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Preface

Prior to its founding in 1963, the Research Institute for Mathematical
Sciences (to which we are gratefully indebted for support) was the focus
of divers discussions concerning goals. One of the more modest goals was
to set up an institution that would create a “Courant-Hilbert” for a new
age.' Indeed, our intention here—even though this book is small in scale
and only the opening chapter of our utopian “Treatise of Analysis”—is
to write just such a “Courant-Hilbert” for the new generation. Each re-
searcher in this field may have his own definition of “algebraic analysis,”
a term included in the title of this book. On the other hand, algebraic
analysts may well share a common attitude toward the study of analysis:
the essential use of algebraic methods such as cohomology theory. This
characterization is, of course, too vague: one can observe such common
trends whenever analysis has made serious reformations. Professor K.
Oka, for example, once spoke of the “victory of abstract algebra” in
regard to his theory of ideals of undetermined domains.> Furthermore,
even Leibniz’s main interest, in the early days of analysis, seems to have
been in the algebraization of infinitesimal calculus. As used in the title of
our book, however, “algebraic analysis” has a more special meaning, after
Professor M. Sato: it is that analysis which holds onto substance and
survives the shifts of fashion in the field of analysis, as Euler’s mathe-
matics, for example, has done. In this book, as the most fruitful result of our
philosophy, we pay particular attention to the microlocal theory of linear
partial differential equations, i.e. the new thinking on the local analysis
on contangent bundles. We hope that the fundamental ideas that appear
in this book will in the near future become the conventional wisdom

! R. Courant and D. Hilbert, Methods of Mathematical Physics, vols. 1 and 2
(Interscience, 1953 and 1962). These two volumes seem to reflect the strong in-
fluence of the Courant Institute; the countervailing influence must be strong as well.
2 Quoted by Professor Y. Akizuki in Siigaku 12 (1960), 159. A general theory of
ideals of undetermined domains has been reorganized by H. Cartan and Serre and
is now called the theory of coherent sheaves (see Hitotumatu [1]).

vii



viii PREFACE

among analysts and theoretical physicists, just as the Courant-Hilbert
treatise did. '

Despite our initial determination and sense of purpose, the task of writ-
ing was a heavy burden for us. It has been a time-consuming project,
while our first priority has been to be at the front of the daily rapid
progress in this field. Thus, we cannot deny the existence of minor areas
that do not yet meet with our full satisfaction. Still, a proverb says, “Striv-
ing for the best is an enemy of the good.” We are content, then, to publish
our book in this form, hoping that the intelligent reader will benefit despite
several defects, and expecting that this will become the first part of our
“Treatise of Analysis.” We would also like to emphasize that our com-
parison of this book with “Courant-Hilbert” is only a goal, and that we
do not pretend to equate the maturity of this book with that of Courant
and Hilbert’s. Theirs is the crystallization of the great scholar Courant’s
extended effort. Therefore, we would appreciate hearing the critical
reader’s opinions on the' content of this book, for the purpose of
improvement. .

Let us turn to the content of each chapter. In Chapter 1, §1, a review
of cohomology theory is given, with which we define the sheaf of hyper-
functions. Since students of analysis nowadays seem to be given little
opportunity to learn cohomology theory, despite its importance, we have
prepared a rather comprehensive treatment of sheaf cohomology theory
as an introduction to notions and notations used in later chapters. One
may skip this material if it is familiar. The main purpose of Chapter I,
§2, is to present the mathematical formulation, via the Cech cohomology
group, of the idea that “hyperfunctions are boundary values of holomor-
_ phic functions.” The reader can then obtain the explicit description of a
- hyperfunction by combining this with the results in §3 of Chapter II.

In Chapter II, §1, the sheaf of microfunctions is constructed on a
cotangent bundle, by which the stage for our main theme, microlocal
analysis, is established. After some preparation of the theory of holomor-
phic functions of several complex variables, in §2, the properties of micro-
functions will be studied in detail in §3. Furthermore, in §4, specific
examples will be treated. [

