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PREFACE TO THE FIFTH EDITION

In this revision a conscious attempt has been made to emphasize
the fundamentals of the theory and accent the process of analysis in
" the application of mathematics to strength of materials. The objec-
tive has been to inculcate sound methods by utilizing fundamental
ideas, physical constants, and reasonable stresses with a minimum of
memory formulas. A comprehensive grasp and working knowledge
of the subject can be obtained only by a thoughtful application of
principles. While this may require more time in the early develop-
ment of the student, it enhances his growth later.

Several chapters have been rewritten. More emphasis has been
placéd on the area-moment method. The chapter on deflection by
double integration has been retained, but the direction has been focused
toward a logical development of the topic rather than the mechanical
manipulation of equations. Integration between limits has been
omitted. By the early introduction of Mohr’s circle for the solution ¢
of simple stresses, it is hoped that the student will gain confidencé
before he is confronted with combined stress. Considerable new
material has been added.

Some changes have been made in the order of topics. Shearing
stresses in beams now immediately follows bending stresses. Special
beam topics, including reinforced-concrete beams, have been delayed
until after combined stress. References to both steel and aluminum
rolled sections are made in the text and in some problems which require
the use of the AISC Manual of Steel Construction and the Alcoa
Structural Handbook. Many new problems have been added, making
the total well over a thousand. The more difficult problems have been
placed in miscellaneous lists at the ends of the chapters.

The writer acknowledges his indebtedness to Prof. J. E. Boyd, who
pioneered this work and furnished much enthusiasm. His colleagues,
Profs. P. W. Ott, R. W. Powell, E. C. Clark, and C. T. West have been
. very generous with their ideas and inspiration. Prof. M. G. Fontana
of the Department of Metallurgy and Dr. John Zambrow of the
* Engineering Experiment Station furnished new data. Richard T.
Hang of the Department of Engineering Drawing made the drawings,
which uphold the tradition of the previous editions.

S. B. Foix

Covrumeus, On1o
M arch, 1950



PREFACE TO THE FIRST EDITION

This book is intended to give the student a grasp of the physical
and mathematical ideas underlying the Mechanics of Materials,
together with enough of the experimental facts and simple appli-
cations to sustain his interest, fix his theory, and prepare him for
the technical subjects as given in works on Machine Design, Rein-
forced Concrete, or Stresses in Structures.

It is assumed that the reader has completed the Integral Cal-
culus, and has taken a couise in Theoretical Mechanics which includes
statics and the moment of inertia of plane areas. Chapters XVI and
XVII give a brief discussion of center of gravity and moment of
inertia. Students who have not mastered these subjects should study
these chapters before taking up Chapter V (preferably before beginning»
Chapter I). :

The problems, which are given with nearly every article, form an
essential part of the development of the subject. They were prepared
with  the twofold object of fixing the theory and enabling the student
to discover for himself important facts and applications. The first
problems of each set usually require the use of but one new principle—
the one given in the text which immediately precedes; the later prob-
lems aim to combine this principle with others previously studied and
with the fundamental operations of Mathematics and Mechanics.
The constants given in the data or derived from the results of the
problems fall within the range of the figures obtained from actual tests
of materials. Many of the problems are taken directly *from such
measurements. Some of them are from tests made by the author or
his colleagues at the Ohio State University ; others are from bulletins of
the University of Illinois Engineering Experiment Station, from “Test
of Metals” at the Watertown Arsenal, and from the Transactions of
the American Society of Civil Engineers.

This book is designed for use with “Cambria Steel,” to which
references are made by title instead of by page, so that they are
adapted to any edition of the handbook. _
. The author acknowledges his indebtedness for suggestions and
c.wucisms to Professors C. T. Morris, E. F. Coddington, Robert
Meiklejohn, K. D. Swartzel, and many others of the Faculty of the

Vit

*
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vili PREFACE TO THE FIRST EDITION

College of Engineering; and to Professor Horace Judd of the Depart-
ment of Mechanical Engineering for the material for several of the
half-tones. He also expresses his obligations to the books which
have helped to mold his ideas of the subject,—Johnson’s ‘“ Materials
~of Construction,” Ewing’s “Strength of Materials,” and especially
the textbooks which he has used with his classes,—Merriman’s
“Mechanics of Materials,” Heller’'s ““Stresses in Structures,” and
Goodman’s ‘“ Mechanics Applied to Engineering.”

