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continued

LINDEBERG CONDITION See LINDE-
BERG—FELLER THEOREM

LINDEBERG-FELLER
THEOREM

HISTORY

The Lindeberg—Feller central limit theorem
gives necessary and sufficient conditions for
the convergence in distribution of a se-
quence of suitably standardized sums of in-
dependent random variables with finite vari-
ance, to a standard normal random variable.
An important forerunner to the Lindeberg—
Feller theorem was proved by Liapunov* in
1900, who established sufficient conditions
for convergence to normality assuming the
existence of momenis of order 2+ § for
some & > 0. Lindeberg [5] strengthened
Liapunov’s theorem* by assuming the exis-
tence of the second moments while Feller [1]
established the necessity of Lindeberg’s con-
dition for convergence to normality, pro-
vided that the uniformly asymptotically neg-
ligible condition is satisfied. The theorem
given below is for a single sequence of ran-
dom variables. A more general version for
double arrays of random variables may be

found in most textbooks on probability the-
ory (see, e.g.,, Gnedenko and Kolmogorov

(4]).

STATEMENT OF THE LINDEBERG-
FELLER THEOREM

Let X,,X,, ..., be a sequence of indepen-
dent random variables and let the distri-
bution function of X, be F,(x). Suppose
that var(X,)= o} < co for all k. Let S,
= 3% 1(Xy — E[X,]/s,, where sh =
S —var(X,). Then in order that as n— oo,

(a) Pr[s"<x]—>(1/J2_w)f_ e "2 dr

X
0

forall x >0,

(b) lim max Pr[|(X, — E[Xi])/ 5.l > €]

n—>o 1 <k<n

=0 forall € >0,

it is necessary and sufficient that for each
n > 0, we have

x*dF(x + E[ X,])

WL ( l/ss)k'z;l [

x|>es),

-0 for each € > 0.



2 LINDEBERG-LEVY THEOREM
IDEA OF PROOF: SUFFICIENCY

Form a sequence of truncated bounded ran-
dom variables and using the Lindeberg con-
dition together with a limit result due to
Liapunov, establish sufficiency for this trun-
cated sequence. Finally, show that the stan-
dardized sums arising from the truncated
random variables behave the same way in
the limit as do the standardized sums arising
from the original random variables.

An alternative approach using convolu-
tion operators may be found in Feller [2].

NECESSITY

The proof is technical and involves manipu-
lations with characteristic functions.*

REMARKS

1. Condition (b), sometimes called the uni-
formly asymptotically negligibility
(UAN) condition, ensures that the rela-
tive contribution of each of the sum-
mands of S, tends to zero as n — co.

2. Condition (L) is referred to the Linde-
berg condition. Again, it is a condition
on the relative smallness of each sum-
mand, and may be shown to imply that
max, . ;,0;/s, >0 as n— oco.

3. Condition (L) may be easily shown to
imply the Liapunov condition.*

4. As in the case of the Lindeberg—Lévy
theorem, * there exist various extensions
of the Lindeberg—Feller theorem to
sums of random vectors [3] in R* and to
sums of dependent random variables.
(See LIMIT THEOREM, CENTRAL.)
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(LIMIT THEOREM, CENTRAL
LINDEBERG-LEVY THEOREM)

D. WOLFSON

LINDEBERG-LEVY THEOREM

HISTORY

The Lindeberg-Lévy central limit theorem is
widely known more simply as “the” central
limit theorem, although it is, strictly speak-
ing, a single representative of central limit "
theorems in general. It refers to the conver-
gence in distribution of a suitably standard-
ized sum of independent, identically distrib-
uted random variables with finite variance,
to a normal random variable with zero mean
and unit variance. The form given below is
due, independently, to Lévy [1] and Linde-
berg [2].

STATEMENT OF THE LINDEBERG-LEVY
CENTRAL LIMIT THEOREM

Let X,,X,,X5,... be a sequence of inde-
pendent and identically distributed random

variables with E[X;]=p and 0 < var(X,)
= 02 < 0. Then

Pr{ 2 (X, — m)/(Yno) < x}
i=1

>(1/2m) [* e
for all x € (— o0, ), as n—> .
IDEA OF PROOF

The characteristic function* of

2": (X — ”)/(‘/;0)

i=1

is expanded using Taylor’s theorem and the



assumed existence of a second moment. This
expanded characteristic function (ch.f) is
then shown to converge pointwise to &=
the ch.f. of the standard normal distribution.
An application of the continuity theorem
then leads to the stated result.