In §1 and §2 of Chapter III, where we basically followed Sato, Kawai,
and Kashiwara [ 1] (hereafter SKK [1]), fundamental operations on micro-
functions are discussed. However, the approach taken in SKK [1] may
not be suited to the novice; hence the method of description has been
changed. There it was necessary to prove a certain lemma {Proposition
- 3.1.1) directly, which is technical and intricate and could be tiresome for
the reader. Because of the introductory nature of this boek, therefore, we
decided to treat this lemma as an “axiom,” so to speak, and to proceed’
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to what follows from it. In §4 through §6, elliptic and hyperbolic differ-
ential equations are treated explicitly to show how effectively microfunc-
tion theory applies to the theory of linear partial differential equations.
These three sections also serve as preparation for the theory of micro-
differential equations considered in Chapter IV. Prior to these three
sections, we discuss (in §3) the analyticity of Feynman integrals. This sec-
tion has a somewhat different flavor than other sections; it is intended as
an invitation to a new trend in mathematical physics: namely, the study -
of theoretical physics through methods of algebraic analysis. We also
thought that it might be a good exercise to go through the operations
on microfunctions. In §7, we prove the flabbiness of the microfunction
sheaf; and, in §8, a hyperfunction containing holomorphic parameters is
discussed. The last two sections are intended to take into account some
important properties of microfunctions not covered by the previous .
sections.

In Chapter IV, we discuss the theory of microdifferential equations, the
most effective application of microfunction theory. In §1, we define a
microdifferential operator, and the fundamental properties are given.
“Qauntized contact transformations” of microdifferential operators are
treated in §2. A quantized contact transformation is an extremely im-
portant notion, one that revolutionized the theory of linear differential
equations. The reader may be astonished to see how easily one.can ob-
tain profound results with the structures of solutions of linear (micro)-
differential equations by combining microfunction theory with the theory
of quantized contact transformations. This point should be considered as
the quintessence of microlocal analysis. As in Chapter III, we proceed in
Chapter 1V in a manner accesible to the reader rather than in the most
logical order, which may be less accessible. For example, in §1 we chose
the plane-wave decomposition of the d-function as a starting point for
the introduction of microdifferential operators, and in §2 we restricted
our discussion to those contact transformations which have generating
functions. We decided not to present our more “algebro-analytic” treat-
ments of the above topics until we write a treatise on microdifferential
equations centered around the theory of holonomic systems. Likewise, 30
that the essence of the theory might be plain to the reader, we did not
aim at full generality in §3.

As we close this preface, we would like to express cer most sincere
gratitude to our teacher Professor Mikio Sato, who indeed peovided al-
most all the essential ideas this book contains. We hope that this book -
will succeed in imparting the emanation of Professor Sato’s throbbing
mathematics. It is quite fortunate that authors Kashiwara and Kawai,
just at the point when they were choosing their specialities, were able to



X PREFACE

attend Professor Hikosaburo Komatsu’s introductory lectures in hyper-
function theory.? This book might be thought of as a report to Professor
Komatsu ten years later. Furthermore, activity centered around Professor
Sato and the authors’ works has received warm encouragement and
support from Professors Kosaku Yosida and Yasuo Akizuki. Two grad-
uate students at Kyoto University, Mr. Kimio Ueno and Mr. Akiyoshi
Yonemura, have read our manuscript and have given beneficial advice.
Mr. Yonemura and a graduate student at Sophia University, Mr.
Masatoshi Noumi, helped us read the proofs; we would like to take this
opportunity to offer our sincere thanks. During the preparation of this
book, one or another of us was affiliated with the Research Institute for
Mathematical Sciences, Kyoto University; the Department of Mathe-
matics, Nagoya University; the Miller Institute for Basic Research in
Science, University of California—Berkeley; the Mathematics Department,
Harvard University; the Institute for Advanced Study, Princeton; the
Department of Mathematics, Université Paris—Nord; and the Department
of Mathematics, Massachusetts Institute of Technology. We thank these
institutions and their members for their hospitality during our stay. Last,
but not least, we would like to express our profound gratitude to Professor
Seizo Itd, who not only gave us the opportunity to write this book, but
also kept us from proceeding too slowly. We would again like to apologize
to Professor 1t6 for our delay. Without his warm encouragement, in fact,
it is doubtful that this book could ever have been published.

August of the coming-of-age year [1978] of hyperfunction theory*

% The Authors

3 Sato’s Hyperfunction Theory and Linear Partial Differential Equations with Con-
stant Coefficients, Seminar Notes 22 (University of Tokyo). At the time (1968), the
above lecture note was at the highest level in the, field, rather than at the intro-

ductory level. gy
41t was in 1958 that Professor Sato published his outline of hyperfunction theory.
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CHAPTER I

: H)/perfunctions

§1. Sheaf Theory

Recall some of the basic concepts from sheaf theory.

