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IN MEMORIAM

Tomas$ Havranek died on May 17, 1991, at age 43. The following is the translation of
Dr. Hajek’s speech at his funeral.

Parting from Professor Toma$ Havranek makes us extremely sad. Paraphrasing
David from the Old Testament: “I grieve over you, my brother Tomds.” We knew
that he felt sick, but the end was so abrupt that the message about his death was
shocking for all who knew him.

Tomas’s father was world renown linguist Bohuslav Havranek and his parents
influenced him considerably. He did not continue the work of his father, instead he
became a mathematical statistician. He was one of the last students of the famous
professor Jaroslav Hajek, of whom he tragically reminds us: both died untimely. But
Toma$ by far was not only a statistician. His tendency toward interdisciplinary
thinking manifested itself while he was a student. He wrote his masters thesis about
probabilistic automata, a topic on the borderline of probability theory, mathematical
logic, and computer science.

He spent his whole academic career in the Czechoslovak Academy of Sciences;
from 1970 to 1984 in the Center of Biomathematics of the Physiological Institute and
from 1985 on in the Institute of Computer Science. Both institutions changed their
names during the time, but this is unimportant. What is important is that Tomas
influenced them both greatly and was finally elected director of the latter.

Let me say some words about his scientific work. He had a remarkable ability of
broad and at the same time deep inquiry and interest in finding relations among
seemingly disparate parts of mathematics. In particular his interests were probability
theory and mathematical statistics, mathematical logic, computability theory, graph
theory, and mathematical foundations of artificial intelligence. Havrdnek was the
main pioneer of computational statistics in Czechoslovakia.

His interest was not confined to strictly mathematical problems, hlS sense of
concrete applications was extremely deep. At his first place of employment he was in
constant contact with physicians and became an expert in biomathematics. He liked
to say that he fingered many sets of data, meaning that he completed their thorough
analysis. He was never a routine practitioner and his work with data led him to
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problems of inference and deduction, thus to logical questions, questions of hypothe-
sis generation and generation of probabilistic models. He published his papers in
such recognized journals as Biometrics, Biometrika, Journal of American Statistical
Association, International Journal for Man-Machine Studies, Synthese, and Theory and
Decision. He wrote four books, some of them alone, some with co-authors. Writing
books with Toma$ was an adventure, a toil, and a pleasure.

Havranek paid much attention to the organization of big and small seminars and
conferences. For decades he was a person of prominence regarding our seminar of
applied mathematical logic and all activities related to it, notably the GUHA-circle.
He became one of the leading personalities of COMPSTAT conferences. He was a
member of the organizing committee of five COMPSTATSs and on the last COMP-
STAT he was an invited speaker. Furthermore, he was a member of the Bernoulli
Society and the International Association for Statistical Computing, repeatedly he
was one of their officers.

He liked teaching students and others, e.g. physicians. In the time after the velvet
revolution he had several important functions and it is admirable that he was still
able to continue his scientific work.

Let me now say a few words about why I liked him, as so many other people did.
He was extremely reliable and kind-hearted. He impresssed everyone by his broad
knowledge. He was a very good husband, father, and friend. The sudden death of the
man so near to us, the man about whom we were sure was at the pinnacle of his
strength, may lead us to contemplate temporal and eternal values. The heavier the
loss of Toma$ Havranek is, the more we should be grateful for the way he enriched
and unforgettably influenced our lives.



PREFACE

The importance of reasoning under uncertainty for expert systems has been stressed
since the beginnings of knowledge engineering (Feigenbaum, 1977; Buchanan, 1982).
Two early approaches turned out to be very influential: that of MYCIN (Shortliffe,
1976; Buchanan and Shortliffe, 1984) and that of PROSPECTOR (Duda et al., 1976;
Duda et al., 1978). Even if their motivations were different (MYCIN’s formalism was
presented as nonprobabilistic whereas PROSPECTOR’s formalism had probabilistic
—or at least pseudoprobabilistic—foundations) the machinery of both systems is
rather similar and isomorphic in a certain sense. Both systems are rule based, that is,
their knowledge consists of rules of the form “if (assumption) then (conclusion) with
some degree of belief (weight),” and compositional, that is, (roughly), they combine
effects of particular rules using a binary combining function to compute their joint
effect. Rule-based compositional systems have become extremely popular and in fact
most expert system shells still deal with uncertainty in this (rule-based, compositional)
way.