EXTENSIONS AND GENERALIZATIONS

The Lindeberg-Lévy theorem may be ex-
tended to include random vectors:

Random Vector Lindeberg—Lévy Theorem.
Let X, =(X,;»X,2, - --,X,;) be indepen-
dent, identically distributed random vectors
with mean vector p=(p;, Mo, - - - » M),
where p, = E[X,], j=1,2,..., k. Suppose
further that E[X,] < oo and that the co-
variance matrix * of X, is X. Then
Zjm Xy — p)/Vn converges in distribution
to a multivariate normal* random vector
having mean zero and covariance matrix .

A second extension, to random sums of ran-
dom variables, is exemplified by the follow-
ing theorem:

Random Sums Lindeberg-Lévy Theorem.
Let X,,X,,... be a sequence of indepen-
dent, identically distributed random vari-
ables with E[X,]= p and var(X,) = o”. Let
{v,,n > 1} be a sequence of random vari-
ables taking on only strictly positive integer
values such that »,/n—a in probability,
where «a is a constant satisfying 0 < a < o0.

Then

Pr[ Z" (X;— ,u)/(m/v_,,‘) < x

i=1

(12w ) [C e
for all x € (— o0, 00) as n—> 0.

Related to the central limit theorem but
requiring more delicate analyses are the laws
of the iterated logarithm,* which describe
the transient behavior of the standardized
sums as n increases. These results comple-
ment those describing the limiting behavior
given by the central-limit-type theorems.

LINDEBERG-LEVY THEOREM 3

Other generalizations of the Lindeberg—
Lévy theorem may be found in LIMIT THEO-
REMS, CENTRAL, which includes examples of
central-limit-type theorems for dependent
random variables; also discussed are the
concepts of infinite divisibility* and stability
as well as the famous Berry—Esseen theorem
on rate of convergence to normality (see
ASYMPTOTIC NORMALITY).

APPLICATIONS

Either in its original form or in one of its
extended forms, the Lindeberg—-Lévy theo-
rem lies at the heart of most of the asymp-
totic theory of statistics. The construction of
confidence intervals, indeed much of the
theory and practice of statistical inference*
and hypothesis testing, * is facilitated by the
availability of the central limit theorem. The
frequent occurrence of sums of random vari-
ables in statistics is the reason for the wide
applicability of this important theorem.
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Further Reading

In addition to the references just given, the
following texts contain many of the topics
referred to in this article.

Billingsley, P. (1979). Probability and Measure. Wiley,
New York.

Feller, W. (1966), An Introduction to Probability Theory
and Its Applications, Vol. 2. Wiley, New York.

Gnedenko, B. V. and Kolmogorov, A. N. (1954). Limit
Distributions for Sums of Independent Random Variables.
Addison-Wesley, Reading, Mass.

All of these books are rigorous in spirit and
require some mathematical sophistication.

(LIMIT THEOREM, CENTRAL)

D. WoOLFSON



4 LINDLEY’S EQUATION

LINDLEY’S EQUATION

Let W, be the waiting time of the nth cus-
tomer in a queue, S, be the corresponding
service time, and X, , | be the length of time
between the nth and (n+ 1)th arrivals.
Then, for a general G/G/1 gueueing system
(with one customer),

W,y =max(0,W, + S, — X,).

