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On certain classes of Baire-1 functions
with applications to Banach space theory

R. HAYDON, E. ODELL and H. ROSENTHAL

R. Haydon E. Odell, H. Rosenthal

Brasenose College The University of Texas at Austin
Oxford OX1 4AJ Austin, Texas 78712

England U.S.A.

0. Introduction.

Let X be a separable infinite dimensional Banach space and let K denote its dual ball, Ba(X*),
with the weak* topology. K is compact metric and X may be naturally identified with a closed
subspace of C(K). X** may also be identified with a closed subspace of A (K), the Banach
space of bounded affine functions on K in the sup norm. Our general objective is to deduce
information about the isomorphic structure of X or its subspaces from the topological nature
of the functions F' € X** C A, (K). A classical example of this type of result is: X is reflexive
if and only if X** C C(K).

A second example is the following theorem. (B;(K) is the class of bounded Baire-1 func-
tions on K and DBSC(K) is the subclass of differences of bounded semicontinuous functions
on K. The precise definitions appear below in §1.) We write Y < X if Y is isomorphic to a

subspace of X.

Theorem A. Let X be a separable Banach space and let K = Ba(X*) with the weak*
topology.

a) [35] ¢ — X iff X**\ By(K) # 0.

b) [7] o — X iff [X** N DBSC(K)]\ C(K) # 0.

Theorem A provides the motivation for this paper: What can be said about X if X** N
[Bi(K)\ DBSC(K)] # 0? To study this problem we consider various subclasses of B;(K) for
an arbitrary compact metric space K. J. Bourgain has also used this approach and some of our
results and techniques overlap with those of [8,9,10]. In a different direction, generalizations
of B1(I) to spaces where K is not compact metric with ensuing applications to Banach space
theory have been developed in [22].

In §1 we consider two subclasses of By(K) denoted By/4(K) and B, 5(K) satisfying

(0.1) C(K) C DBSC(K) C Bya(K) C By o(K) C By(K) .

Research partially supported by NSF Grant DMS-8601752.



2 On certain classes of Baire-1 functions with applications to Banach space theory

Our interest in these classes stems from Theorem B (which we prove in §3).

Theorem B. Let K be a compact metric space and let (f,) be a uniformly bounded sequence

in C(K) which converges pointwise to F' € B(K).

a) If F ¢ By;3(K), then (fn) has a subsequence whose spreading model is equivalent to
the unit vector basis of £;.
b) If F € By;4(K)\ C(K), there exists (gn), a convex block subsequence of ( f,), whose

spreading model is equivalent to the summing basis for cg.

Theorem B may be regarded as a local version of Theorem A (see Corollary 3.10). In
fact the proof is really a localization of the proof of Theorem A. In Theorem 3.7 we show that
the converse to a) holds and thus we obtain a characterization of B1(K) \ By/2(K) in terms
of ¢; spreading models. We do not know if the condition in b) characterizes By /4(K) (see
Problem 8.1).

Given that our main objective is to deduce information about the subspaces of X from
the nature of F € X** N By(K), it is useful to introduce the following definition.

Let C be a class of separable infinite-dimensional Banach spaces and let F' € B{(K). F
is said to govern C if whenever (f,) C C(K) is a uniformly bounded sequence converging
pointwise to F, then there exists a Y € C which embeds into [(f,)], the closed linear span of
(fr). We also say that F' strictly governs C if whenever (f,) C C(K) is a uniformly bounded
sequence converging pointwise to F', there exists a convex block subsequence (g,) of (f,) and
a Y € C with {(gn)] isomorphic to Y.

Theorem A (b) can be more precisely formulated as: if F € DBSC(K)\ C(K), then F
governs {co}. (In fact Corollary 3.5 below yields that F € B,(K )\ C(K) strictly governs {co} if
and only if F € DBSC(K).) In §4 we prove that the same result holds if F € DSC(K) \ C(K).
(A more general result, with a different proof, has been obtained by Elton [13].) We also note
in §4 that there are functions that govern {co} but are not in DSC(K).

