundamental group,
f: X — B its 2-stage Postnikov approximation, determined by 7y, 7, and k, and let y(X)
denote the intersection form on H,(X). Then SFP (B, v(X)) denotes the set of homotopy
types of 4-dimensional Poincaré complexes Y, together with 3-equivalences g : Y — B,
such that / and g induce an isometry of the quadratic 2-types.
The universal cover B is an Eilenberg-MacLane space and hence, by [MacL], H4(B) =
['(my(B)), the Z i (B)-module I'(13(B)) being the module of symmetric 2-tensors, i.e. the
kernel of the map (1 — 7): m3(B) ® m3(B) — m2(B) @ m3(B), (1—=7)(e®b) =a®b—bQa.
The intersection form on X corresponds to f,[X] of the fundamental class [X] € Hq(X;Z).
Let H, denote Tate homology.

Proposition 1: If X" is a Poincaré space with finite fundamental group G, then there
is a bijection Ho(G;m3(.X)) «— SFP(B,vy(X)).

The proof uses a lemmma of [H-K]:

Lemma 2: Let (X, f) and (Y,g) be elements in S¥P(B,y(X)). Then the only
obstruction for the existence of a homotopy equivalence h : X — Y over B is the vanishing

Ofg*[)/’] - f*[‘\'] € fl‘l(B)

Lemma 3: Given a diagram

such that the torsion in the cokernel of « is annihilated by =, then the torsion subgroup
in the pushout K is isomorphic to the torsion subgroup of coker(a).

Proof of 3: Since the torsion subgroup of M maps injectively into K as well as into
coker(a), we may assume it trivial. Then M is isomorphic to N® < z > with (1) = mz
for an integer m dividing n. The pushout then is isomorphic to (N®Z®Z)/ < (0,m,n) >
Me&Z/m. &

Proof of proposition 1: Let (X, f) and (Y, g) be elements in 77 (B) such that f
and g induce an isometry of the quadratic 2-types. Let v(X) = ¥(Y) = 7 denote the inter-

section form on Hy(X) and H,(Y). By [W] one has m3(X) = I(my(X))/{7) = Hy(B, X)



and m3(X) ®zc Z = H4(B, X). In the pushout diagramm:

0 0 0
1 R il
0 — Hy(X)®26Z — Hi(B)®z6Z — Hy(B,X)®z6Z — 0
¢l | 1=
0 — H4( ’) — H4(B) — I[;;(B,.\) — 0
! N ! !
0 —  Hy(X,X) —  HsBB) — 0
! !
0 0

the torsion subgroup of Hy4( B, X) is isomorphic to the torsion subgroup of H4( B) by lemma
3: The module Hy4(B, X) is torsion free. Hence the torsion subgroup of Hy(B, X) ®z¢ Z
is annihilated by the order n of the group G. Note that ¢ is just multiplication by n. In
particular one has

Torsion(Hy(B)) = Torsion(Hy(B, X)) = Ho(G;73(X))

Since X and Y have the same quadratic 2-type, f,[X] = 3.[Y], hence we have
fo[X] = 9.[Y] € Torsion(HyB). This gives an injection

STP(B,v) — Ho(G;ma(X)).

What about surjectivity? Let K C X denote a subspace, where one single orbit 1s deleted.
Let a € m3(K) map via the surjection m3(K) — m3(X) — 73(.X) ®2c Z to a given element
& € Ho(G;m3(X)). Let B be the image of 1 € ZG = Hy(X,K) = 74(X, K) — m3(K).
Now let k : S — K represent o + f and define X, := (K Ui (G x D*))/G. One has
to show that X, is an orientable Poincaré space. Orientability is clear, since Hyq(X4) =
Hy(Xo,K) = Z. Let f : X — B extend f|g/g. The intersection form on X, is
determined by

fat[A\ia] = trf(fa*[A\'a]) S H-ﬂ(‘\z)'

But we have f,.[Xa] = f.[X] + a: In the following diagram 1 € Z = 7,(X, B) is mapped
to ft[ ] € H4(B)

Hy(X) = Hy(X,K/G) —— Hy(X,K) = my(X,K) — m3(K)
fl ! | ! I=
Hy(B) = Hy(BK/G) «—«— HyB,K) = m(BK) = 73K)

If the upper row is replaced by the corresponding row for X, and the vertical maps by
the ones induced by f,, then 1 € ZG is mapped (counterclockwise) to f4.[ X4 on the one
hand, on the other hand (clockwise) to f,[X] + a.