The symbols used in the mathematical expressions are much the
same as in Heller’s ““Stresses in Structures.” '

J. E. B.

CoLumBus, Onro
November 6, 1911 -
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CHAPTER 1
STRESSES

1. Strength of Materials. That branch of mechanies which treats
of the changes in form and dimensions of elastic solids and the forces
which cause these changes is called the mechanics of materials. When
the physical constants and the results of experimental tests upon the
materials of construction are included with the theoretical discussion
of the ideal elastic solid, the entire subject is called the strength of mate~
rials or the resistance of materials. o = Al

2. Tension. Figure 1 shows a rubber
band which is suspended from a hori-
zontal bar and carries a hook at the lower
end. When a small weight is hung on
the hook, the rubber band is stretched;
its length is increased by an amount a,
while its eross section is reduced. When

a second weight is added, there is an y e

additional elongation b. If the weights @ y

are equal, the elongation a caused by the b4

first weight is equal to the elongation b ~ 8 r—t -1—-—
caused by the second weight. When . %

the weights are removed, the rubber band &
returns to its original length and cross

section. Fig, 1, Rubber bands in tension.

If steel, iron, wood, concrete, stone; or other solid material is used
instead of rubber, the results are similar. There is this apparent dif-
ference: while the rubber may be stretched to twice or three times its
original length and still return to its original size and shape after the
load is removed, one of the other materials may be stretched only a
very small amount (usually less than 0.002 of its length), without
receiving a permanent change in its dimensions. Again, the force
required to produce a relatively small increase in the length of a rod of
wood or steel, for instance, is many times greater than that necessary
to double the length of a soft rubber band of equal cross section. These
differences between the behavior of soft rubber and other solid mate-
- rials ave differences of degree and not of kind. Essentially they are
alike.

1



2 STRENGTH OF MATERIALS {Amr. 3

The rubber bands shown in Fig. 1 are subjected to the action of two
forces: the force of the weights pulling downward, and the reaction of
the support pulling upward. The bands are in tension. A body is
said to be in tension when it is subjected to two sets of forces whose
resultants are in the same straight line, opposite in direction, and
» directed away from each other.

8. Compression. When a body is subjected to two sets of forces
. whose resultants are in the same straight line, oppo-
~ site in direction, and directed foward each other, it
is said to be in compression. In Fig. 2, the block B
i8 in compression under the action of the 50 pounds
pushing down and the reaction of the support pushing
up. The effect of compression upon a body is to
shorten it in the line of the forces and increase its
. dimensions in the plane perpendicular to this line.
Tension and compression may be represented as in
:;f)?{. 2. Compres- g 3, in which the arrows represent the forces, and
i3 the small rectangles represent the bodies, or portions
of a body, upon which the forces act. The rectangles are often
omitted; a pair of arrows with their heads together indicates com-
pression, and a pair with their heads in the opposite sense indicates
tension.

4. Force. The force exerted by one body on another at- their
surface of contact produces a stress in the bodies. In Fig. 2 the total
force is 50 pounds. The stress produced is compressive in block B.
The support pushes up against the body with an equal force, The
total load on a body will always be called the Jorce, or load.

Figure 4 represents a bar subjected to a horizontal pull of P pounds.
If the bar is supposed to be cut by an imaginary :
plane at C, the portion A to the left of this - rower -@-
plane section is in equilibrium under the action  + ol
of the external pull P, toward the left and an T
equal opposite pull P; at the section €. This force Ps across the sec-
tion is the pull exerted by the right portion B upon the left portion A.
In like manner, the right portion B isin equilibrium under the external
pull P, at the right end of the bar and the internal P, equal and oppo-
site to P;, exerted by the left portion 4 upon the right portion B across
the section, as shown separately in Fig. 4 11.

