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PREFACE

I. To the beginner. In this little book I have pre-
sented some of the concepts and methods of “real vari-
ables” and used them to obtain some interesting results.
I have not sought great generality or great completeness.
My idea is to go reasonably far in a few directions with a
minimum amount of special terminology. I hope that in
this way I have been able to preserve some of the sense
of wonder that was associated with the subject in its early
days but has now largely been lost. I hope also that some-
one who has read this book will be able to go on to one
of the many more forbidding systematic treatises, of which
there is no lack.

No previous knowledge of the subject is assumed of the
reader, but he should have had at least a course in cal-
culus. In general, each topic is developed slowly but rises
to a moderately high peak; a reader who finds the slope
too steep may skip to the beginning of the next section.

Since this is not a handbook, but more in the nature of
a course of informal lectures, I have not been at all con-
sistent about either the proportion of detailed proof to
general discussion, or about strict logical arrangement of
material.

All phrases like “it is clear,” “plainly,” “it is trivial”
are intended as abbreviations for a statement something
like ““it should seem reasonable, the reader should be able
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X PREFACE

to supply the proof, and he is invited to do so.” On the
other hand, “it can be shown . . .” is usually to suggest
that the proof is too complicated to give here, or depends
on notions that are not discussed here, and that it will
probably be better for the reader not to try to supply
the proof himself.

In stating definitions, I have frequently used “if”” where
I should really have used “if and only if.” For example,
“If a set is both bounded above and bounded below, it is
called bounded.” This definition is to be understood to
carry an additional clause, “and if it is not both bounded
above and bounded below, it is not called bounded.”

There are a number of exercises, some of which merely
supply illustrative material, and some of which are essen-
tial parts of the book. An exercise that merely states a
proposition is to be interpreted as a demand for a proof of
the proposition. Answers to all exercises are given at the
end of the book.

Paragraphs in small type deal either with peripheral ma-
terial or with more difficult questions.

I apologize in advance for whatever mistakes the alert
reader may be able to detect. None were intentionally
included; nevertheless, the detection and rectification of
mistakes is a good exercise, and fosters a healthy skepti-
cism about the printed word.

II. To the expert. Experts are not supposed to read
this book at all; since this statement will doubtless be
taken as an invitation for them to do so, I must explain
what I have tried (and not tried) to do. I have set out to
tell readers with no previous experience of the subject
some of the results that I find particularly interesting. I
have therefore tried to present the material that seemed
essential for the results I had in mind, together with as
much related material as seemed interesting and not too
complicated. Since this is not a systematic treatise, I
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have deliberately tried not to introduce any concepts or
notations, however significant or convenient, that I did
not really need to use. I have omitted integration,
reluctantly, because of the many technical details that
are needed before one gets to the interesting results.

Since this is not a treatise it has not been written like
one. The style is deliberately wordy. The axiom of
choice is frequently used but never mentioned; this book
is not the place to discuss philosophical questions, and, in
any case, after Godel’s results, the assumption of the
axiom of choice can do no mathematical harm that has
not already been done. I therefore see no point in avoiding
the axiom of choice whenever it seems natural to use it,
even in cases where it is known to be avoidable, in a book
that is not concerned with the precise logical structure of
the subject.

ITII. Acknowledgements. I am indebted to my
teachers, J. L. Walsh and D. V. Widder, for introducing
me to this kind of mathematics; to M. L. Boas and to
E. F. and R. C. Buck for criticizing early drafts of the
book; and to H. M. Clark and H. M. Gehman for help
with the proofreading.

Rarveu P. Boas, Jr.

Northwestern University
March 1960
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CHAPTER |

SETS

1. Sets. In order to read anything about our subject,
the reader will have to learn the language that is used in
it. I shall try to keep the number of technical terms as
small as possible, but there is a certain minimum vocabu-
lary that is essential. Much of it consists of ordinary
words used in special senses; this practice has both ad-
vantages and disadvantages, but has in any case to be
endured since it is now too late to change the language
completely. Much of the standard language is taken
from the theory of sets, a subject with which we are not
concerned for its own sake. The theory of sets is, indeed,
an independent branch of mathematics. It has its own
basic undefined concepts, subject to various axioms; one
of these undefined concepts is the notion of ‘“‘set” itself.

