Advanced System
Modelling and Sumulation
with

Block Dwagram Languages

Nicholas M. Karayanakis

Advanced System
Modelling and Simulation
with

Block Dwagram Languages

Nicholas M. Karayanakis

Professor
University of North Florida

CRC Press
Boca Raton New York London

Susan C. Karayanakis was responsible for the page layout and manuscript design executed
using Word Perfect® 571. The typeface used was CG Times Scalable at 10.7 points before
reduction. Formulas were created using MathEdit™ and imported into the document in the
TIFF output format. Some figures were created using Flow Carting™ 3. Simulation
language examples were captured using HiJaak® PRO.

Cover concept by Susan C. Karayanakis.

Catalog record is available from Library of Congress

This book contains information obtained from authentic and highly regarded sources. Reprinted material
is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts
have been made to publish reliable data and information, but the author and the publisher cannot assume
responsibility for the validity of all materials or for the consequences of their use.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, microfilming, and recording, or by any information storage or
retrieval system, without prior permission in writing from the publisher.

CRC Press, Inc.’s consent does not extend to copying for general distribution, for promotion, for creating
new works, or for resale. Specific permission must be obtained in writing from CRC Press for such copying.

Direct all inquiries to CRC Press, Inc., 2000 Corporate Blvd., N.W., Boca Raton, Florida 33431.

© 1995 by CRC Press, Inc.

No claim to original U.S. Government works

International Standard Book Number 0-8493-9479-1

Printed in the United States of America 1 2 34 56 78 9 0
Printed on acid-free paper

ABOUT THIS BOOK

This work was conceived as a logical sequel to Computer-Assisted Simulation of
Dynamic Systems with Block Diagram Languages published by CRC Press in 1993. Its
contents reflect suggestions, challenges and requests from academic, industrial, and military
people in the U.S. and from around the world.

The main objective of this book is two-fold: first to discuss the role of block
languages as tools and to expose the technical features of several advanced languages. In
the interest of diversity, we have selected ACSL/GM (Advanced Continuous Simulation
Language/Graphic Modeller), ESL (European Space Agency Simulation Language), Extend,
MATRIX,, SIMULINK, SystemView, TUTSIM (Twente University of Technology Simu-
lation Language, U.S. version), and VisSim. Most of the time, languages are discussed
alphabetically. These discussions revolve about the technical aspects of each language.
There is no intent of product comparison — that is a reader’s task. Secondly, we have
included discussions on critical simulation-related topics and on material pertaining to
special simulation demands and their solutions.

Our efforts toward the synthesis of an informative and self-contained book on block
languages led to the inclusion of a review section on block diagram algebra and applied
transfer functions. To reiterate a position of long standing, we believe that block diagram
algebra is clearly a branch of mathematics and is necessary knowledge for those working
in continuous dynamic system simulation.

ACKNOWLEDGMENTS

First and foremost, I thank my wife, Susan, who dropped much of her own CPA
work to become the true architect of my book one more time. My appreciation is extended
to my editor Joel Claypool and to Michelle Veno of CRC Press. I have been fortunate to
have the same outstanding editor who took a chance on me back in 1993 and has allowed
me the comfort of author’s autonomy throughout.

In the process of researching this book, I met and talked to many truly
extraordinary people in the field of simulation languages. The lengthy discussions with
language designers and marketing people provided me with unique knowledge and
experience in a very complex domain. I am most grateful to the people listed here for their
advice, courtesy, and the time they allotted so generously so that this book could come to
fruition. I wish to thank Dusty Rhodes and Vera Mottino of Actuality, Geoffrey M.
Chatfield, Dr. Patrick J. Ready, and Dr. Maurice L. Schiff of Elanix, Bob Diamond, Pat
Diamond, and Kathi Hunt of Imagine That, Jeffrey Bach of Integrated Systems, Dr. John
L. Hay of iSiM Simulation at Salford University, Peter S. Trogos and Dave Wakstein of
The MathWorks, Dr. William M. Toscano and Marilyn Kloss of MGA Software, and Tracy
L. Indresano, Peter Darnell, Vaughn Darnell, and Jim DeRemer of Visual Solutions. Great
thanks are also extended to Faye Lu and the folks of the Peking Restaurant of Jacksonville
for providing my wife and I with kindness and endless beverages while editing this
book.

vii

MANUFACTURERS
ACKNOWLEDGMENTS

ACSL is a registered trademark and ACSL Model, ACSL Vision, and ACSLrt Realtime are
trademarks of MGA Software/Mitchell and Gauthier Associates.