Since the torsion element « lies in the kernel of the transfer, one immediately gets

fa*[‘\a]_f*[\] *



In the sequel all ZG-modules have underlying a {ree abelian group.

The short exact sequence
0= Z -1 D{#gX) ~— w5(X) — 0
gives rise to an exact sequence in Tate homology:
Ho(G;Z) — Ho(G;T(m X)) — Ho(G;m3(X)) — H_1(G;Z) > H_1(G;T(m X))

Here Ho(G;Z) =0 and H_,(G;Z) = Z/| G |.The sequence above gives the connection to
[H-K], theorem(1.1).

In order to analyze this sequence, I recall some facts from [H-K],§§2 and 3.

Facts:

1) INZG)=®,Z[G/H]® F, where the summation is over all subgroups H; of
order 2 and F is a free ZG-module.

2) [N(ZG)=T(I)®ZG=T(I*) ® ZG.Here I denotes the augmentation ideal,
I* its dual.

3) The modules 23Z and S®Z are (stably!) defined by exact sequences

0-WVZ—-F —-F—>F,—-2Z—-0
and

0—>Z—4F1—’F2——*F3—*SSZ—*O
with free modules F;.
There is an exact sequence

0— MZ — 1(XN)DrZG — S°Z — 0

Lemma 4: If0 - A — B — C — 0 is a short exact sequence of ZG-modules, which
are free over Z, then there are short exact sequences
0—-T(A)—T(B)— D —0
and

0-A4A®;,C — D—T(C)—0.

Proof: Given Z-bases {a;}, {¢;} and {a,,¢;} of 4, C and B, the map h:a, ® ¢; —
a; ® ¢ + & ® a; is well-defined and equivariant modulo I'(A). &

To prove the theorem, it suffices to show that Hy(G;m3(X)) = 0. This in turn can be
done separately for each p-Sylow subgroup G, of G.

Proposition 5: The map 7, : H_1(G,;Z) — H_,(G,; I(m3(X))) is injective, if
either p is odd or resgpwz(A') >~ A @ B splits such that the rank of B over Z is odd. In
general the kernel is at most of order 2.



Proof: For the sake of brevity, let 7 denote 7,(X) and also let I' denote the module
I'(r). Now look at the following sequence of maps:

trace

Y:Z T r®7= Hom(n*,7) &= Hom(m ) — Z.
A generator of Z is mapped in Hom(n*,) to the Poincaré map o : m & H2(X) =
Hy(X) = 7, and then to the element id € Hom(m, 7). So we have ¥(1) = rankz(r).

Fact 3) gives rankz(m) = —2 mod | G|, hence the induced selfmap 9. of Z/|G,| =

I‘I_VI(G,,; Z) is multiplication by -2. This proves, that the kernel is at most of order 2. In
particular it is trivial, if p is odd.

In case p = 2 and resgpw ~ A @ B, such that the rank of the underlying group

p.oi”

Z by the map Hom(m, 7) ~—

trace

of B is odd, one can replace the map Hom(m ) —

Hom(B B) "22%¢ 7 in the defining sequence for 9. A similar argument as above for p odd

gives the claim. L

Remark: The module res& m5(X) always splits, if H4(G;Z) = Ezt}(SZ,Q3Z)
has no 2-torsion, in particular if ég has 4-periodic cohomology.

Proposition 6: Let A denote either "Z or S"Z and let 7 be the selfmap of A® A
which permutes the factors. Then (—1)" 7 induces the identity on Ho(G; A ® A).