Y

This basic result, due to Lindley [2], implies
that the distribution function

F,(x)=Pr(W, < x)

of the Ws converges as n— co to some limit
function F. For more details see Lindley [2]
and Cohen [1].
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LINDSTROM-MADDEN
METHOD

The Lindstrom-Madden method is a
method for constructing approximate lower
confidence limits* on the reliability of a
series system, given Bernoulli subsystem
data. This is a fundamental problem in reli-
ability theory* and is discussed in ref. 6,
together with the Lindstrom—Madden
method. A series system of independent
components functions only if all the compo-
nents function. More precisely, let Y,, i =1,

2, ..., k, be independent binomial random
variables with parameters (n;, p,), n, < n,
< -+ < n, where p; is the probability that

the ith subsystem will function, and let the
observed values be y,, y,, ..., ., with x,
=n—y,i=12 ..., k. The reliability of
the system is [J%_, p;. A general method of
constructing a lower 1 — « level confidence
limit for [J%_,p, was given in ref. 1. How-

ever, this is very difficult to implement in
practice. Lipow and Riley [5] constructed
the exact lower confidence limit for [T5_, p,
for specific values of x;,, n,, k=2.3, and
Lloyd and Lipow [6] noted that the tabu-
lated values were close to an approximation,
the Lindstrom-Madden method, described
below. Consider building systems by ran-
domly selecting without replacement a single
test result (success or failure) from each of
the k subsystem data. Then there are n,
systems and the expected number of failures

18 z; = n,q,, gy=1— H§=|((”i = x;)/n). Let

L(r.s)= B(l’s) fo”t"’(l — 1y dn;

e, I (r,s) is the incomplete beta function.
Then if y is an integer, y < n, we have

"
igo(?)P"“’q’= L(n=p,y+1).

A complete discussion of the above can be
found in ref. 4. For 0 < y < n, real, define
u(n, y,a) by a=1I1,,,.,(n—y, y+1).
Thus, for integer values of y, u(n, y,a) is a
100(1 — )% lower confidence limit for p-
Then the Lindstrom—Madden method con-
sists of using u(n,,z,,a) as an approxima-
tion to the exact lower confidence limit b
and reduces to the usual method for putting
a lower confidence limit on the success prob-
ability if z, is an integer.

Denote by [x] the integral part of x, x
real. Sudakov [7] showed that u(n,,z,,a)
< b <u(n,[z,],a), and hence if z, is
an integer, then the Lindstrom—Madden
method is exact. The special case when only
X, is nonzero (in this case z, = x,) was
proved by Winterbottom [8]. Sudakov’s re-
sults were simplified and generalized by
Harris and Soms [2]. Also, Harris and Soms
[3] improved the lower bound u(n,,z,,a) by
the use of a short FORTRAN program,
whose listing they provide. We now give two
examples.

Example 1. Let « =0.05, (ny,ny,ny) = (5,
10,20), and (x,,x,,x3)=(1,0,0). Then
zy =1, u(5,1,0.05) = 0.343, so b = 0.343.
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Example 2. Let a =0.05 (n,,n,,n;,n,)
= (10, 15,20,25), and (x;,%5,%3,%4) = (1,3,
2,4). Then z, =4.557, u(10,4.557,0.05) =
0.257, u(10,4,0.05) = 0.304, so 0.257 < b <
0.304. Using the program in Harris and
Soms [3], this can be improved to 0.291 < b
< 0.304.

Addendum—Added in Proof An error has
been discovered in the proof of one of the
lemmas employed in the proof of Sudakov’s
inequality. This is documented in “The The-
ory of Optimal Confidence Limits for Sys-
tems Reliability with Counterexamples for
Results on Optimal Confidence Limits for
Series Systems”, B. Harris and A. P. Soms,
Tech. Rep. 643, Dept. of Statistics, Univer-
sity of Wisconsin-Madison, Madison, Wis.
Numerical evidence indicates that for confi-
dence levels of practical interest the inequal-
ity is still valid.
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ANDREW P. Soms

LINEAR ALGEBRA,
COMPUTATIONAL

Computational linear algebra may be di-
vided into three parts. The first part deals
with discrete computations, such as manipu-
lating the graph of a matrix or performing
exact calculations on matrices with integer
or rational elements. The second part is con-
cerned with constrained optimization prob-
lems that are defined in terms of matrices—
for example, linear and quadratic program-
ming problems. The third part is often called
numerical linear algebra. It deals with the
solution in floating-point arithmetic of such
problems as solving linear systems of equa-
tions, linear least-squares problems, the com-
putation of eigenvalues, etc.