Elanix, MetaSystem, and SystemView are trademarks of Elanix, Inc.

Extend, Extend + Manufacturing, and Extend + BPR are registered trademarks of Imagine
That, Inc.

FTN77 and FTN77/386 are trademarks of Salford Software, Ltd.
iSiM is a registered trademark of Salford University Business Services, Ltd.
Macintosh is a registered trademark of Apple Computer, Inc.

MATLAB and SIMULINK are registered trademarks and Handle Graphics is a trademark
of The MathWorks, Inc.

MATRIX, is a registered trademark and AC-100, AutoCode, HyberBuild, MathScript,
RT/Expert, RT/Fuzzy, Signal Analysis Module (SAM), SystemBuild, and Xmath are
trademarks of Integrated Systems, Inc.

MS-DOS, Windows, and Windows NT are trademarks of Microsoft Corporation.

PC, XT, and AT are trademarks of International Business Machines Corporation.
Prospero Fortran and Pro Fortran 77 are trademarks of Prospero Software.

TableCurve is a trademark of Jandel Scientific.

TUTSIM and FANSIM are registered trademarks and TUTCAD is a trademark of TUTSIM
Products, now Actuality Corporation.

VisSim is a registered trademark and VisSim/C-Code, VisSim/Neural-Net,
VisSim/FuzzyTECH, VisSim/Comm, and VisSim/Real-Time are trademarks of Visual
Solutions, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

ix

PROLEGOMENA

In recent years the proliferation of personal computers (PCs) and powerful portable
continuous dynamic system simulation (CDSS) languages have influenced academia and
industry profoundly. The virtual laboratory revolution based on the dynamic modelling and
simulation of concepts, ideas, and things on the digital machine is expanding at a fast rate
around the world.

We observe that industrial establishments are rapidly overcoming inertia, placing
simulation in proper perspective — not as a form of video game for rogue white collar
employees but as a formidable tool and a necessary process. In parallel, computer
simulation is gradually finding its way into the educational and training schemes with great
success. The process of dynamic simulation is based on the creative and heuristic
interaction between people and computers for the purpose of solving problems, some of
which are unsolvable by other methods.

Practically speaking, there is much to be said about freeing the worker (or the
learner) from the tedium of repetitive calculation and plotting, from the burden of seeking
and applying obscure and specialized analytical tools of marginal utility, and from the
embarrassment of simplification and linearization. As Kemeny (1988) explains, many
traditional topics and ways are now obsolete because of the computer. We believe it is all
for the best — after all, it is difficult to argue on behalf of the small-angle-deflection
assumptions when talking about, say, pendulum dynamics. After spending much time and
effort to teach and learn trigonometry, we sanction the official elimination of sines and
cosines from the equations, pretending that a pendulum only travels a few degrees each
way!

Another important practical aspect of simulation is that the need for traditional
laboratories, equipment, and parts inventories can be reduced to minimum in both the
educational and the industrial settings. With simulation there is no need for exhaustive and
expensive hardware prototyping or for outrageous R&D budgets. From a human factors
perspective, there is no penalty for imagination because the virtual environment accepts both
mathematical and intuitive thought. Workers may explore freely, casting doubts, inventing
and investigating alternatives, and circumnavigating tradition (see also Karayanakis and
Karayanakis, 1992a and 1992b).

xii

Block language is a universally applicable tool, useful not only in the investigation
and articulation of known systems, but also in inventing and developing new ones. Block
diagram simulations point out the dynamic essence of things and creativity is defined in
operational and repeatable terms (back in the 1960’s Gordon wrote a lot about this in his
best seller, Synectics (1961)).

In summary, simulation is good, useful, effective and, above all, cheap. At this
point, the opening paragraph of Winnie the Pooh comes to mind,

Here is Edward Bear coming downstairs now, bump, bump,
bump, on the back of his head, behind Christopher Robin.

It is, as far as he knows, the only way of coming downstairs,
but sometimes he feels that there really is another way ...

if only he could stop bumping for a moment and think of it!