Proof: Let F. — Z be a free resolution of Z and let F. be the truncated complex with
F,=F,fori<n—1,F, =Q" and F = 0 else. There is an obvious projection f : F. — F
such that f, = d,. The tensor product F.® F. = F.? again is a free resolution of Z and F
is a truncatedfree resolution of Z with FQn =0NZ®NZ. The chain map f ® f induces an
isomorphism of H,(F.?®z5Z) and H.(F. ®zcZ) in the dimensions * < 2n. The selfmap
¢ of F2., as usual defined by t(z ® y) = (—1)%9(=)4es(¥)z @ y, is a chain automorphism,
inducing the identity on the augmentation, hence on all derived functors, in particular on
H.(F?®zc2Z)= H,(G;Z). In the same way an involution ¢ can be defined on 72 and
[ ® [ commutes with . Obviously t3, = (=1)*7. Hence (—1)*7 induces the identity on
Hon(F2, @26 Z) = I15(G; 7).

The proof for S*Z is dual. )

Proof of the theorem: By proposition 1, it suffices to show that Ho(G;ms(X))
vanishes. By proposition 4 and the remark following it, this group is isomorphic to
Ho(G;T(m(X))). In order to show that this group vanishes it suffices, by lemma 3, to show
that Hy(G;A) vanishes for A € {I'(Q*Z),1(5%°Z),Q3Z ® S3Z} But HO(G;Q3Z ® S37) =
Ho(G;Z) = 0. Given a module B (with underlying free abelian group), there is a short
exacl sequence

0—TI(B)— B® B — A*(B) — 0.



The map 7, which flips the both factors, induces, if applied to B € {Q3Z,5%Z} the
following diagram:

— Hi(G;A(B)) — Ho(G;T(B) — Ho(G;B®B) —
1 (=id) o lid L (=id)
— Hi(G;A(B)) — Ho(G;T(B)) — Ho(G;B®B) —

The right vertical map is (—:d) by proposition 5. This diagram shows that any element
in Hy(G;T(B)) is annihilated by 4.In particular this group vanishes, if G is a p-group for
an odd prime p. That Hy(Gy; '(B)) vanishes, if G, has 4-periodic cohomology, follows at
once from the facts 1 - 3, since in this case Q3Z = I* ®nZGand SPZ =71 @ nZG &

Final Remark: An elementary but lengthy computation shows I'(S®Z) & Z /26 Z /2
and T'(2%Z) = 0 for G = Z/29Z /2. In particular the group Ho(Z/20Z/2;T(Q3Z® S°Z))

is nontrivial. Hence the argument above won’t work in general.

REFERENCES
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Rational Cohomology gf

Configuration Spaces of Surfaces

C.-F. Bddigheimer and F.R. Cohen

1. Introduction. The k-th configuration space Ck(M) of a manifold M is

the space of all unordered k-tuples of distinct points in M. In previous
work [BCT] we have determined the rank of H*(Ck(M);E‘) for various
fields IF . However, for even dimensional M the method worked for E‘=E}
only. The following is a report on calzulations of H*(Ck(M);Q) for M

a deleted, orientable surface. This case is of considerable interest
because of its applications to mapping class groups, see [ BCP].

Similar results for (m-1)-connected, deleted 2m-manifolds will appear

in [ BCM].

2. Statement of results, The symmetric group Zk acts freely on the space

ﬁk(M) of all ordered k-tuples (21""’Zk)' ziEM, such that zi_¢z; for
i#3Jj. The orbit space is Ck(M). As in [BCT] we will determine the

rational vector space H*(Ck(M);Q) as part of the cohomology of a much
larger space. Namely, if X is any space with basepoint X we consider

the space

(1) C (M;X) =( Ltk ¥, xk) /g

where (z1,...,zki;x1,...,xk)fs(21,...,zn_1;x1,...,xk_1) if xk:=xo.

The space C is filtered by subspaces

(2) F. C(M;X) =(ﬁ 6’ J(M) XJ\ /N
ko \3=1 850/

and the quotients FkC/F C are denoted by Dk(M;X).

k-1

Let M_ denote a closed, orientable surface of genus g, and Mg is ﬁg

minus a point. We study C(Mg;Szn) for nx1. Y will always stand for



rational cohomology, and P[ ] resp. E[ ] for polynomial resp.

exterior algebras over Q.