Definition 1.1.1. A presheaf F over a topological space X associates with
each open set U of X an abelian group F(U), such that there exists an
~ abelian group homomorphism py.u:FU) —» F(V)for open sets U > V with
the following axioms:

(1) py.y = idy (= the identity map on #(U))
(2) For V; c V, < Vj, open sets of X, we have

pV],Vz 9 sz,Vg 3 le,Vg‘

The homomorphism py y, is called the restriction map, and for se F )
Pv.u(s) is often denoted by s, .

Definition 1.1.2. Let # be a presheaf over X. The stalk of the presheaf
F at x € X is defined as F, = lim #(U), where limdenotes the inductive

xeU
limit, where an equivalence relation “~" on \J Z(U) is defined as follows:

xeU
S1 ~ 8y, for s, € F(U) and s, € F(V), if and only if there exists a sufficiently
small open set W < U N V such that |y = s,|y. Therefore a canonical
map is induced: F(U) —» Z, for x € U. The image of s € #(U) under the
canonical map is denoted by s,. Hence we have (s,), = (s,), if and only if
there exists an open set V such that x € V < U and such that Sily = 52|y

Definition 1.1.3. A presheaf # over X is said to be a sheaf if the following
axioms are satisfied: it is given an open covering {U};.; of U in X,
U= U ’
iel
(@) Let se #(U). If s|y, =0 for each i€, then s = 0.
(b) Suppose that for each i€l there exists s;e #(U) such that
Silvinu, = Siluinu, for i,j € 1. Then there exists s e #(U) such that
Sly, = s; for each i€ I.
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Definition 1.1.4. Suppose that # and ¥ are presheaves. Then [:F — & is
said to be a morphism if for each open set U the morphism f(U):#(U) —
G(U) is an abelian group homomorphism and if open sets U and V are given
such that U > V, then the following diagram commutes.

#U) L2 g

PV, U PV,U
Fv) L 9(v)
Hence there is induced a homomorphism on each stalk, f,: %, - 9,.

Definition 1.1.5. Let . be a presheaf over X. A sheaf F' is said to be the
sheaf associated to the presheaf F (or F' is the sheafication of ¥, or F'
is the induced sheaf from the presheaf F) if for each open set U of
X the presheaf F'(U) (which is actually a sheaf) associates all the maps:
U= |J #, such for each X e U there exists a neighborhood U’ of x

xeU
and s € F(U') such that s(x') = s’y is true for any x5 U
For a given morphism from a presheaf & into a sheaf % there is induced
a unique morphism from ¥’ into 9. Note that ¥ and F' are isomorphic
on each stalk.

Definition 1.1.6. Let #', &, and F" be sheaves over a topological space
X. A sequence &' L # L #7 issaid to be exact if 7, o Z. o o &
is an exact sequence, i.e. Ker f, = Im f7, at each x € X.

Let F and % be sheaves over X, and let f:# — % be a morphism. Then
the presheaf assignment of U, an open subset, to Ker(#(U) 19, gwy)
isa sheaf , denoted by Ker(f). One also has the presheaf Coker(¥(U) LR
%(U)) = 9(U)/Im f(U). This presheaf is not a sheaf in general. The sheaf
associated to this presheaf is denoted by Coker(f). Then, by definition, we
~ have the exact sequence of sheaves

0 — Ker(f) » # 5 @ - Coker(f) - 0.

In the cuse where Ker(f) = 0, we often write 4/ instead of Coker(f)
by identifying & with Im f.

Definition 1.1.7. Let X and Y be topological spaces, and let j:X — Y be
a continuous map. For a sheaf & over X the presheaf assignment of an
open subset U of Y to F(f ~YU)) is a sheaf over Y. This sheaf is called
the direct image of % under the continuous map f, denoted by f,(F). For a

sheaf 4 on Y there can be defined the presheaf lim %(V) for an open set
V> f(U)

U of X. Generally this presheaf is not a sheaf. The associated sheaf is
called the inverse image of % under f, denoted by f ~Y(%). Suppose that S
is an arbitrary subset of X, and let j5:S — X be the imbedding map. Then
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the inverse image js (%) of the sheaf F is called the resttiction of F to
S, and we often denote it by Fs.