In §6 we give a characterization of B;/4(K) (Theorem 6.1) and use it to give an example
of an F € By;4(K) \ C(K) which does not govern {co}. Thus Theorem B (b) is best possible.

In §7 we note that there exists a ' and an F' € By ,(K) which governs {¢,}. We also give
an example of an F' € By 3(K) which governsC = {X : X is separable and X™* is nonseparable}
but does not govern {¢;}.

§1 contains the definitions of the classes DBSC(K), DSC(K), By/5(K) and By /4(K). At
the end of §1 we briefly recall the notion of spreading model. In §2 we recall some ordinal
indices which are used to study B;(K). A detailed study of such indices can be found in [25].

Our use of these indices and many of the results of this paper have been motivated by [8,9,10].
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Proposition 2.3 precisely characterizes B, 3(K) in terms of our index.

In §5 we show that the inclusions in (0.1) are, in general, proper. We first deduce this
from a Banach space perspective. Subsequently, we consider the case where K is countable.
Proposition 5.3 specifies precisely how large A" must be in order for each separate inclusion in
(0.1) to be proper.

In §8 we summarize some problems raised throughout this paper and raise some new
questions regarding By ;4 (K).

We are hopeful that our approach will shed some light on the central problem: if X is in-
finite dimensional, does X contain an infinite dimensional reflexive subspace or an isomorph of
co or £17 A different attack has been mounted on this problem in the last few years by Ghous-
soub and Maurey. The interested reader should also consult their papers (e.g., [18,19,20,21]).
Another fruitful approach has been via the theory of types ([26], [24], [38]). We wish to thank
S. Dilworth and R. Neidinger for useful suggestions.

1. Definitions.

In this section we give the basic definitions of the Baire-1 subclasses in which we are interested.
Let K be a compact metric space. By (') shall denote the class of bounded Baire-1 functions
on K, i.e., the pointwise limits of (uniformly bounded) pointwise converging sequences (f,) C
C(K). DBSC(K)={F : K — R | there exists ()32, € C(K) and C < oo such that fo =0,
(fn) converges pointwise to F' and

o0
(1.1) D fnt1(k) = fa(k) < C forall ke K} .

n=0
If F € DBSC(K) we set |F|p = inf{C | there exists (fn)52, € C(K) converging pointwise to
F satisfying (1.1) with fo = 0}. DBSC(K) is thus precisely those F’s which are the “difference
of bounded semicontinuous functions on K.” Indeed if (f,) satisfies (1.1), then F = F} — F}
where Fy(K) = £ (fat1 — fa)* (k) and Fa(k) = 552 o(fass — fa)~(k) are both (lower)
semicontinuous. The converse is equally trivial.

It is easy to prove that (DBSC(K),| - |p) is a Banach space by using the series criterion

for completeness. The fact that ||F||oc < |F|p but the two norms are in general not equivalent

on DBSC(K), leads naturally to the following two definitions.
By/2(K) = {F € By(K) | there exists a sequence
(Fo.) € DBSC(K) converging uniformly to F'} and
Byj4(K) = {F € B)(K)| there exists (F,)

converging uniformly to F with sup |F,|p < oo} .
n
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It can be shown that DBSC(K) is a Banach algebra under pointwise multiplication, and
hence By3(K) can be identified with C(£2), where Q is the “structure space” or “maximal
ideal space” of Q. Thus By /4(K) also has a natural interpretation in the general context of
commutative Banach algebras.

There is a natural norm on By /4(K) given by
|Flyjs =inf{C : there exists (F,) converging uniformly with sup |Fy|p < C'}

Furthermore (By/4(K),| - |1/4) is a Banach space. One way to see this is to use the following

elementary

Lemma 1.1. Let (M,d,) be a complete metric space and let d be a metric on M with
di(z,y) < dz(z,y) for all z,y € M. If all dy-closed balls in M are also d;-closed, then (M, d,)

is complete.

