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Foreword

Dr. Courtois has produced an important book on the use of computers to
study computers. His book is about computation: analytic and numerical
methods for examining the behavior of complex systems. At the same time
it is about computers: its area of application is the design of computers and
the analysis of their performance.

This kind of incestuous or introspective relation of computers to their
own kind is not at all unusual—and for a very good reason. Much scientific
activity today, in almost all fields of inquiry, is directed toward understanding
complexity—the complexity of thunderstorms and ecological systems, the
complexity of genetic control of developing organisms, the complexity of
human thought processes, and the complexity of computers. Since the study
of complex systems calls for new experimental methods and new com-
putational tools, a substantial part of the effort directed toward the study
of complexity has been aimed at the development of such tools. In the past
twenty-five years, we have seen a great flowering of computational mathe-
matics, providing us with linear, integer, and dynamic programming, with
queueing theory, with simulation techniques, and with great advances in the
classical methods of numerical analysis.

The computer has played a central role in spurring these developmeénts, for
computation with an electronic computer is a very different matter from
computation with an old-fashioned desk calculator, calling for new ap-
proaches and new points of view, and creating new aspirations as well. The
time is long past, of course, since anyone has imagined that computer brute
force could substitute for skillful analysis, and thoughtful analysts never
held the illusion that such a substitution was possible. Nature has no difficulty
whatsoever in inventing systems whose exact analysis defies the most powerful
efforts of present or prospective computers—and large computers them-
selves constitute one class of such systems.



X FOREWORD

What we cannot do by brute force we must do with cunning. One form
of cunning is to recognize that the systems produced by Nature and by the
art of man are seldom as complex as they might be, or as their size and number
of components might lead us to expect them to be. Fortunately for our
prospects of understanding complex systems, it is not common for each
element in such systems to interact strongly with each other element. On the
contrary, the world, even the world of complexity, is mostly empty. The
matrices that describe complex systems tend to be sparse matrices, and very
unrandom ones. We can augment our analytic power greatly by exploiting
this sparsity and this order.

Dr. Courtois’ analysis is based on his important observation that large
computing systems can usefully be regarded as nearly completely decom-
posable systems—systems arranged in a hierarchy of components and sub-
components, with interactions within components that are strong and fast
compared with the interactions between components at the same level.
Near-decomposability is not peculiar to computing systems: it has been
observed in economic structures and in a variety of biological models,
genetic and developmental. Only quite recently have its computational
implications begun to be explored.

By exploiting with great originality the near-complete decomposability of
large computer structures, Dr. Courtois has greatly advanced our ability to
compute their behavior, and hence to design them. He has made an important
conceptual contribution which is, at the same time, an important practical
one. Both hardware and software designers will find in this book a set of
powerful methods for systems analysis, as well as a clear exposition of the
theory of nearly completely decomposable systems upon which these specific
analytic methods are based. While the book addresses itself specifically to
computer applications, it should also have substantial interest for scientists
investigating other kinds of complex systems, who may find these or similar
techniques applicable to the solution of their own computational problems.

Carnegie-Mellon University HERBERT A. SIMON
July 1976



Preface

This monograph groups the results of research work started seven years
ago. The intention was to progress toward analysis methods that would be
more effective in the evaluation of computer system performance, and which
should ultimately lead to the design of optimized systems.

Due to the ever-increasing complexity of computer systems and of their
applications, this research found itself quickly and naturally oriented toward
methods proceeding by decomposition and approximations; the separation
of problems and the conceding of approximations have always been golden
rules for tackling the complex reality around us. We first started rather
empirically using successive approximations that exploited the great differ-
ences of magnitude of the speeds at which information flows at the various
levels of a computer memory hierarchy (Courtois and Georges, 1970). But it
was the discovery of the aggregation methods widely used in economics
and of the results obtained by H. A. Simon and A. Ando (1961) on nearly
completely decomposable structures of linear models that made our work
take a very decisive turn. It permitted us to justify more rigorously assump-
tions that we had previously envisaged but empirically, and it enlarged our
investigation ground considerably.

The book may be divided into three parts. The first part, being comprised of
the first three chapters, is of rather general interest. It aims at gathering
together some basic elements of a theory of nearly completely decomposable
stochastic matrices. The Simon-Ando theorems are presented, some of their
aspects being dealt with in precise detail. Elements of Wilkinson’s (1965)
perturbation theory inspired us to undertake also a study of the sharpness
of the accuracy of the Simon-Ando approximation. This study leads to the
definition of criteria of near-complete decomposability.

The second part, which is composed of the next three chapters, is devoted
to the analysis of stochastic queueing networks which appear as a type of

xi



Xxii PREFACE

key model in our work. On the one hand, these models admit, at least in
their simplest forms, a matrix representation that allows the theory of
decomposability to be exploited straightforwardly; on the other hand,
congestion problems in information processing systems may, in many
respects, be adequately studied by means of queueing networks models. A
method of analysis by decomposition and aggregation for these models is
proposed and discussed at length.