Because of limitations of space this article
will be restricted to numerical linear algebra.
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It should be appreciated, however, that even
this restriction is insufficient. Specifically, a
matrix may be too large to fit into the high-
speed memory of the computer in question,
and it is a matter of considerable algorith-
mic ingenuity to solve such problems. Most
of the recent research in this area has been
devoted to sparse matrices, most of whose
elements are zero. No attempt will be made
to survey sparse matrix computations here;
instead, this article will treat matrix prob-
lems that can be held in the high-speed
memory of the computer or at least can be
solved with one or two passes of the data
through memory.

It is hardly necessary to argue the impor-
tance of numerical linear algebra in statis-
tics. This is obvious for areas like multivari-
ate analysis, ¥ where matrix notation has be-
come standard. It is less well appreciated
that a significant amount of matrix compu-
tations is essential for maximum likelihood
estimation, * robust estimation, * and other
essentially nonlinear statistical problems.
This is because nonlinear problems are fre-
quently solved by solving a sequence of lin-
earized approximations.

Modern numerical linear algebra has five
principal features:

1. The systematic use of matrix decomposi-
tions

2. The use of updating methods to recom-
pute decompositions of slightly altered
matrices

3. The use of backward rounding-error
analysis to assess the stability of algo-
rithms

4. The use of perturbation theory to assess
the accuracy of computed solutions

5. The implementation of matrix algo-
rithms in high-quality mathematical
software

In selecting or developing methods for solv-
ing a problem, it is necessary to have an
understanding of each of these five features.
Accordingly, they will be discussed sepa-

rately in the next five sections. The treat-
ment is primarily didactic; technical com-
ments and references will be found in the
section “Bibliographical Notes.”

DECOMPOSITIONS

The method of Gaussian elimination for
solving the linear equation

Ax=b (H

of order p will serve to introduce the use of
matrix decompositions in numerical linear
algebra. The result of performing Gaussian
elimination on the system is to produce a
lower triangular matrix L and an upper tri-
angular matrix U such that

A=LU. )

Given this LU decomposition, one may solve
the system (1) by first solving the upper
triangular system

Uy=5>
(this is equivalent to performing the elimina-

tion operations on the vector b). The upper
triangular system

Lx=05b
is then solved for x (this is usually called the
back-substitution phase of the algorithm);
see GAUSS — JORDAN ELIMINATION.

From the foregoing it is evident that the
LU decomposition (2) and its computation
are distinct from the problem (1) and its
solution. Once an LU decomposition has
been computed [an 0(p3) process], it may
be used again and again to solve systems of
the form (1) at a cost of O(p?) work per
solution. Moreover, the same LU decompo-
sition can be used to solve the system A4 "x
= b. Finally, if the LU decomposition of A4
is available, it is unnecessary to form 4 ~! to
solve (1), even though the formula x = 4 ~'b
suggests that it is. In fact, the calculation of
A~ is not only unnecessary, but it is expen-
sive [an extra O(p?) work] and undesirable
on grounds of numerical stability.

The foregoing comments about the LU
decomposition hold generally for the decom-
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positional approach to numerical linear alge-
bra. A decomposition may be regarded as a
computational platform from which a vari-
ety of problems may be solved. It may be
relatively expensive to compute; but once it
is available, it can be used repeatedly at little
additional cost. Moreover, a decomposition
may make it unnecessary to compute such
notationally convenient but numerically
tricky objects as inverses or generalized in-
verses*. Finally, although it is not evident
from the LU decomposition, a well-chosen
decomposition may aid in the mathematical
analysis of a statistical process.

There are a large number of decomposi-
tions that are used in numerical linear alge-
bra, and it can be a matter of some delicacy
to select the right one. Accordingly, the rest
of this section is devoted to a survey of the
most frequently used matrix decompositions.