The hypotheses of the lemma apply to M = {F : |F|, /4, < 1} and d, d; given, respectively,
by || - || and | - ll/4~

Remark 1.2.  While we shall confine our attention to Bj;; and Bj,4, one could of course

continue the game, defining
By s(K) = {F € By(K) | there exists (F,) C DBSC(K)
with |Fp, — F|;/4 — 0} and
By16(K) = {F € Bi(K) | there exists F,

with sup |Fu|p < 0o and |F, — F|y/4 — 0} .
This could be continued obtaining
DBSC(I{) g e g B1/22n(1{) _C_ B1/22n—l(I\’) g e g BI/Z(I{)

with By 2+ (K') having a norm |- |y 22» which, using Lemma 1.1, is easily seen to be complete.

There is another class of Baire-1 functions that shall interest us, the differences of (not

necessarily bounded) semi-continuous functions on K.
DSC(K) = {F : K — IR | there exists a uniformly bounded sequence
(fr)azo € C(I) converging pointwise to F' with

Z | frt1(k) — f(k)| < oo for k€ K} .

n=0
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An interesting subclass of DSC(K), is PS(K), the pointwise limits of pointwise stabilizing

(pointwise ultimately constant) sequences.

PS(K) = {F € B1(K) | there exists a uniformly bounded sequence
(fn) € C(K) with the property that for all k € K there exists

m € N such that fn(k) = F(k) for n>m} .

Remark 1.8. We discuss PS(K) in Proposition 4.9. Both of these classes were considered in
[10], and as noted there, if an indicator function 14 € By(K), then 14 € PS(K). Indeed A
must be both F, and G5 (cf. Proposition 2.1 below) and so we can write A = |J,, Fn =), Gn
where F; C F, C --- are closed sets and G; O G; D --- are open sets. Then by the
Tietze extension theorem, for each n choose f, € Ba(C(K)) with f, identically 1 on F, and

identically 0 on K \ G,. Thus for all k € K, (fn(k))n is ultimately 1 4(k).

The summing basis (s,) for (an isomorph of) ¢y is characterized by

k
1D ansall = sup| 3 ail

Let (z,) be a seminormalized basic sequence. A basic sequence (e,) is said to be a
spreading model of (z,) if for all k € IN and all € > 0 there exist N so that if N < n; < ny <
-+» < ng and (a;)¥ € R with sup; |a;| < 1, then

k k
1" szl = 1Y aweill| <
=1 1=1

For further information on spreading models see [4].

We recall that if (f,) € Ba(C(K)) converges pointwise to F € B;(K) \ C(K) then
there exists a C' = C(F) such that (f,) has a basic subsequence (f},) with basis constant C'
which C-dominates (s,). Thus C|| Y anfL|| = || Y ansall, for all (an) € R (see e.g., [31]).
Furthermore (f) can be taken to have a spreading model [4]. The constant C' depends only
on sup{osc(F, k) | k € K} (see §2 for the definition of osc(F,k)).

Finally we recall that a sequence (g,) in a Banach space is a convez block subsequence of
(fr)if gn = f;;,‘d_l a; f; where (p,) is an increasing sequence of integers, (a;) € R* and for

fott = 1.

eachn, 3 ;2% . a;i

2. Ordinal Indices for B,(K).

Let (K,d) be a compact metric space and let F': K — IR be a bounded function. The Baire

characterization theorem [3] states that F' € B, (K ) iff for all closed nonempty L C K, FlL has
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a point of continuity (relative to the compact space (L,d)). This leads naturally to an ordinal
index for Baire-1 functions which we now describe.