From an intuitive point of view, however, we may think
of a set as being a collection of objects of some kind, called
its elements, or members, or points. We say that a set
contains its elements, or that the elements belong to the
set, or simply are in the set. The normal usage of set, as
in “a set of dishes” or “a set of the works of Bourbaki,”
is fairly close to what we should have in mind, although
the second phrase suggests some sort of arrangement of
the elements which is irrelevant to the mathematical
concept. Sets may, for example, be formed of ordinary
geometrical points, or of functions, or indeed of other
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2 SETS Ch. 1

sets. We shall use the words class, aggregate and collection
interchangeably with set, especially to make complicated
situations clearer: thus we may speak of a collection of
aggregates of sets rather than of a set of sets of sets.

If E is a set, a set H is called a subset of E if every ele-
ment of H is also an element of E. For example, if E
is the set whose elements are the numbers 1, 2, 3, there
are eight subsets of E. Three of them contain one element
each; three contain two elements each; one is the set E
itself (a subset does not have to be, in any sense, ‘“smaller”
than the original set); the eighth subset of E is, by con-
vention, the empty set, which is the set that has no ele-
mentsatall. If Hisasubsetof Ewewrite HC Eor E D H;
sometimes we say that E contains H or that E covers H.
If H is a subset of E but is not all of E, we call H a proper
subset of E.

We write z € E to mean that z is an element of E. We
often say that  is in E, or that z belongs to E, or that E
contains x, meaning the same thing. Since the elements
of sets are usually things of a different kind from the sets
themselves, we should distinguish between the element x
and the set whose only element is z. It is often convenient
to denote the latter set by (z). The notations « € E and
(r) C E mean the same thing.

A space is a set that is being thought of as a universe
from which sets can be extracted. If @ is a space and
E c Q, the complement of E (with respect to @) is the set
consisting of all the elements of © that are not elements of
E. The complement of E is denoted by C(E). For ex-
ample, if Q consists of the letters of the alphabet and E of
the consonants (including y as a consonant), C(E) consists
of the vowels. If, however,* E consists of the single letter

* For simplicity of notation we frequently use, as here, a letter

that has just been used as the name of a set, that we are now through
with, to denote a different set.
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a, C(E) consists of the letters b, ¢, -+, z. If E consists
of the entire alphabet, C(E) is empty. If E is empty,
CE) = Q.

Exercise 1.1. Show that C(C(E)) = E.

Occasionally it is necessary to consider the complements
of a set with respect to different spaces; in such cases,
special notations will be used.

If E and F are two sets, there are two other sets that
can be formed by using them, and that occur so frequently
that they have special names. One of these sets is the
union of the two sets, written £ U F (sometimes called
their sum, and written £ + F); it consists of all elements
that are in E or in F (or in both; an element that is in
both is counted only once). The other is the <ntersection
of the two sets, written E N F (sometimes called their
product, and written E-F or EF); it consists of all elements
that are in both E and F. If E N F is empty, E and F
are called disjoint; that is, E and F are disjoint if they have
no element in common.

Exercise 1.2. Let Q consist of the 26 letters of the alphabet.
Let E consist of all the consonants (including y), and F of all
the letters that occur in the words real functions (the n is counted
only once). Show that (a) E U F = Q; (b) F D C(E); (c) C(F)
C E; (d) F N E and C(E) are disjoint.

There are various logical difficulties inherent in the uneritical
use of the terminology of the theory of sets, and they have given
rise to a great deal of discussion. Fortunately, however, they
arise only at a higher level of abstraction than we shall attain
in the rest of this book, and in contexts that we should consider
rather artificial, so that we may safely ignore them hereafter.
Some forms of words which appear to define sets may actually
not do so, somewhat as some combinations of letters which might
well represent English words (e.g., “frong”) do not actually do
so. For example, although we can safely speak of sets whose



4 SETS Ch. 1

elements are sets, we cannot safely talk about the set of all sets
whatsoever. Supposing that we could, the set of all sets would
necessarily have itself as one of its elements. This is a peculiar
property, although there are other ostensible sets that have it,
for example, the set of all objects definable in fewer than thir-
teen words (since this “set” is itself defined in fewer than thir-
teen words). We might well decide to exclude from considera-
tion those sets that are elements of themselves. The remaining
sets do not have themselves as elements; form the aggregate of
all such acceptable sets, say A. Now is A one of the sets that
we accept, or one of the sets that we exclude? If we accept 4,
it does not have itself as an element and so must be included in
the aggregate of all sets with this property; that is, 4 belongs
to A, and therefore we do not accept A. On the other hand, if
we do not accept 4, A is an element of itself; then since all ele-
ments of A are sets that are not elements of themselves, and so
are acceptable, we must accept A. Thus if 4 is a set at all, we
are involved in a logical contradiction. The only way out seems
to be to declare that the words that seem to define A do not
actually define a set.