Pivoted LU Decomposition

The LU decomposition (2) need not exist,
and even when it does it may be impossible
to compute it in a stable manner. The cure
for this situation is to interchange rows and
columns of A4 during the computations in
order to ensure numerical stability, a process
that is called pivoting. The result is a decom-
position of the form

PAP.= LU,

where P, and P, are the permutation matri-
ces corresponding to the row and column
interchanges. There are two common strate-
gies for choosing interchanges. At the kth
step of the algorithm, partial pivoting inter-
changes rows to bring the largest element in
column k into the (k,k)-position. Complete
pivoting interchanges both rows and columns
to place the largest element in the matrix in
the (k, k)-position. Although one can prove
stronger theorems about the stability of com-
plete pivoting, in practice the simpler par-
tial-pivoting strategy is just as stable and is
consequently the method of choice.

The principal application of the LU de-
composition is to the solution of linear equa-

tions and, where it is required, the computa-
tion of inverses. It is computed by Gaussian
elimination or one of its variants, such as the
algorithms of Crout or Doolittle. It requires
o( p3) work.

Cholesky Decomposition

If A is a p X p positive-definite matrix
(which here implies symmetry), it can be
factored uniquely in the form

A = R'R, (3)

where R is upper triangular with positive-
diagonal elements. This factorization is
called the Cholesky decomposition.

There is an important variant in which
pivoting is used to produce a decomposition
of the form

PTAP = R'R,

where P is a permutation matrix. The inter-
changes may be chosen so that the elements
of R satisfy

J
rszgkr,j (j=k+Lk+2,...,p).

This implies that the diagonals of R are
decreasing. In particular, if 4 is near a semi-
definite matrix, then a trailing principal sub-
matrix of 4 will be small.

The Cholesky decomposition is used to
solve linear systems involving positive-def-
inite matrices. In statistical applications the
matrix is often a correlation matrix. The
Cholesky decomposition of the augmented
cross-product matrix (X y)"(X ) is used in
the analysis of the linear model y = XB + e.
The Cholesky decomposition is also used in
the solution of symmetric eigenvalue prob-
lems of the type Ax = ABx, a problem that
occurs frequently in statistical applications.
The algorithm for computing the decomposi-
tion is called variously the Cholesky algo-
rithm or the square-root method." It is sim-
ply an adaptation of Gaussian elimination
and requires O(p*) work.
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QR Decomposition

Given any n X p (n > p) matrix X there is
an n X n orthogonal matrix Q such that

T R

X = :

o =[]
where R is upper triangular with nonnega-
tive diagonal elements. If Q is partitioned in
the form
P n-p

Q=(QX Q.)

then
X = OxR, (4)

an expression that is sometimes called the
OR factorization. The QR decomposition is
closely related to the Cholesky factorization,
as the relation

X'X=R'R (5)

shows.

The QR decomposition is extraordinarily
versatile. To cite one example, if X is of rank
p, Q, Q7 is the projection onto the orthog-
onal complement of the column space of X.
Thus Q, Q7 y is the residual vector y — Xb
of linear regression. As another example, the
generalized inverse X' of X is given by
X"= R 'X". Thus operations involving X*
can be replaced by a multiplication by X7
followed by the solution of upper triangular
systems.

The QR decomposition may be computed
by three distinct algorithms: the Golub—
Householder algorithm, the method of plane
rotations, and the Gram-Schmidt* method
with reorthogonalization. They each have
their own advantages and drawbacks. Each
requires O(np*) work.

Spectral Decomposition

It is well known that a symmetric matrix 4
of order p has a set of orthonormal eigenvec-

tors v}, 0, . . ., v, satisfying
Av; = Ny, (i=12,...,p). (6
If V=(v,05,..., v,), then V is orthogonal

and it follows from (6) that

VTAV=A=diag(>\l,)\2, o A). ()

The decomposition (7) is called the spectral
decomposition of A.

The spectral decomposition is widely used
both inside and outside of statistics. For
example, the spectral decomposition of a
sample correlation matrix gives estimates of
the principal components (see COMPONENTS
ANALYSIS).

All methods for computing eigenvalues
and eigenvectors are necessarily iterative.
For the spectral decomposition the proce-
dure is to perform a direct reduction to a
tridiagonal matrix* followed by the iterative
QR algorithm (not to be confused with the
QR decomposition). The amount of work
varies, but it is always O( p?). This algorithm
supersedes the older Jacobi algorithm,
which, unfortunately, is still to be found in
some statistical programs.