On the other hand, it soon turned out that the compositional approach suffers
from inherent inadequacies. This becomes clear if one tries to interpret it probabilis-
tically, without simple-minded and unjustified assumptions. (In short, probability is
not compositional.) This brings us to one of the central questions of this book. What
is the real meaning of probability theory for expert systems?

It is interesting to note that the attitude of the AT community toward probability
theory has changed. As Shafer remarks (Shafer, 1987b), in the early stages of
development, symbolic manipulations were stressed as typical for Al programs, in
contrast to “number crunching” and since probabilities are real numbers it was easy
to classify probabilistic computations as number crunching. Later the focus of
attention shifted to knowledge processing; clearly, knowledge can be both numerical
as well as nonnumerical. This shift, together with the invention of local probabilistic
computations (Pearl, 1982, 1988; Perez, 1983; Perez and J irousek, 1985; Lauritzen and
Spiegelhalter, 1988), made the advent of purely probabilistic systems possible. Local
computations mean the following: in spite of the fact that a probabilistic description
of a large system of variates (propositions, etc.) is given, in general employing an
unbearable amount of numbers, the knowledge of some dependence structure allows
us to represent probability in a comprehensible way and to compute probabilities
concerning some few variates locally, that is, from the part of the representations
concerning not too many other variates. It is remarkable that graph theory can be
utilized in a nontrivial and elegant manner to make this precise.

We present here three different techniques for probabilistic expert systems:
Lauritzen and Spiegelhalter’s method of local computations, Shachter’s method of
influential diagrams, and Perez’s method based on the notion of simplification of the
dependence structure. This gives a partial answer to the above question on the role of
probability for expert systems: probabilistic systems are possible, that is, theoretically
well founded and computationally feasible. This is not the whole answer; we may still
ask if alternative approaches to uncertainty are relevant for expert systems and what
their relation is to probability. This book investigates two candidates: first, we analyze
the “old-fashioned” rule-based compositional systems, elucidate their structure, and
determine that the methods of local computations can be used to exhibit a tricky use
of compositional rule-based systems guaranteeing probabilistic consistency at least

vii



viii Preface

partially and in a weak sense. Second, we introduce the reader to the beginnings of
Dempster-Shafer theory and its relation to probabilistic systems (and local computa-
tions) as well as to compositional systems. Methods of fuzzy and possibilistic logic are
not discussed; the reader may consult, e.g., Dubois and Prade (1991) for detailed
information. We also call the reader’s attention to extremely interesting work by Paris
and Vencovska (1987, 1989a—c, 1990) concerning alternative approaches to a calculus
of beliefs, reasons for maximal entropy and questions of computational complexity.

Three books are related to ours: those by Pearl (1988a), Neapolitano (1990), and
Weichselberger and P6hlmann (1990).* They all concentrate on the use of probability
theory in expert systems; the first two present, in addition, the method of Lauritzen
and Spiegelhalter. While these books discuss several topics not covered in the present
book (let us mention, e.g., axiomatization of various notions of independence [Pearl,
1988)), the following are specific to ours: (1) a detailed investigation of the problem of
approximation of an unknown probability distribution (as opposed to Shachter’s and
Lauritzen-Spiegelhalter’s framework, in which the joint probability is assumed to be
fully known, i.e., Perez’s approach), and (2) detailed reconsiderations of composi-
tional systems and their algebraic and probabilistic analysis (the algebraic analysis is
by Héjek and Valdes, the probabilistic by Hajek). The latter should contribute to an
unprejudiced evaluation of them. We shall develop a method of “guarded use” of a
certain kind of compositional system and criticize the “nihilistic’ treatment of
compositional systems presented by Weichselberger and Péhlmann (1990). Further
related books appeared or reached us while the book was in print: Lopez de
Mantaras (1990), Kruse, Schwecke, and Heimsohn (1991), Smets, Mamdani, Dubois,
and Prade (eds., 1988, collection of papers), and Kruse and Siegel (eds., 1991,
proceedings). All of them are recommended to the reader; but let us note that our
specific topics are not treated in detail in any of them.