For a closed set L C K and ¢ € L let the oscillation of FIL at £ be given by oscp(F,¢) =
lim, g sup{f(€1) — f(¢2) | £&; € L and d(¢;,£) < ¢ for i = 1,2}. We define the oscillation of F'
over L by osc, F' = sup{F({;) — F(¢3) | 1,42 € L}.

For § > 0, let Ko(F,6) = K and if @ < wy let

Ko41(F,6) = {k € K4(F,0) |05CK,,(F,6)(Fa k) > 5} .

For limit ordinals «, set

Ko(F,8) = () Ks(F,5) .
B<a

Note that Ko (F, ) is always closed and K, (F,§) 2 Kg(F,é) if @« < . The index B(F,§) is
given by
B(F,6) = inf{a < w | Ko(F,6) =0}

provided Ko(F,8) = @ for some a < w; and B(F,é) = w; otherwise. Since K is separable,
the transfinite sequence (Ko (F,8))a<w, must stabilize: there exists § < w; so that K, (F,§) =
Kg(F,6) for B > a.

The Baire characterization theorem yields that 3(F,8) < wy for all § > 0 iff F' € By(K).
In fact we have the following proposition. In its statement A denotes the algebra of ambiguous
subsets of K. Thus A € A iff A is both F, and Gs. Also we write [F < a] for the set
{k € K| F(k) < a}.

Proposition 2.1. Let F : K — R be a bounded function on the compact metric space K.

The following are equivalent.

1) F € By(K).

2) B(F,8) < w, forall § > 0.

3) For a and b real, [F < a] and [F > b] are both G subsets of K.

4) For U an open subset of R, F~1(U) is an F, subset of K.

5) For a < b, [F < d] and [F > b] may be separated by disjoint sets in A. Equivalently,
there exists A € A with [F < a] C Aand AN [F >b] = 0.

6) F is the uniform limit of a sequence of A-simple functions (A-measurable functions
with finite range).

7) F is the uniform limit of a sequence (g,) € DSC(K).

8) F is the uniform limit of a sequence (g,) C PS(K).
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The proof is standard and can be compiled from [23]. We are more interested in an
analogous characterization of B)/;(K). Before stating that proposition we need a few more
definitions.

D shall denote the algebra of all finite unions of differences of closed subsets of K. D is
easily seen to be a subalgebra of A.

One of the statements in our next proposition involves another ordinal index for Baire-
1 functions, a(F;a,b), which as we shall see is closely related to our index. For a < b, let

Ky(F;a,b) = K and for any ordinal a, let
Ko41(F;a,b) = {k € Ko(F;a,b)| forall e >0andi=1,2,
there exist k; € I{o(F;a,b) with d(ki, k) <e,
F(ky)>b and F(k) < a} .

Equivalently, Ko41 = Ko N [F < a] N Ko N [F > b]. At limit ordinals a we set

Ko(F;a,b) = () Ks(F;a,b) .
B<a
As before these sets are closed and decreasing. We let a(F;a,b) = inf{y < w; | K,(F;a,b) = 0}

if K,(F;a,b) =0 for some v < w; and let a(F;a,b) = w; otherwise.

Remark 2.2. The index a(F;a,b) is only very slightly different from the index L(F,a,b)
considered by Bourgain [8]. L(F;a,b) = inf{n < w; | there exists a transfinite increasing
sequence of open sets (Gq)a<n With Go = 0, G, = K, Ga41\ G4 is disjoint from either [F < a]
or [F > blforalla <nand Gy =,y
if a(F;a,b) = n+n where 7 is a limit ordinal and n € IN, then L(F,a,b) € {n+2n, n+2n—1}.
In Proposition 2.3 we shall show that a(F';a,b) < w for all a < biff B(F,é) < w for all § > 0.

G4 ify < nisalimit ordinal}. In fact one can show that

We note that a more general result has subsequently been obtained in [25]. Indeed if we define
B(F) = sup{B(F;8) | 6§ > 0} and a(F) = sup{a(F;a,b) | a < b rational} then Kechris and
Louveau have shown that A(F) < w® iff a(F) < wt.