Figure 4,11 is a free-body diagram for body B. Equilibrium of a
free body is maintained by the action of fotal forces on the body. “These
forces may be internal or external.

60 Lbs.




CHae. 1] STRESSES : ' 3

b.. Unit Stress; Intensity of Stress. The average unil compressive
or tenstle siress at any section of a body is calculated by dividing the
total force by the area of the cross section at right angles to éhe force.
If a vertical force P is applied to the eylinder C of Fig. 5 by means of
the plate B and the reaction of the support D, the unit stress at any
section is given by the equation

= - Formula I!

Ly ormula
in which s is the unit stress, P i8 the external force, and A is the arca of
cross section perpendicular to the direction of the stress. Unit siress

b P
- A — B
L.
I 8
) .
Fi1a. 4. Stress at section. Fia. 5. Area under
P stress.

frequently is called intensity of stress. In American engineering prac-
tice, unit stresses generally are given in pounds per square inch or kips
per square inch.  (One kip or kilo pound is 1,000 pounds.) Frequently
compressive stresses in large masonry structures are expressed in tons
per square foot. It is the common practice to give bearing pressure of
masonry on soils in this way. British engincers employ long tons per
square inch as well as pounds per square inch to express the intensity
of stress in steel and similar materials. Continental? engineers, of
course, use kilograms per square centimeter. Physicists prefer dynes
per square centimeter or dynes per square millimeter. Stress in
pounds per square inch may be written psi.

In elementary mechanics the tensile or compressive stress exerted
by a bar is usually assumed to lie in the axis of the member. In reality
each longitudinal element exerts its portion of the stress. The force

! Important formulas, which should be understood and memorized, are desig-
nated by Roman numerals in this book.

? Théy sometimes use atmospheres. One atmosphere equals 14.7 pounds per
square inch, or 1.033 kilograms per square centimeter.



4 STRENGTH OF MATERIALS [Arr. 5

assumed to act along the axis is the resultant of the forces exerted by
all the elements. The unit stress obtained by dividing the total
applied force by the area of the cross section is the average unit stress
in the member.

Figure 6,1 shows & bar under tensile stress which is uniform in all
parts of the section. The arrows which represent the stress of different
elements are all of equal length. Figure 6,11 shows a bar under uni-
form compressive stress. Figure 6,111 shows compressive stress which

increases uniformly from left to

14 V5 1% right.

When the stress is uniform, the
A A A resultant stress passes through the
center of gravity of each cross sec-
1 tion, which ecorresponds to the
I " center of gravity of a short piece of
uniform length cut from the bar.
When the stress is not uniform, the
location of the resultant may" be
found by calculating the sum of the
7 : _f;pj 1= moments with respect to some par-
allel plane of the force on each ele-
ment of area and dividing this mo-
ment by the sum of the forces. In other words, the resultant passes
‘through the center of gravity of a solid whose base is the section of the
bar and whose altitude at any point is proportional to the unit stress
at that point. '

At

-~
—e—
—pr—

e
(2]
———

Fia. 8. Representation of stress.

Problems
(Find the dimensions of rolled shapes in a steel or aluminum handbook.)

5-1. The cylinder of Fig. 5 is 2 in. in diameter and 5 in. long. Find the unit
stress when a vertical load of 14,000 1b is applied by means of the plate B.
. Ans. 4,456 psi.
B-2. A piece 8 in. long is cut from a 5- by 3- by }4-in. angle section by planes per-
pendicular to its length. The piece stands vertical and a load of 30,000 1b is
applied at the top by means of a 5- by 8- by 1-in, steel plate. Find the unit
stress in the angle. Ans. 3= 8,000 psi.
8-3. Two edges of the plate in Prob. 5-2 lie in the planes of the back of the legs of
the angle section. The load is applied to the plate by means of a steel ball,
Where must this ball be placed in order that the unit stress in the angle may
be uniform? )
Ans. 1.75 in. from one 3-in. edge, and 0.75 in. from one 5-in. edge.
5-4. A 10-in. 25.4-1b standard I beam 12 in. long stands on end and carries &
total vertical load of 15,000 1b on top. Find the average unit stress, *
Ans. 2,030 psi.
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§-5. The beam in Prob. 54 rests on one flange and the load is applied on the tep
flange. Find the maximun unit stress and indieate the cross section where
it oceurs, Ans. 4,030 psi.