The reader is expected to be able to follow a mathematical text; no specific
knowledge is assumed, but some acquaintaince with probability theory, graph theory,
mathematical logic (propositional calculus), and group theory (or at least of some
domains from this list) would be helpful. We hope that the book will be useful for
expert system developers, theorists, and possibly also users; as well as for researchers
interested in the relationship between inference, probability, and logic. The material
presented in this book was the subject of a one-week intensive course organized by
the Czechoslovak Technical Society in Alfovice, Czechoslovakia, in September 1988.

*  Due to the courtesy of Professor Pearl, his book was at our disposal immediately after it appeared; the
other two books are more recent and came into our hands only after detailed plans for the present book
were finished.
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PRELIMINARIES: BASIC MATHEMATICAL NOTIONS

In this section we present some important mathematical notions used throughout the
book. Notions of particular importance are those of a variate and of an array. They
help us to present logical and probabilistic notions in a unified manner.

1. VARIATES AND ARRAYS

A variate X consists of a name N and a frame. A name can be symbolic (p, g,
p — g, etc.) or verbal (color, temperature, etc.); a frame is a set, thought of as a set
of possible values (of a variate). In this book we shall use almost exclusively finite
frames.

Examples of variates are as follows:

Sex Temperature Color Smoker r
Male Low Red Yes Yes
Female Medium Blue No No

High White

Variates with such frames as {yes,no}, {TRUE, FALSE}, or {1,0} are called
Boolean variates (more precisely, one-dimensional Boolean variates; see below). The
two values in question are called truth values; the two-element set of truth values is
called the one-dimensional Boolean frame.

Let I be a finite set and let (X,);.; be a system of variates with pairwise disjoint
names: X; = (N, V), N, # N; for i #j. We associate with (X,);., a new variate
X = F((X,),< ), the name of which is the system (N,), ., of names and the frame of
which is the cartesian product V = I1;_,V;, that is, the set of all tuples (v;);<; in
which v; € ¥, for each i. The system (X;);, of variates together with the corre-
sponding variate F((X,);c,) is called the field of variates given by (X,);o,; it is
denoted (X,), ., if there is no danger of misunderstanding. For example, if I = {1,2}
and X,, X, are the first two variates listed above, then (X;, X,) is the field

Sex Temperature
Male Low
Male Medium
Male High
Female Low
Female ‘Medium
Female High

If / has n elements, we say that (X,),., is an n-dimensional field. If all X, are
Boolean (one-dimensional) variates then (X)), ., is an n-dimensional Boolean field;
its frame consists of all n-tuples of truth values (the Boolean n-dimensional frame).

Let V' be a frame; an array on V is just a mapping, the domain of which is V. An
array A maps V into some set, for example, into real numbers, integers, into a frame,
and so on. If the domain of A is the Boolean n-dimensional frame (n = 1,2,...) and
its range is included in {0,1} then it is called a Boolean array. An example of a

1



2 Uncertain Information Processing in Expert Systems

two-dimensional Boolean arrays is as follows:

11 0
10 1
01 1
00 0

It is defined on the set of all pairs of 0’s and 1’s and its value for a pair (u, v) is 1 if
and only if (iff) the pair contains exactly one 1 and exactly one 0.]

2. PROPOSITIONAL CALCULUS

Let X,,..., X, be n Boolean variates with names p,,..., p,, respectively. In this
section, p,,..., p, will be called atomic formulas (atoms) or propositional variables
( propositions). We can construct other formulas (names of Boolean variates) using
logical connectives: negation (-, unary), conjunction (&, binary), disjunction (v,
binary), implication (— , binary), and possibly others. “Unary” means that the
connective is applied to one formula; “binary” means it is applied to two.