Also we note that the following result follows from [8]. Let X be a separable Banach space
not containing ¢;. Let K = Ba(X*) in its weak* topology. Then

sup{B(z**|k) : 2** € X**} <w; .

Proposition 2.3. Let F : K — R be a bounded function on the compact metric space K.

The following are equivalent
1) F € By)(K).
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2) F is the uniform limit of D-simple functions on K.

3) For a < b, [F < a] and [F > b] may be separated by disjoint sets in D.
4) B(F) <w.

5) a(F;a,b) <w for all a < b.

Proof.

4) = 5). This follows from the elementary observation that for all ordinals o and reals
a<b, Ko(F;a,b) € Ko F,b — a), and the fact that 4) holds if and only if B(F,§) < w for all
6> 0.

5) = 3). Let K; = K;(F;a,b). Thus K = Ko 2 K; O --- 2 K,, =0 where n = a(F;a,b).
Let

D= O(FsaﬂK.-_l)\([sz]ﬂKi_l)eD.

=1

Since K; = ([F < a]NK;_1)N([F > b NK;_y),

D

I
(-

([F <alNK;_1\ I\',‘)

Il
—

|V
s

[([F <dnKi,) \K,-]

Il
-

s

([F<an(Ki-1\K;)) =[F<dq].

=1

Il

Since K;_; is closed,

D (K \FSHATS)

-
—

C:

[I\, N\ ([F>HNnK- 1)]

-
Il
-

Il
C=

(Kiaa \[F>b) =K\ [F>b].

i

3) = 2). This is a standard exercise in real analysis.

2) = 1). Since every D-simple function can be expressed in the form Ele a;11, where the
L;’s are closed sets and DBSC(K) is a linear space it suffices to recall that 1, € DBSC(K)
whenever L is closed. In fact 17 is upper semicontinuous.

1) = 4). Let F be the uniform limit of (F,) € DBSC(K). For § > 0 and n sufficiently
large, A(F,26) < B(Fy,6) and thus is suffices to prove that for G € DBSC(K), B(G,§) < w

for 6 > 0. This is immediate from the following
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Lemma 2.4. If m€ N, § > 0 and G : K — R is such that K,,(G,8) # 0, then |G|p > mé/4.

Proof. Let (gn) € C(K') converge pointwise to G. It suffices to show that there exist integers
ny <ngz <--- < nmyy and k € K such that |gn,,, (k) — gn, (k)| > é/4 for 1 < i < m.

Let ny =1, ko € Kn(G,6) and let Uy be a neighborhood of kg for which oscy, gn, < §/8.
Choose k} and k2 in Uy N Kpn—1(G,8) with G(k}) — G(k2) > 36/4. Then choose ny > n; such
that gn,(k§) — gn,(k§) > 36/4. Thus there is a nonempty neighborhood U; C Uy of either k}
or kZ such that for k € Uy, |gn,(k) — gn, (k)| > 6/4.

Similarly we can find a neighborhood U, C U; of a point in K,,—1(G,8) and n3 > ns so
that for k € Uy, |gns(k) — gn, (k)| > 6/4, etc. [ ]

Remarks 2.5. 1. Of course by using a bit more care one can show that |G|p > mé/2 whenever

Km(G,8) # 0.

2. Following [25] we say that for F € By(K), F € B(K) iff (F) < w¢. Thus Byj3(K) =
B1(K) by Proposition 2.3, a result also observed in [25].

3. We do not yet have an index characterization of By /4(K’), however we have a necessary
condition (which may be sufficient). To describe this we first must generalize our index above.