5-8. A 12-in. length of 6-in. standard pipe is placed between two steel plates and

' subjected to a force of 30,000 1b, Find the unit compressive stress in the
cross section. Ans. 5,380 pai.

5-T. A 4- by 3-in. 2.84-1b aluminum tee section 12 in. long stands on end and
carries an 8,000~1b load on top., Find the unit stress in a eross section.

Ans, 3,420 psi.

5.8. A block in the form of a frustum of a pyramid is 2 in. square at the top, 3 in.

" mquare at the bottom, and 8 in. high. Find the unit stress 2 in. from the
bottom and 4 in. from the bottom when & load of 7,200 1b is placed on the top.
Ane. 952.1 psi; 1,152 psi.

5-9. In a short block 2 in, square, the unit stress increases uniformly from 100 psi
in the left face to 700 pai in the right face, Find the total load.

Ans. P = 1,600 1b.
5-10. In Prob. 5-9, find the loeation of the resultant force. Represent the stress
in the front face by a trapezoid 100 units high on the left and 700 units high
on the right. Find the center of gravity of the trapezoidal wedge which
represents the force by combining the moment and area of two triangles,
or the moment and area of a triangle and a rectangle.

Ans, 1.25 in. from the left face; 1 in. from the front face.
8-11. A short block of triangular section has two faces each 13 in, wide, and one
face 10in. wide. The block is subjected to compression parallel to its length
which causes the unit stress to increase uniformly from 100 psi at the inter-
section of the 13-in. faces to 700 psi in the 10-in. face. Find the total load
by integration. Show that this load equals the area of the section multi-

plied by the unit stress at the center of gravity of the cross section.
Ans. P = 30,000 1b.
5-18. By integration of moments, find the line of action of the resultant force of
Prob. 5-11, Ans. 8.8 in. from the intersection of the 13-in. faces.

8. Working Stress; Allowable Unit Stress. Working stresses are
the unit stresses to which the materials of a machine or structure are
subjected. The allowable unit stress for a given material is the maxi-
mum unit stress which, in the judgment, of some competent and official
authority, should be applied to this material. For instance, the
specifications of the American Institute of Steel Construction give
20,000 pounds per square inch as the unit tensile stress for structural
steel. For the compressive stress in relatively short blocks of select-
grade white oak in situations which are always dry, the American
Bociety for Testing Materials specifies 1,000 pounds per square inch
parallel to the grain. The Joint Committee of Concrete and Rein-
forced Concrete! gives 25 per cent of the compressive strength at 28
days as the allowable compressive stress of concrete.

1 This committee iz made up of representatives from the American Society
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Tuble 1 gives a few allowable stresses in tension and compression.

Tasri 1. Arrowasre UniT Stress

; (This table showld be memarized.)
i 5 A
rMaterial N Te;n:ion 3 C‘om;:‘se;sslon,

Structural steel.. ... ... .. ... IR e 20,000 20,000
(Gt P SR o e S 16,000 16,000
RV OBRIE Sron), ol e sl e s b 12,000 12,000
Toyhiiv b e s e ISR 3,000 15,000
R G L R B U 25,000 25,000
Bolts on nominal area at root of thread.. .. . ... .. .. 20,000
Butt welds, section through throat.............. .. 20,000
Aluminum alloy 178-T and 248-T..... . Jrbic ML 15,000 15,000
Portland cement concrete.....,..................| .. 600

Vith | Across
grain | grain

Common-grade timber in dry location:

Douglas fir, coastregion................... .. | ... . 880 325
Southern yellow pine............. ......... .. | " 880 325
RRIER OF Ted 0ak:. .. L il it i i e e L 300 500

4 steel bar 1 foot long and 1 square inch in cross section weighs 3.4
pounds. For. estimating purposes 1 cubic inch of steel weighs 0.283
pounds and 1 eubic inch of aluminum weighs 0.1 pound, although
alloys will vary considerably from these figures.