Another paradoxical property of “the set of all sets” will turn
up in § 3.

2. Sets of real numbers. Since we have to start
somewhere, the reader will be supposed to be familiar with
the real number system. Its algebraic properties—those
connected with addition, subtraction, multiplication, and
division, and with inequalities—will be taken completely
for granted. However, there is one property of the real
numbers that is less familiar to most people, even though
it underlies concepts, such as limit and convergence, which
are fundamental in caleulus. This property can be stated
in many equivalent forms, and the particular one that we
select is a matter of taste. I shall take as fundamental
the so-called least upper bound property. Before we can
state what this property is, we need some more termi-
nology. Let E be a nonempty set of real numbers. We
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say that E is bounded above if there is a number M such
that every = in E satisfies the inequality z < M. For
example, the set of all real numbers less than 2 is bounded
above, and we can take M = 2, or M = x, or M = 100.
On the other hand, the set of all positive integers is not
bounded above. If E is bounded above, its least upper
bound is B if B is the smallest M that can be used in the
preceding definition. In our example, where E is the set
of all real numbers less than 2, the least upper bound of
E is 2. Another way of stating the definition of the least
upper bound of E is to say that it is a number B such that
every z in E satisfies * < B, while if A < B there is at
least one x in E satisfying « > A. The least upper bound
of E may or may not belong to E. In the example just
given, it does not. However, if we change the example
so that E consists of all numbers not greater than 2, the
least upper bound of E is still 2, and now it belongs to E.

So far, although we have talked about the least upper
bound of a set, we have not known (except in our illustra-
tive examples) whether there is any such thing. The
least upper bound property, which we take as one of the
axioms about real numbers, is just that every nonempty set
E that is bounded above does in fact have a least upper bound.
In other words, if we form the collection of all upper bounds
of E, this collection has a smallest element (hence the
name). We denote the least upper bound of E by sup E
or sup; cg « (sup stands for supremum). When sup E
belongs to E we sometimes write max E instead. Thus
max E is the largest element of E if E has a largest element.
The greatest lower bound, denoted by inf, is defined simi-
larly. (Cf.exercise 2.2.)

An nterval is a set consisting of all the real numbers
between two other numbers, or of all the real numbers on
one side or the other of a given number. More precisely,
an interval consists of all real numbers z that satisfy an
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inequality of one of the forms a <z <b, a <z <,
a<z<b a<z<b (where a <b), 2>a, z>aq,
z < @, or z < a. Using a square bracket to suggest < or
2> and a parenthesis to suggest < or >, we shall often
use the following notations for the corresponding intervals:
(a} b); [a) b); (a) b]) [a7 b]y (a7 °°): [a; Oo)l (—'007 a); (—-oo, a]'
Thus (0, 1] means the set of all real numbers z such that
0 <z < 1. (The use of the symbol « in the notation for
intervals is simply a matter of convenience, and is not to
be taken as suggesting that there is a number .}

Exercise 2.1. For each of the sets E described below, describe
the set of all upper bounds, the set of all lower bounds, sup E,
and inf E.

(a) E is the interval (0, 1). (b) E is the interval [0, 1).
(c) E is the interval [0, 1]. (d) E is the interval (0, 1].
(e) E consists of the numbers 1, 3, %, % ...,
(f) E is the set containing the single point 0.

Exercise 2.2. Give a detailed definition of inf E, formulate a
greatest lower bound property, and prove that it is equivalent
to the least upper bound property.

If E is not bounded above, we write sup E = +; if
E is not bounded below, we write inf E = —w. These
are convenient abbreviations, but are not to be interpreted
as 1mplying that there are real numbers 4+ and —;
there are not. We can, if we like, create such infinite num-
bers and adjoin them to the real number system, but for
most purposes it is undesirable to do so. No matter how
we introduce infinite numbers, we are bound to make
arithmetic worse than it already is: there is one impossible
operation to begin with (division by zero), but if we make
this operation possible we introduce even more impossible
operations.

Exercise 2.3. Explore the consequences of introducing numbers
o and — such that ¢/0 = +»ifa > 0,2/0 = —wifa < 0.