Theorem A. There is an isomorphism of vector spaces

* 2n. ~
(3) H C(Mg,S ) = P[v,u1,...,uzg]EH*(E[w;z1,...,zzg],d)
with |v|=2n, lui|=4n+2, |wl=4n+1, Izi|=2n+1, and the differential

d is given by d(w) =2(z122 + ... +22g-122g)'

Giving the generators weights, wght (v) = wght(zi) =1 and wght(ui)
=wght (w) = 2, makes H'C into a filtered vector space. We denote this

H*C. The length filtration F, C of C defines a

weight filtration by F Kk

k

second filtration H*ch of H*C.

Theorem B. As vector spaces

sZn).

4 * m s" *

(4) H FkC( g ) =F H C(Mg,
It follows that H*Dk(Mg;Szn) is isomorphic to the vector subspace

of H*(g,n) =P[v,ui] EH*(E[w,zi],d) spanned by all monomials of weight

exactly k. To obtain the cohomology of Ck(Mg) itself, we consider the

vector bundle

k ~k k k
(5) ql s IS (Mg)ka{ C (Mg)+

which has the following properties. First, the Thom space of m times-
Wﬁ is homomorphic to Dk(Mg;Sm). Secondly, it has finite even order,

see [ CCKN]. Hence

S2nk k

(6) Dk(Mg; ) =X e (Mg)

for 2nk==ord(7f). Thus we have



Theorem C. As a vector space, H*Ck(Mq) is isomorphic to the vector

subspace generated by all monomials of weight k in H*(g,nk),

desuspended 2n k times.

k

Regarding the homology of E:=E[w,z1,...,zig] we have

Theorem D. The homology H*(E,d) is as follows:

(7) rank H

29 _(2g

i(2n+1)=( i/ \i-2) for i=0,1,...9, and all (non-zero)

elements have weight i;

(8) rank Hy (on11)44n+T

()

\i+2> for i =g,...,29, and all

(non-zero) elements have weight i+2;

(9) rank Hj =0 in all other degrees j.
Note the apparent duality rank Hj =rank HN—j for N=2g(2n+1)+4n+1.

We will give the proof of Theorem A in the next section. The proof
of Theorem B is the same as for [ BCT, Thm.B]. By what we said above

Theorem C folows from Theorem B. And Theorem D will be derived in the

last section.

3. Mapping spaces and fibrations. Let D denote an embedded disc in M_.

There is a commutative diagram

(10) €(D:s?Py —  sgig2nt2
e 358%P) e smap (i ;520%2
i 1o 9
C(Mg,D;Szn) ____*___>(952n+2)2g

where map stands for based maps. The right column is induced by
restricting to the 1-section, and is a fibration. The left column is

a quasifibration. Since S2n is connected, all three horizontal maps



10

are equivalences, see [M], [B] for details.

The E,-term of the Serre spectral sequence of these (quasi)fibrations

2

is as follows. From the base we have 2g-fold tensor product of

(11) H*as®™2 = n* (52" kas™) E 2 1 mPlu) (1=1,...29),
where Izil = 2n+1 and luil =4n+2. From the fibre we have
(12) H*9252n+2 =H*(Qszn+1x st4n+3) :H*(Qszn+1){s4n+1)
=P[v]lmElWw] ,
where |v| =2n and |wl| =4n+1. The following determines all differentials
in this spectral sequence.
Lemma. The differentials are as follows:
(13) d2n+1(v) =0
(14) d4n+2(w) =221z2 +22223 H wwe +222g—122g

Proof: Assertion (13) follows from the stable splitting of C(Mg;Szn),

on [B]. (14) results from symmetries of Mg and of the fibrations (10)

which leave d invariant. =

The lemma implies E Szn). Furthermore, is

4n+3 - Egn+3

a tensor product of the polynomial algebra P[v,u1, e uzg] and the

]

*
E =H C(M_;
et g

homology module H*(E,d) of the exterior algebra E==E[w,z1, ...,zzg

with differential d. This proves Theorem A.

4. Homology of E, Let us write X, =2 and vy, =2 for i=1,...9.

2i-1

The form d(w)==221z2 +222z3 ¥ 5w +222g,z2g

standard symplectic form XY, +x2y2-+... +ngg' The vector space

2i

is equivalent to the