The inductive definition of a formula reads as follows.

1. Each propositional variable is a formula.
2. If ® and ¥ are formulas, then so are = ®, (® & ), (® Vv ¥), and (& — V).

3. Each formula results from a set of propositional variables by finitely many
applications of the formulas in part 2.

Examples of formulas are as follows.
P, P (P& =py), Py (P& -py) V),

Py (((p1& 2 p3) V p3) = py),

and so on. Outermost parentheses are often deleted; for example, ((p, & - p,) V p3)
is written as (p; & = p,) V p,;. Formulas are symbolic propositions that can be true
or failse. In other words, with each formula ® we associate a one-dimensional
Boolean variate (®,{1,0}). Furthermore, we associate with ® an n-dimensional
Boolean array showing how the truth value of ® depends on the truth values of the
atoms py,..., p,.

Presented here are four particular arrays called truth tables of connectives.

| T, | T | 7 | 7.

1 0 11 1 11 1 11 1
0 1 10 0 10 1 10 0
01 0 01 1 0 1

00 0 00 0 00 1

These arrays can be interpreted intuitively: the negation of a proposition is true iff
the proposition is false; the conjunction of two propositions is true iff both proposi-
tions are true; the disjunction of two propositions is true iff at least one of them is
true; the implication of two propositions is true if it is not the case that the first one
(the antecedent) is true and the second one (the succedent) is false.
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The n-dimensional array, called the ftruth table, of a formula ® is defined
inductively according to the definition of a formula:

If ® is an atom, p;, then Ty(u,y,...,u,) = 1iff u, = 1.
Furthermore,
Toguw(ttys oo st,) = To(To(uys.osu,), Ty(uy, ... u,)),
Tove(uy, o su,) = T (Te(uy, .o u,), Tyluy, ... u,)),
Topow(upseosuy,) =T (Tp(uy,...,u,), Ty(uy,...,u,)).

As an example, let us successively compute the truth table of the formula
(Pl& ﬂ172) V ps:

21 P2 P3 ap, P& p, (py& - py) Vp,
1 1 1 0 0 1
1 1 0 0 0 0
1 0 1 1 1 1
1 0 0 1 1 1
0 1 1 0 0 1
0 1 0 0 0 0
0 0 1 1 0 1
0 0 0 1 0 0

Recall that the set {1,0}" of all n-tuples of zeros and ones is the n-dimensional
Boolean frame. Each n-tuple (g,,...,¢,) is a combination of truth values and
may be called a possible world (one possibility of how truth values may be assigned
to the propositions p,,...,p,). Observe that each formula @ built from
D1 .-, P, divides possible worlds into two sets: the set of all worlds in which & is
true (Ty(uy, ..., u,) = 1) and the set of all worlds in which ® is false. A tautology is
a formula true in each world; for example, (p, vV - p,) is a tautology.

A formula ® is a logical consequence of a set of formulas ¥,,..., ¥, if @ is true in
each world in which all the formulas ¥,,..., ¥, are true. For example, ® is a
consequence of ¥ and (¥ — ®); in other words, if the implication (¥ — ®) is true
in a world and its first member (antecedent) ¥ is true in that world then the second
member & (succedent) is also true in that world. Thus we may infer ® from
(¥ > ®) and V¥; knowing that ¥ and ¥ — & are true we know that ® is also true.
The rule “infer ¢ from ¥ and (¥ — ®)” is called modus ponens.

Each set K of propositional formulas may play the role of a Boolean knowledge
base (on some domain). K is consistent if at least one world exists in which all
elements of K are true; otherwise it is inconsistent (contradictory). In artificial
intelligence (AI), one often works with particular formulas having the form (¥ — &),
where ¥ and ® are rather simple pairwise disjoint formulas, for example, p & = D5
& ps — - p, [more explicitly, (p; & = p;) & ps) = — p,]; these are called rules and
a knowledge base consisting of rules is a rule base.