Singular Value Decomposition

Given any n X p (n > p) matrix X, there is
an n X n orthogonal matrix U and a p X p
orthogonal matrix ¥ such that

UWV=P¢
0

where
¥ = diag(x,b, sWps e ey ‘l/p)
with
Yy Sy > -

The numbers w;, are called the singular values
of X, the columns of U the left singular
vectors, and the columns of V' the right singu-
lar vectors. The singular value decomposition
is related to the spectral decomposition of
XX in much the same way as the QR and
Cholesky decompositions are related; com-
pare the relation

>y, > 0.

VIXTXV = ¥?
with (7).
Since there are relatively few computa-
tional tasks that require a singular value
decomposition and since the decomposition
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is expensive to compute, it is less used than
the other decompositions. On the other
hand, it has many interesting properties that
make it of theoretical interest to both numer-
ical analysts and statisticians. For example,
the matrix X of rank k nearest X in the
least-squares sense may be obtained by set-
ting ¥ = diag(¥,,¢5, - - - » %0, ..., 0) and
forming
X= U[ v } V.
0

The customary way of calculating the sin-
gular value decomposition is by an initial
reduction to bidiagonal form followed by a
variant of the QR algorithm. When n > p, a
great deal of work can be saved by first
calculating the QR decomposition of X and
then the singular value decomposition of R,
from which the singular value decomposi-
tion of X can be reconstituted.

Schur Decomposition

It is natural to attempt to generalize the
spectral decomposition of a symmetric ma-
trix to nonsymmetric matrices by asking for
a nonsingular matrix W such that W~ 'AW
is diagonal, in which case the columns of W
are eigenvectors of A. Unfortunately, such a
decomposition need not exist, and even
when it does, the matrix W may be so near a
singular matrix as to be computationally
useless. If W is restricted to be unitary, then
it can be determined so that

WHAW =T,

where T is an upper triangular matrix. The
diagonal elements of T, which are eigenval-
ues of A, can be made to appear in any
order, although usually they are thought of
as appearing in descending order of magni-
tude. Whatever the order, the decomposition
is called a Schur decomposition and the col-
umns of W are called Schur vectors. The first
k Schur vectors span the invariant subspace
corresponding to the first k eigenvalues of 4
as they appear in 7.

When A is real, it is desirable on grounds
of computational efficiency to remain in the

real field, even when 4 has complex eigen-
values. It can be shown that there is an
orthogonal matrix W such that W AW is
quasi-triangular; i.e., W'AW is block upper
triangular with at most 2 X 2 blocks. The
1 X 1 blocks are eigenvalues of 4, while the
2 x 2 blocks contain complex conjugate
pairs of eigenvalues. The decomposition is
sometimes called a real Schur decomposi-
tion.

The Schur decomposition is used in the
computation of eigenvectors and other ob-

jects related to the spectrum of 4. In fact,

many problems that would seem to require
eigenvectors for their solution actually re-
quire no more than the Schur decomposi-
tion. The decomposition is computed by an
initial reduction to Hessenberg form fol-
lowed by the QR algorithm at a cost of
O(p3) work.

Generalized Schur Decomposition

Although a theory of canonical forms exists
for the generalized eigenvalue problem Ax
= ABx, an attempt to compute one of these
forms may lead to numerical difficulties. If
one restricts oneself to unitary equivalences
of the form (4, B)—> (Y"AW, Y"BW), then
one can find unitary matrices Y and W such
that Y”AW and YYBW are both upper tri-
angular. This decomposition may be called a
generalized Schur decomposition. The eigen-
values of the problem are ratios of the corre-
sponding diagonal elements of Y”4W and
Y"BW, and they may be made to appear in
any order. If B is nonsingular, this decompo-
sition is related to the Schur decomposition
of B~ '4, since W!B ~'AW is upper triangu-
lar., When A4 and B are real, there is a
variant decomposition in which B is quasi-
triangular.

The generalized Schur decomposition is
used principally to solve the generalized ei-
genvalue problem. It is computed by a vari-
ant of the QR algorithm.

For square matrices, the total work re-
quired to compute any of the decomposi-
tions described here is O(p?); however, the
order constants vary widely. The following is