Problems
(Use the data of Table 1 unless otherwise specified.)

8-1. Find the total allowable load, in compression parallel to the grain, which
may be applied to a 4- by 6-in. short block of southern yellow pine.
Ans. 21,120 1b.
6-2. What must be the dimensions of a cubical block of white oak which supports
a load of 50,000 1b? (Two solutions.)
6-3. An I bar of structural steel, 1 in. thick, exerts a pull of 60,000 Ib. What is
its minimum width?
6-4. A piece of 6-in. wrought-iron water pipe is 2 ft long and 63¢ in. in outside
diameter. What is the allowable load on the pipe standing on end ?
Ans. 66,970 b,

of Civil Engineers, the American Society for Testing Materials, the American
Railway  Engineering Association, the American Concrete Institute, and the
Portland Cement Association.
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6-5. A yellow-pine beam 8 in. wide rests on the end of the pipe of Prob. 6-4. A

" steel plate, 10 in. square, transmits the load from the beam to the pipe.

Find the allowable load. Ans. 26,000 Ib.

6-8. A 1-in. steel bolt supports a load by means of a square standard nut. What

is the allowable load? (Use AISC handbook.) Ang, 11,020 1b.

6-7. In Prob. 6-6 what is the bearing stress on the nut when the bolt carries its

allowable load? Ans. 7,720 1b,

6-8. The bolt of Prob. 6-6 runs vertically through an oak beam. Find the
diameter of the washer required.

6-9. In Fig. 7 the pin-connected steel truss is hinged at J and held by a horizontal

force at A. Find the diameter of the round rod A B. Ans. 1.67 in.
/G H
12
= ol 5 0. %
= —E i B 2t 3 e
o &
A SN 20
i = 23 o 8’
- S ' )
-] C 4 ‘ / . ;
7
S s X L_,ﬂi = el R L7
2 NS l‘— ol £ b—%
) ')
Fie. 7. Fic. 8.

6-10. The pin-connected aluminum truss shown in Fig. 8 is hinged to the wall af ¢
and held by a force at D. TFind the diameter of a round rod to be used at CD.

Ans. 1.28 in.
6~11. What is the allowable load in tension on a steel rod which is 5 ft 6 in. long and
weighs 70 1b?

7. Deformation; Unit Deformation. The changes in dimensions
which oceur when forces are applied to a body are called deformations.
In Fig. 1, the increase in length a, which takes place when the first
load is applied, is the deformation caused by that load; the increase b
1s the deformation caused by the second load; and @ + b is the deforma-
tion caused by the two loads. The deformation produced by a tensile
force or pull is an elongation. The deformation produced by a com-
pressive force or push is a compression. Compression is negative
elongation. A deformation which remains after the force is removed
is called a set,

Unit deformation in a bedy is the deformation per unit length. In
a bar of uniform cross section, the unit deformation is calculated by
dividing the total deformation of a given portion of the bar by the
original length of the portion. In Fig. 1, the length @ divided by the
original length of the band is the unit deformation caused by the first
load. Unit deformation is frequently called relative deformation.
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In dlgebraic equations many authors represent unit deformation by
the letter ¢ (epsilon).

Deformation is frequently called strain. The word strain was for-
merly used as a synonym for stress and is still sometimes heard in that
sense. The general practice of technical literature, however, is now to
use strain to mean deformation. When employed in this book, it will
always have that meaning. Total deformation in a length L some-
times is represented by e. Unit deformation is then

=7 Formula 11

Problems

i-1. When a steel bar is subjected to a tensile stress, a portion, originally 8 in. long,
in stretched 0.0052 in. Find the unit elongation. Ans. 0.00065

7-2. An oak post under compression is shortened 0.1476 in. in a length of 15 ft.
Find the unit deformation. Ans. 0.00082

T-8. A 7g-in. steel rod 20 in. long is subjected to a pull of 15,176 Ib. A portion of
the rod, originally 8 in. long, is stretched 0.0054 in. when the force is applied.
Find the unit stress and the unit deformation.