If K is a rule base, then the task to be solved by a logical expert system may be
formulated as follows: given truth values of some propositions, decide (using K) the
truth value of another proposition (if possible). This will be discussed below in detail;
for now a trivial example is as follows: if K contains just the rule above and we know
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that p, and ps are true but p, is false, then we know that p, is false, that is, we may
infer - p, from p,, - p;, and ps using the rule base. If we know that p,, p,, and p;
are true we can infer neither p, nor — p.

We shall also introduce three-valued propositional calculi (with the truth values
“yes, no, unknown”) and shall, more generally, introduce many-valued propositional
calculi and discuss their relevance for expert systems.

3. PROBABILITY

Let V' be a frame; a probability distribution on V is an array P on V, assigning to
each clement v € V' a real number 0 < P(v) <1 and such that £, ., P(v) = 1.
More generally, a potential is an array A on V such that each A(v) is a nonnegative
real number and X, ., 4A(v) is positive (i.e., at least one value A(v) is positive).

Clearly, each potential can be transformed to a probability distribution through
normalization, i.e., by setting P(v) = A(v) /(T <, AW)).

A probability distribution P on a frame V uniquely defines the probability of each
subset U of V' as follows: P(U) = L, ., P(v). This is the classical definition of a
probability on a finite set. We denote both the probability distribution and the
corresponding probability by P if there is no danger of misunderstanding.

A random variate is a variate (N, V') (where N is the name and V the frame of the
variate) together with a proability distribution P on V. (Recall that we consider only
finite frames.) An example of a random variate is as follows.

Color Color
Probability Red 0.6 Red 120
distribution Blue 0.3 Blue 60 Potential
White 0.1 White 20

A random field consists of a field of variates X = (X));., and of a probability
distribution P on its frame V = I1, ., V,. For example, if (X)),_, , is as above, then
the following is a corresponding random field:

Sex Temperature
Male Low 0.2
Male Medium 0.2
Male High 0.1
Female Low 0.1
Female Medium 0.2
Female High 0.2

Generalizing the above, each tuple ve V=1T1I,_,V; can be called a possible
world; a random variate determines the probability of each possible world. The
probability of a set U of worlds is then defined as the sum of probabilities of the
elements of U, that is, P(U) = L, ., P(v).

A set of worlds may be defined by various conditions: for example if 7 = {1,2,..., n}
then U may be the set of all tuples the second coordinate of which is c, that is,
U={(u,...,u,) u, = c}. Because the name of the second variate is N, we can
write P(U) (for this particular U) as P(N, = ¢) or P((¢)N,) or even P(X, = ¢), and
so on, just replacing the set in question by its definition. The meaning of P(X, = ¢ &
X; = d) should then be clear.
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Let (X, P) be a random field with the index set [ (i.e., X is a field (X,),., and P is
a probability distribution on V=1IT,_,V). Let § +J cI and consider the field
X, = (X)), ;. The marginalization P, of P to X, is the probability distribution on
the frame V, = [1,_, V; defined as follows: for u € V,,

P;(w) = Y. [P(v):veE Vandv, = u]

where v, = (1)), ,; thus P,(w) is the sum of P(v) for all v = (v),., € V whose
restrictions to J is u.

For example, recall the probability P(N, = ¢) above; this is the probability of the
set U of all n-tuples u such that u, = ¢, hence Z{P(u): u, = c}.

The last sum is equal to the marginal probability P,(c) (the value of the
probability distribution defined in V,). The definition of marginalization readily
generalizes for potentials.

CONDITIONAL PROBABILITY. The well-known general definition is as follows:
let V¥ be a frame, P a probability distribution on V, and let U C V' be such that
P(U} > 0. Then the conditional probability P(W |U) is defined for all W C V as
P(W|U) = P(Wn U)/P(U). Observe that this is a probability given by the following
probability distribution on V:

PIY(0) = {P(v)/P(U) forve U
0 otherwise.

Example. Consider three Boolean variates X, X,, X; and let P be a probability
distribution on {1,0}>. What is the probability distribution for X, X; given the
condition X, = 1? First, compute P(X, = 1) = Z{P(u,1,u5): u,u; € {1,0}} and
denote this constant by . Then we have conditional probability on {0, 1}*:

P(lu,uy,uy)/a ifu,=1
| X,=1 _ 1 Ug,Us 2

p Uy, Uy, u - .
(1,43, 43) {O if u, = 0.