If 4 is a sheaf over Y, then there exists a natural morphism ¥ —
f(f ~1(%)). Notice that (f ~'9), = ¥, and that giving a morphism ¥ —
fF for a sheaf # over X is equivalent to giving a morphism 9 ->Z

Definition 1.1.8. Let # be a sheaf over a topological space X, and let U
be an open subset of X. The subset {x € Ul|s, # 0} for s € F(U) is called
the support of s, denoted by supp(s). Note that supp(s) is closed in U.

Definition 1.1.9. Let % be a sheaf over a topological space X, and let S
be a locally closed subset of X; i.e. it is the intersection of an open set and
a closed set in X. Then define Ty(X, F) = {s € #(U)|supp(s) = S}, where
U is an open set in X such that S is closed in U.

The definition above is independent of the choice of U.

Proof. Let U, and U, be such open sets; then U, n U, contains S as a
closed subset. Therefore one can assume that S ¢ U; < U, < X and that
S is closed in U, and U,. Define a map ¢ from {s € #(U,)|supp(s) = S}
to {s € #(U)|supp(s) = S} by ¢(s) = sly,- Then ¢ is bijective. Therefore
I's(X, #) is independent of the choice of U.

In the case that S = X, we denote ['y(X, #) with I'(X, %), whose ele-
ments are called the global sections of #, i.e. I'(X, #) = #(X). Generally
we also denote Z (U) with I'(U, &) for an open set U in X, whose elements
are called the sections of & over U.

Definition 1.1.10. Let & be a sheaf over a topological space X, and let S
be a locally closed subset of X. We denote the sheaf associated to a presheaf
Fs ilU, #) = {s € Z(U)|supp(s) = S n U}, for an open set U of X, by
- C(F). ;

Definition 1.1.11. 4 sheaf # over a topological space X is said to be flabby
if for an arbitrary open set U the homomorphism py x:F(X) = F(U) is an
epimorphism. Therefore, for a flabby sheaf # any section of F over U can be
.extended to a section over X. i

Proposition 1.1.1. Let & be a flabby sheaf over a topological space X ,.and
let S be a locally closed subset of X. Then I's(¥) is a flabby sheaf.

Proof. Let U, be an open set such that S is closed in U,. Then, for any
open set U of X, the set Uy n U is apen in X and contains S n U as a
closed set. Let s be an element of I's(#)U) = I's (U, F); then se€
F (U, n U) and stupp(s) =8 n U. Therefore we have S|, -s)nwinv) = 0.
Then there exists a unique s € F((U; —S) v (U; n U)) such that
S, -5 =0 and s|y,~y = s. Since the sheaf # is flabby, s’ can be ex-
tended to a section §e F(U,). Then we have §|y,-s5 =0. Hence
supp(d) < §, ie. §e (X, #) = I'g(F)X).
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Proposition 1.1.2. Let #', #, and #" be sheaves over a topological space
X, let U be an open set, and let S be a locally closed set in X.

M If0—->F' 2L # L F is an exact sequence of sheaves, then
(@) 0 » #'U) L% #U) L% #(U) and
(ii) 0 » I'yX, F) - T(X, F) - I's(X, ") are exact.
2 1fo->F' Ly & L # 5 0is an exact sequence of sheaves, and if F'
is a flabby sheaf, then
@) 0 » #(U) L2 ) L2 #7(U) > 0 and
(ii) 0 » I'(X, F) » T'(X, F) - I's(X, F) > 0 are exact.

Proof. (1.i) First we will show that f'(U) is a monomorphism. Suppose
that f'(U)s' = 0 for s’ € #'(U). Then f's, = 0 for each x in U. Therefore
s, = 0; i.e. there exists a neighborhood V(x) of x such that s}y, = 0. By
the definition of a sheaf, we know that s’ = 0. Therefore f'(U) is mono-
morphic. Next we will prove that Im f(U) = Ker f(U). Since (f; © f7)s. =
0 for s' € #(U), for each x one can find a neighborhood ¥(x) of x such
that f(U)f'(U)s|yy = 0. Therefore, since #” is a sheaf we have
f(U)f'(U)s' = 0. It remains to be proved that Im f(U) = Ker f(U). Let
s € #(U) such that f(U)s = 0. Then, for each x € U, s, = 0 holds. By the
exactness there exists s, €% such that f,s, =s,. This implies that
f/(V(%))s'(x) = s|y for some s'(x) € #(V(x)) in some neighborhood V(x)
of x such that V(x) < U. Since f'(V(x)) is a monomorphism, s'(x) is unique.
Therefore we have s'(X)|ywnve) = S(Mvave- BY the sheaf axiom, we
have s’ € #'(U) and s'}y,) = 5(x). Then f'(U)s' = s.