—— A. A. Milne

Nicholas M. Karayanakis
Jacksonville, Florida

1.3
1.4

1.5

2.1
2.2
2.3
24
2.5
2.6

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

CONTENTS

PROLEGOMENA

MODERN CDSS LANGUAGES

Introduction: Block Languages and Analog/Hybrid Machines 1
Block Language Tectonics: A Resource Guide 29
1.2.1 Introduction 29
1.2.2 The Years Before Objects 29
1.2.3 The Object-oriented Environment 31
Integration Algorithms and CDSS Languages 32
Specifying the Ideal Block Language 38
1.4.1 Introduction 38
1.4.2 Some Comments on the Criteria and Features 39
The Operating Environments 51
REVIEW OF BLOCK DIAGRAM ALGEBRA
A Summary of Principal Block Operations &)
Typical Block Manipulations 61
Making Block Models of Specialized Systems 73
How Block Languages Deal with Transfer Functions 76
Some Useful Transfer Function Simulators 77
Applied Partial Fraction Expansion Techniques 86
THE LANGUAGES

Introduction 94
ACSL/GM "]
ESL 109
Extend 116
MATRIX, 132
SIMULINK 146
SystemView 162
TUTSIM and TUTCAD 178
VisSim 187

53

9%

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15

3.1
9.2
e
5.4
53
5.6
8.7
5.8
2.9
5.10

SOME IMPORTANT SIMULATION TOPICS 204

Polynomial Modelling and Synthesis Techniques
Arbitrary Function Generation in CDSS Languages
Simulation of Discontinuities and Jump Phenomena
About Mirror Functions and Linearization

When Differentiation is Required

Synthesizing Macroblocks

When a Nonlinear Function Block Is Not Available
z-Blocks and z-Transforms in Simulation
Bondgraphs: A Brief Resource Guide

Difference Equations in Simulation

Stiff Systems!

Digital Logic and Custom Hybrid Switching Devices

Relational Operators
A Few Useful Relay Blocks
Matrix-based Languages

204
210
20
217
219
229
242
248
249
251
237
260
269
272
279

APPLICATIONS AND BENCHMARKS ...

Introduction

Comments on Benchmrks

PHYSBE: A Physiological Benchmark Model
Discrete Event Systems: A Clarification
Comments on SystemView’s Linear System Token
MATLAB

The Shifted-Origin Device

Phase Planes Revisited

Neural Networks and CDSS Languages

Algebraic Loops

280
280
282
286
287
294
295
301
305
314

GLOSSARY ... 316
BIBLIOGRAPHY 322
LANGUAGE VENDORS 344

INDEXrrcen.

1 MODERN
CDSS LANGUAGES

1.1 Introduction: Block Languages and Analog/Hybrid Machines

Modern block diagram (or CDSS) languages are invaluable tools in both teaching
and research, especially when a mathematical model of the system under study is available.
Historically CDSS languages were developed as “analog computers in a box,” as digital
simulators of the analog/hybrid (A/H) machine itself (Karayanakis, 1993, pp. 3-6). As
modern computer languages, they are of the highest level with programming done by linking
function blocks either as visual objects or by means of code. We view block languages as
contemporary superior replacements of the A/H machines. Sentimental aspects aside, these
machines (still operating in some places) share the dinosaur designation with the mainframes
of the past. Contrary to the objections of the A/H computer hardliners and paleotradition-
alists, it makes sense to consider today’s block languages as natural descendants and
evolutionary products of A/H machines, which in our best interest belong in museums only.

The publication of the author’s 1993 book on block languages led to comments by
A/H computer enthusiasts still brooding over the scrapping of their machines by their
employers or institutions. These folks feel that their beginning to use block languages will
imply betrayal of basic principles and old electromechanical friends. As a result, valuable
and highly transferable simulation expertise remains dormant, eventually to disappear.

Without doubt, a well-chosen CDSS language is far superior to the best of A/H
machines. A comparison of the basic features shows that:

1. A major tactical advantage of block languages is that amplitude or
time scaling and the associated check procedures are not required. Toiling
over maximum value calculations, potentiometer, and amplifier assignment
sheets and static checks are gone forever. Instead workers may address
simulation problems without engaging in error-prone, time-consuming
preparations. However, block languages will accommodate a scaled
simulation diagram just as easily.

Advanced System Modelling and Simulation with Block Diagram Languages

2. Analog/hybrid computation is hardware intensive as opposed to the
highly-portable block language approach. Users may obtain the software
and use them in their own computers anywhere. By degree, simulation
projects do not require dedicated facilities, as is the case in A/H
computation.

3. The use of block languages frees workers from the drudgery of x-y
plotter, strip chart, and repetitive oscilloscope hard-copy records. Instead,
easy-to-follow menus and dialog boxes allow the specification of plot type,
range, and input; the final result is publication-ready graphics of the highest
quality and precision. In this context, A/H machine outputs and readouts
are no less than primitive.