What we want is the marginalization of this probability to X, Xj, that is,

P('lf(;fl(unua) = Y P Uy, ug, u3) = P(uy, 1, u3) /.
L&}
This probability distribution is often denoted by P(X;, X; | X, = 1) if there is no
danger of misunderstanding. This notation describes our conditioning as well as
marginalization but does not allow one to visualize the arguments. P(X,, X, [ X,)
signifies, if used, the collection of probability distributions P(X,, X; | X, = u) for all
u from the frame X, here for u = 1 and u = 0.

PROBABILISTIC INFERENCE. Assume the variates X,,..., X, as given and
consider the field (X;);,.; = X. Let P denote an unknown probability distribution
over X. Any condition of the form Py(u) = « and /or P{*=F(u) = « (telling values of
some marginalization and /or conditioning of P for some arguments) can be consid-
ered as a piece of knowledge about an unknown P. A set K of such conditions is a
stochastic ( probabilistic) knowledge base. 1t is stochastically consistent if there is at
least one probability distribution P on the frame satisfying all conditions from K.
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Having such a stochastic knowledge base, the task to be solved by a probabilistic
expert system may be formulated as follows: given marginal probabilities of some
variates (input information I), determine (or estimate) on the basis of K some other
marginal probabilities conditioned by I. It is to be expected that our knowledge base
does not determine P uniquely; this problem will be discussed in detail in Chapter 5.

4. GRAPHS

An oriented graph G consists of a set I of vertices and a set of oriented edges; each
edge goes from a unique vertex o into a unique vertex B different from «. We
identify edges with ordered pairs of vertices, thus E € I X I. It is customary to depict
graphs using small circles as vertices and arrows as edges, for example, Figure 1 is a
representation of the oriented graph (I, E) with I ={a,b,c,d} and E =
{{a,b),{a,c>,{b,d)}.

An unoriented graph is defined similarly but now E consists of unordered pairs of
vertices. Unoriented edges are depicted as lines without any orientation; thus Figure
2 represents (I, E) where [ is as above and E = {{a, b}, {a, c}, {b, d}}. Each oriented
graph determines uniquely the oriented graph resulting by “forgetting the orienta-
tion,” that is, replacing each oriented edge {x, y) by an unoriented edge {x, y}; on
the other hand, unoriented graphs are in one-to-one correspondence with oriented
graphs whose set E of edges is a symmetric relation, that is, {x, y) € E implies
{(y,x) € E for each x,y I (see Figure 3). Note that it is also common to call
oriented graphs directed graphs and unoriented graphs undirected graphs.

Consider the notation of oriented graphs: if an oriented graph G = (I, E) is fixed
and a, B8 € I, then a - B means {a, 8) € E; thus, there is an edge from « to B.

A sequence ay,...,a, of vertices is a path if ay > a, = -~ > a,;acycle is a
path ay,...,a, for which @, = @,. An oriented graph is acyclic if it contains no
cycles. It is usual to speak of DAGs (directed acyclic graphs).

Let G = (I, E) be a finite DAG and let « € I. The height of « is the maximum
length of all paths in G the last element of which is «. Clearly, since each path in a
DAG is a sequence without repetitions and G is finite, each vertex has a uniquely
determined finite height denoted by hg,(«).

For each a € G, let pa(a) be the set of all parents of a:

pa(a) = {B€1: B > a}.
Clearly, hg;(a) = 1 if pa(a) = §; otherwise
hgs(a) = 1 + maxg{hgs Bl B € pa(a)}.
We may prove assertions on elements of a DAG by induction on height; the exact
formulation follows.

Lemma. Let G be a DAG and A C I. Assume the following.

1. All vertices of height 1 belong to A.

2. Forall a €1, if pa(a) C A then a € A.
Then A =1,

This lemma is proved by the usual induction on k that all vertices of height k are
in A.