The last part of the book deals concretely with the problem of computer
system performance evaluation. The material of the first two parts is applied
to the analysis of different aspects, hardware and software, of the dynamic
behavior of computer systems and user programs. Chapter VIII is a shortened
version of a study of program paging behavior made in collaboration with
H. Vantilborgh (Courtois and Vantilborgh, 1976); Chapter IX gives a de-
tailed analysis of an aggregative model of a typical multiprogramming
time-sharing computing system. It is hoped this last part should illustrate
that aggregation is not only an efficient technique for obtaining quantitative
results but also for gaining insight and conceptual clarity on the parts played
by the many parameters of a complex model.

Finally, a last chapter examines the striking affinity that appears to exist
between the concept of aggregate in nearly completely decomposable
structures and the notions of module and level of abstraction so frequently
invoked in computer system design and software engineering. Variable
aggregation appears in this context as a technique that could enable the level
by level evaluation of a system to proceed in pace with its level by level design.

In the main, the chief result of this work is that it proposes a rather general
approach to computer system model building and suggests a framework in
which it seems possible to coordinate future analyses carried out in various
directions and at different levels of detail.
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Introduction and Overview

The concept of hierarchic order occupies a central place in this book, and
lest the reader should think that I am riding a private hobby-horse, let me
reassure him that this concept has a long and respectable ancestry. So much
so, that defenders of orthodoxy are inclined to dismiss it as “old hat’—and
often in the same breath to deny its validity. Yet I hope to show as we g0
along that this old hat, handled with some affection, can produce lively
rabbits.!

A. KOESTLER (1967)
The Ghost in the Machine

The research work reported in the following pages was inspired by the
desire of finding adequate methods to evaluate and predict the performances
of current general-purpose computer systems.

Fundamentally this problem amounts to constructing appropriate models
of the dynamic behavior of these systems. By “model”” we mean a set of
relations between unknowns (typically, measures of efficiency, such as the
system response time or the resource utilization factors) and various param-
eters that represent the relevant characteristics of the system and of its work
load. These relations must be sufficiently simple so as to permit the evaluation
of the unknowns; they must at the same time be faithful to the system, i.e.,
they must capture the relevant laws that govern its mode of operation. Rather
obviously, such models with useful and accurate predictive properties cannot
be constructed if the system is not first properly understood. To solve the
problem of computer performances prediction requires not only powerful
evaluation techniques but also a better understanding of the basic principles

! Reprinted with the permission of A. D. Peters & Co. Ltd., London.
1



2 INTRODUCTION AND OVERVIEW

of system behavior. These two types of requirements define the main lines of
conduct of our work.

Analyses of computer system behavior have abounded during the past
decade; surveys by Lucas (1971) and Graham (1973), among others, give
evidence of this efflorescence. Many of these analyses, however, focus their
attention on a particular aspect of system behavior; they analyze a processor-
sharing mechanism, a store management strategy, a class of page replacement
algorithms, an access method to rotating storage devices, a job scheduling
policy, etc. Such investigations are usually carried out in depth, by means of
well-defined but simplified models in the context of which appropriate mathe-
matical disciplines can be exploited. They provide a body of knowledge that,
to a certain extent, helps to understand how each of these mechanisms operates
and compares in efficiency with competitors. These analytical studies made in
isolation are, in a way, a normal step in engineering; “‘scientific progress has
been made by analysis and artificial isolation . . .,”” as Russell (1948) observed.

Nevertheless, these isolated analyses give practically no information on the
way the various mechanisms cooperate and interact upon each other within
the wholeness of a single system. The influence of a given component upon
the behavior of a complete installation, the contribution of a part to the
efficiency of the whole are beyond the scope of these investigations. It would
be only a lesser evil if computing systems enjoyed what von Bertalanffy (1968)
calls the “‘summativity’’ character; then, as ‘““a heap of heaps” or a parallel-
ogram of mechanical forces, the variations in the behavior of the total system
would merely be the sum of the variations of its elements considered in
isolation. But the behavior of a computing system cannot be summed up from
its isolated parts; the behavior of the component parts can be quite different
within the system from what it is in isolation. The high degree of resource
sharing, multiprocessing, and exploitation schemes such as multiprogramming
and multiaccess have introduced complex dependencies between the various
processes that take place in a modern computing system. In the face of this
complexity, the isolated analyses mentioned above leave the designer without
means to assess the global consequences of his particular design options. As
Simon (1969) put it:

Only fragments of theory are available to guide the design of a time-sharing system or to
predict how a system of a specified design will actually behave in an environment of
users who place their several demands upon it. Most actual designs have turned out
initially to exhibit serious deficiencies; and most predictions of performance have been
startlingly inaccurate.