4. Most CDSS languages have analysis and signal processing features
which defy imagination. Some CDSS languages are subsets of large,
extremely robust mathematical systems offering computational and
analytical tools unknown just a few years ago (Section 3).

5. All useful block languages have user-programmable function-
generator blocks used in arbitrary-function generation. This approach is a
radical departure from the highly inaccurate diode-function generation
known to analog computation and superior to the digital lookup tables of
hybrid computers. The topic is discussed in detail in Section 4.2.

6. The integrator is the heart of a simulator. Analog/hybrid machines
are based on inaccurate and error-ridden integrators constructed with
operational amplifiers (OAs) and problematic passive components. Block
languages feature a wide choice of integration algorithms having an
accuracy exceeding the best hardware by many orders of magnitude (Section
1.3). Virtual integrator blocks have no saturation limits like their OA-based
counterparts. There are no linearity, drift or offset issues, no
potentiometers to trim. Unlike A/H computers, digital block languages
assure repeatability of experiments. Virtual integrators are available in all
configurations an algorithms suitable for siff systems exist (see Sections 1.3
and 4.11).

A The nemesis of ‘not enough amplifiers’ or ‘not enough integrators’
to handle a given problem does not exist in block languages (except perhaps
in some very inexpensive student editions). The same goes for other
mathematical function blocks. As a result, not only problems of any size
and complexity can be handled, but also programming shortcuts are
unnecessary.

NP A GRS e

B Modern CDSS Languages 3

8. Workers using block languages can design their own custom
computational blocks, custom signal processing blocks, etc. This is often
done by creating macroblocks as embedded block systems (i.e., hierarchical
models) or by writing code. Multilevel nesting or encapsulating is a
powerful feature in block languages (see Section 1.4.2). Casesin pooint are
ACSL’s PowerBlock, Extend’s hierarchical block, the SuperBlock of
MATRIX,, SIMULINK’s group, the MetaSystem object found in
SystemView, and the Compound block of VisSim, to name a few. Real
world interfaces providing a number of analog and digital input/output (I/0)
channels allow the block simulator to be as real as hardware, but more
flexible and with much less burden.

9. CDSS languages are characterized by fast learning curves. Users
need not be electronics experts or know anything about operational
amplifier-based circuitry. Extraneous variables like impedance matching,
electronic noise, component loading, and calibration are absent. There are
no downtimes and worn-out patching cables. Just about any analog/hybrid
computational device can be put into block form. In addition, block
languages have a wealth of features and functions that do not or cannot exist
in A/H computation. As a reminder, the proverbial “garbage in, garbage
out” rule holds true here — it is assumed that workers are proficient in
whatever they are doing and have taken time to learn the basics of block
language simulation.

Finally we shall establish some connectivity between electronic circuit signal
processing units and block diagram structures. A variety of electrical and electronic circuits
and their block simulators are shown here to include: the generalized voltage divider of
Figures 1.1.1 and 1.1.2; the R, L, and C models of Figure 1.1.3; and the series LP and HP
filters of Figures 1.1.4 and 1.1.5. Figure 1.1.6 shows two possible ways to simulate uni-
and bi-directional passive limiters. Several operational amplifier (OA) circuits follow: the
simple noninverting follower with gain of Figure 1.1.7; the open-loop noninverting
comparator of Figure 1.1.8; and the basic open-loop comparator and OA model of Figure
1.1.9 (note that the basic three-stage OA model does not provide frequency selectivity).
Figure 1.1.10 shows a summer/subtractor network; Figure 1.1.11 shows the basic inverting
summer; and the summer with gain (or attenuation) is shown on Figure 1.1.12. A scaled-
input summer is shown in Figure 1.1.13. Other interesting OA circuits and their
uncomplicated block representations include the zero-threshold comparator of Figure 1.1.14
and the polarity difference detector of Figure 1.1.15. Also the arithmetic average circuit of
Figure 1.1.16, the weighted average circuit of Figure 1.1.17, and its specialized-input
version (Figure 1.1.18) are representative OA circuits found in analog computation.

4

Advanced System Modelling and Simulation with Block Diagram Languages

VOLTAGE DIVIDER (Generalized) 10f 2

ELECTRONIC CIRCUIT AND PERFORMANCE EQUATIONS

PASSIVE CIRCUIT

0 ek N R
mjl.'anl. TG At R e(R)=e,_n.
(T R
I . | e. R
| m | T
£l \ } —
ACTIVE EQUIVALENT
; - R
n
e o e
+ RT
0A2

S INVERTING
STAGE

Figure 1.1.1 The generalized voltage divider.