7-4. The coefficient of expansion of steel is 0.000012 for 1°C. Find the unit
deformation and the total deformation in a steel rod 15 ft long when the tem-
perature changes from 50 to 20°C. Solve when the temperature changes
from 14°F to 14°C, Ans. 0.000288; 0.05184 in.

8. Elastic Limit. When a force is applied to a solid body and
then removed, the body returns to its original size and shape, provided
the unit stress developed by the force has not exceeded a certain limit.
If the stress has gone beyond this limit, the body does not return
entirely to its original dimensions but retains some permanent deforma-
tion or sef. The unit stress at this limit is called the elastic limit of the
material. A soft-steel rod may be stretched 0.0054 inch in a gage
length of 8 inches by a pull of 20,000 pounds per square inch. When
this load is removed, the rod shortens to its original length. A pull of
30,000 pounds per square inch may stretch this rod 0.0081 inch, and
the rod may return to its original length when the load is removed.
A load of 32,000 pounds per square inch may stretch the rod 0.0200
inch. When this load is removed, the rod may have an elongation of
0.0110 inch. The rod shortens about 0.0090 inch, while the remaining
elongation of 0.0110 inch persists as a permanent set. Evidently, the
elastic limit is between 30,000 and 32,000 pounds per square inch.

It is difficult to determine the elastic limit with exactness. A test
piece may appear to have no residual deformation when measured with
the usual apparatus and still show some set when more delicate instru-
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ments are employed. Time is a factor. If a load is applied tor a
considerable period, it causes somewhat greater deformation and cen-
siderably greater set than it would cause if the time of applicdtion were
shorter. Some materials, such as steel, after having been subjected to
comparatively large unit stress, frequently show a set of more or less
temporary character. When the load is first removed, there is a
residual deformation, which may partly or wholly vanish after some
little interval.

9. Modulus of Elasticity. For all stresses below the elastic limit,
the ratio of the unit stress to the unit deformation is nearly constant.
The quotient obtained by dividing any given change of unit stress by
the accompanying change in unit deformation is called the modulus of
elasticity or Young's medulus.! Modulus of elasticity is represented in
physical equations by the letter E. In algebraic language, the defini-
tion of the modulus of elasticity is

j e g Formula 1T

in which E is the modulus of elasticity, s represents a change in the
unit stress, and e is the change in unit deformation which accompanies

this ehange of unit stress.

Problems

9-1. A 2- by 1.5-in, bar is tested in tension. When the load changed from 3,000
to 48,000 Ib, the dial reading for a gage length of 8 in. changed from 0.00080
to 0.00492 in. Find the change in unit stress, the change in unit deforma-
tion, and the modulus of elasticity. Ans. E = 29,130,000 psi.

9-2. A steel rod 0.600 in. in diameter is stretched 0.00586 in. in a gage length of

8in. when the load changed from 1,415 to 7,067 lh. Using the area to three

significant figures, find the modulus of elasticity. Ans. E = 29,850,000 pei.

A timber piece 2 in. square is shortened 0.014 in. in 8 length of 20 in. Find

the force required if the modulus of elasticity is 2,000,000 psi. How does

the unit strese compare with the allowable eompressive stress for southern
pine? \

9-4. A 10-in. 30-1b standard channel 10 ft long is subjected to a compressive load
of 88,000 Ib parallel to its length. How much is the channel shortened if
E = 29,300,000? Ans. 0.0410 in,

9-6. A 4-by 3- by 5{¢-in. 2.34-1b aluminum tee 12 in. long shortened 0.000876 in.
in an 8-in. gage length when the total load on the end incressed from 484
to 6,282 Ib. Find the modulus of elasticity. Ans. 10,960,000 psi.

9-6. In the pin-connected steel truse of Fig. 7, the member A is a 24-in. square
bar. If the modulus of elasticity ie 30,000,000 psi, find the total change in
length which oceurs when the 2,600-Ib load is applied.

©
1

(2]

b

1 Dr. 'fhnmas Young (1773-1829), who was not an engineer, brought the idea
to the attention of the English engineers.