Under these circumstances, the main route open to the development and improve-
ment of time-sharing systems is to build them and see how they behave. And this is
what has been done. They have been built, modified, and improved in successive stages.
Perhaps theory could have anticipated these experiments and made them unnecessary.
In fact, it didn’t; and I don’t know anyone intimately acquainted with these exceedingly
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complex systems who has very specific ideas as to how it might have done so. To under-
stand them, the systems had to be constructed, and their behavior observed.

Comprehensive analyses of complete systems are of course being attempted
to alleviate this state of affairs. These attempts in general resort to simulation
techniques. While analytic modeling is limited by the lack of algebraic solutions
for complex models, simulation is in principle apt to investigate systems of
arbitrary complexity. This generality is, alas, achieved at some expense. The
results obtained by simulation are often difficult to interpret with a reasonable
degree of confidence. In many cases, above a certain level of complexity, the
validity of a simulation model can only be asserted by checking that the model
is an exact copy of the real system; as a consequence of this, the analyst is
inclined to define and build his model at a level of detail that tends to approach
the complexity of the real system. Such detailed models rapidly become
difficult to understand and give per se less and less insight into the real system
behavior. They yield results that are received with much skepticism; more-
over, they quickly become difficult to modify and expensive to adjust to
different design alternatives.

The moral is that existing modeling approaches have their own advantages
and limitations; and that in face of the different structures of the components
of a computing system, and especially of the many different levels of details
at which performance prediction needs to take place, no single modeling
technique simply asserts itself as being always the most useful. On the contrary,
these techniques appear to complement each other.

There are two possible attitudes to take if we want to improve upon this
situation: the search for a new evaluation technique more powerful and more
general than existing ones, or the search for a general framework in which the
different tools of analysis that are already available could be integrated. We
opted for this second and less ambitious approach which appeared more
promising.

From what has been said, one can already have an inkling of what this
second approach may require. We need:

(1) Criteria according to which a computing system could be dissected
into constituents that can be understood, analyzed, and calibrated separately.
Once this is done, our task will be simplified because (a) the model of a con-
stituent is likely to be simpler than the model of the whole, (b) we need not use
the same technique of analysis for all constituents, and (c) elaborate and
reliable models already exist for certain constituents.

(2) A model of “macrorelations” among these constituents so that the
results of the isolated analyses can be combined to give an evaluation of the
whole system behavior. This macromodel is likely to be a nontrivial one since
the system has a ““nonsummativity’’ character.
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(3) An estimation of the approximation that such a decomposition may
imply. Indeed, we are willing to make do with an approximate model if this
is the price we must pay to control complexity. All we are then entitled to
demand is that the degree of approximation remains known and, of course,
tolerable.

Near-Complete Decomposability

A possibility of fulfilling these requirements is offered by the concept of
near-complete decomposability and by its associated technique of aggregation
of variables. The purpose of this monograph is to investigate in depth this
possibility.

It is in economic theory that aggregation of variables has been most
explicitly used as a technique to study and evaluate the dynamics of systems
of great size and complexity. This technique is based on the idea that in many
large systems all variables can somehow be clustered into a small number of
groups so that: (i) the interactions among the variables of each single group
may be studied as if interactions among groups did not exist, and (ii) inter-
actions among groups may be studied without reference to the interactions
within groups. This idea is of course quite general, and has, at least indirectly,
been productive in disciplines other than economics; it is, for example, at the
root of Boltzmann’s fundamental hypothesis in statistical mechanics, of the
Russell-Saunders approximation for the classification of atomic energy levels
in quantum mechanics, and of Norton’s and Thévenin’s theorems in electric
circuit synthesis.

This aggregation of variables yields rigorously correct results under two
different types of conditions. The first type requires that interactions between
groups of variables be independent from interactions within groups; then,
these interactions between groups can be exactly analyzed without regard to
the interactions within groups ; the block stochastic systems studied in Chapter
IT and the lumpable Markov chain considered in Chapter III belong to the
class of systems which satisfy the first type of conditions. The second type of
conditions requires that variables be functions of variables of the same group
only, i.e. that interactions between groups of variables be null. The system in
this case can be said to be completely decomposable’: it truly consists of

! It is worth making the terminology more precise at the outset: such a system may be
represented by a completely decomposable matrix, i.e., a square matrix such that an identical
permutation of rows and columns leaves a set of square submatrices on the principal diagonal
and zeros everywhere else; a decomposable matrix, as opposed to completely decomposable,
is a matrix with zeros everywhere below the principal submatrices but not necessarily also
above. Near-complete decomposability and near-decomposability are defined by replacing the
zeros in these definitions by small nonzero numbers.