Let F': K — IR and let (6;){2; be positive numbers. Set Ko(F,(é;)) = K and for 0 <7 set
Kit1(F,(85)) = {k € Ki(F,(8;)) | osck, (s, (Fr k) = big1}

Proposition 2.6. Let F' € By ;4(K). Then there exists an M < oo so that if K,(F,(6;)) # 0,
then Y, 6; < M.

Proof. Let F be the uniform limit of (G,) with |G,.|p < C < co for all n. Suppose that
Kn(F,(8;)) # 0 for some sequence (8;)52, € R*. Since K,(F,(6;)) € Kn(Gm,(6:/2)) for large

m, the latter set is non-empty as well. The proof of Lemma 2.4 yields

If G: K — Rand (6)2, CR" is such that K,(G,(6;)) # 0,
(2.1)

then |G|p = 471 3. 6.
=1

Thus by (2.1) we have, for large m, C > |Gm|p > 471 Y0, &
and so Y. 8; <4C. [ |

We shall explore in greater detail in §3 and §8 some questions related to the problem of an
index characterization of Baire-1/4. The following proposition gives a sufficient index criterion
for a function to be Baire-1/4. It also shows (via Proposition 2.3) that if F' € By /(K )\ B, 4(K),
then B(F) = w.



10 On certain classes of Baire-1 functions with applications to Banach space theory

Proposition 2.7. Let F € By(K). If B(F) < w, then F € By ;4(K).

Proof. Without loss of generality let F : K — [0,1] with 8(F) < n. Thus a(F;a,b) < n for
all a < b. It follows from the proof of 5) = 3) in Proposition 2.3 that forall 0 < a < b <1
there exists a D € D with |[1p|p < 2n, [F < a] C D and [F > b N D = §. Thus for all m < co
there exist sets Dy 2 Dy D --- D Dy in D with [F > i/m]C D;, [F < (:—1)/m] N D; =0
and |1p,|p < 2n for i < m. In particular if G = Y7o, m™1p,, then ||F — Gllooc < m™! and
|Glp < 2n. [ ]

The following proposition is related to work of A. Sersouri [39]. It is of interest to us
because it shows that a separable Banach space X can have functions of large index in X**
and yet be quite nice. In fact it shows there are Baire-1 functions of arbitrarily large index which
strictly govern the class of quasireflexive (order 1) Banach spaces. Our proof was motivated

by discussions with A. Pelczynski.

Proposition 2.8. For all ¥ < w; there exists a quasireflexive (of order 1) Banach space Q,

such that Q** = Q @ (Fy) where f(Fy) > 7.
(The index B(F) is computed with respect to Ba(Q%).)

Remark 2.9. In §6 we shall show the existence of a quasireflexive space whose new functional

(in the second dual) is Baire-1/4.

Proof of Proposition 2.8. We use interpolation, namely the method of [12]. (This has also
been used in [19] in a slightly different manner to produce a quasireflexive space from a weak*
convergent sequence.)

To begin let v < w; be any ordinal and choose a compact metric space K containing an
ambiguous set A, with a(14,;3,2) > 7. (For example 14, could be taken to be one of the
functions Fj described in §5 with § > w7+.) Choose a sequence (f,) C Ba(C(K)) converging
pointwise to 14, such that (14, f1, f2,...) is basic in C(K)**. Let W be the closed convex
hull of {£f,}32, in C(K). Let @, be the Banach space obtained from W C Ba(C(K)) by
[DFJP]-interpolation. Thus for all n € N, || - ||» is the gauge of U, = 2"W + 27" Ba(C(K)),
and Q, = {z € C(K) : ||z || = (3, |lz]|2)}/? < co}. Following the notation of [12], we let
C=Ba(Qy)={z€C(K): ||z || <1}andletj:Q, — C(K) be the natural semiembedding.

We first observe that Q. is quasireflexive of order 1. Indeed it is easy to check that W,
the weak* closure of W in C(K)** is just

W= {Zaef.‘ +a0ola, : |ac| + Z|a-‘| < 1} .

=1 =1