Next we will give a proof of (1.ii). Let U be an open set in X such
that S is closed in U. It is to be shown that supp(s’) < S for the s/, as in
the above, provided that supp(s) =S for an se #(U). Note that
U = 8)5|-s = sku-s =0 and that f(U —§) is a monomorphism.
Therefore 5|y -5, = 0, i.e. supp(s’) < S.

It suffices to show that f(U) is an epimorphism to prove (2.i). Let
s" € F"(U), and let A = {(s, V)|V is an open subset of U, s € #(V) and
f(V)s = s"|y}. Then define an order relation, denoted with >, in # as
follows: let (s,, ¥;) and (s,, V) be elements of .. The expression
(s, V1) > (55, V,) holds if and only if ¥; > V, and s, |y, = s,. Then # is a
non-empty, inductively ordered set. Therefore there exists a maximal ele-
ment in .# by Zorn’s lemma. Let (s, V) be a maximal element. V = U is left
to be proved. Suppose V # U, and let xeU — V. Then there exists a
neighborhood V(x) and s(x)e #(V(x)) such that (s(x), V(x)) e 4. Then
notice that f(V n V(x))(s — 5(x))|y v = 0. One can then finds'e Z'(V n
V(x)) such that f'(V n V(x))s' = (s = s(X))|y~r(x bY (Li). The flabbiness
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of #' implies that there exists §'e #'(V(x)) such that § IVnV(x, =y
Define §e #(V U V(x)) as §ly =s and §y, = s(x) + f'(V(x))§". Then
(5, V U V(x)) € #, which contradicts the maximality of (s, V) in . There-
fore V = U, that is, f(U) is an epimorphism. (2.ii) can be proved similarly.
Let A’ = {(s, U)|s € Ts,y(U, &), U is an open set such that f(U)s = |, }.
Then take a maximal element of .#’ to be (s, V') satisfying that (s, V) >
(0, X — supp(s")).

Remark. Conversely, if 0 » #'(U) » ZF(U) » F"(U)(—0) is exact for
any open set U, then it is plain that 0 - #' - F — F'(—0) is exact.

Corollary 1. Let 0 » &' L 7L F7 -0 be an exact sequence of

sheaves.
1) If' F' and & are flabby sheaves, then F"' is a flabby sheaf.
(2) If #' and F" are flabby sheaves, then & is a flabby sheaf.

Proof. Since #' is a flabby sheaf, we have the commutative diagram

0 — L0 o0 g xy — 0
PuU.Xx pU.X PU.X

0 — #F(U) LD #(U) L2 F7(U) — 0

with exact rows, where U'is any open set in X. To prove (1), first notice
that py x is an epimorphism since # is flabby. On the other hand, f(U) is
an epimorphism. Therefore, for any s” € #"(U), there exists an s € #(X)
such that §” = f(U)py x(s) = py.x(f(X)s). This implies that Pyx 18 an
epimorphism;i.e. #" is a flabby sheaf. Next we will prove (2). Let s € #(U).
Since py x and f(X) are both epimorphisms, one can find §e Z(X)
such that py x f(X)§ = f(U)s. By commutativity we have pj yf(X)§ =
S(U)py xS Therefore S(U)s = py,x$) = 0. Then note that pj, x is an
eplmorphlsm Hence there exists §'e #'(X) such that s— py 4§=

S(O)pyx8" =puxf(X)§'. Thatis, s = py x(§ + f (X)3"), showing that py x
is an epimorphism, Therefore & is a flabby sheaf.

Corollary 2. Suppose that 0 > F° > F' - - 5 F" 59 >0 is an
exact sequence of sheaves and that each F',i = 0,1, ..., r, is a flabby sheaf .
Then & is a flabby sheaf, and the following sequences are exact:

0-TyX, FO > TyX,FHY-> - > I'gdX, 7)) > Ty(X, %) >0
and
0 - F%) » FYU) =S FNU) > YU -0,

where S is a locaily closed subset of X, and where U is an open subset of X.



