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PREFACE

WO GREAT theoretical constructions have shaped the face of modern

physics: the theory of relativity and the theory of quanta. The first has

been, on the whole, the discovery of one man, since the work of Albert
Einstein has remained unparalleled by the contributions of others who, like
Hendrik Anton Lorentz, came very close to the foundations of special rela-
tivity, or, like Hermann Minkowski, determined the geometrical form of the
theory. It is different with the theory of quanta. This theory has been de-
veloped by the collaboration of a number of men each of whom has contributed
an essential part, and each of whom, in his work, has made use of the results
of others.

The necessity of such teamwork seems to be deeply rooted in the subject
matter of quantum theory. In the first place, the development of this theory
has been greatly dependent on the production of observational results and on
the exactness of the numerical values obtained. Without the help of the army
of experimenters who photographed spectral lines or watched the behavior of
elementary particles by means of ingenious devices, it would have been im-
possible ever to carry through the theory of the quanta even after its founda-
tions had been laid. In the second place, these foundations are very different in
logical form from those of the theory of relativity. They have never had the
form of one unifying principle, not even after the theory has been completed.
They consist of a set of principles which, despite their mathematical elegance,
do not possess the suggestive character of a principle which convinces us at first
sight, as does the principle of relativity. And, finally, they depart much further
from the principles of classical physics than the theory of relativity ever did in
its criticism of space and time; their implications include, in addition to a
transition from causal laws to probability laws, a revision of philosophical
ideas about the existence of unobserved objects, even of the principles of logic,
and reach down to the deepest fundamentals of the theory of knowledge.

In the development of the theoretical form of quantum physics, we can dis-
tinguish four phases. The first phase is associated with the names of Max
Planck, Albert Einstein, and Nils Bohr. Planck’s introduction of the quanta in
1900 was followed by Einstein’s extension of the quantum concept toward that
of a needle radiation (1905). The decisive step, however, was made in Bohr’s
application (1913) of the quantum idea to the analysis of the structure of the
atom, which led to a new world of physical discoveries.

The second phase, which began in 1925, represents the work of a younger
generation which had been trained in the physics of Planck, Einstein, and
Bohr, and started where the older ones had stopped. It is a most astonishing
fact that this phase, which led up to quantum mechanics, began without a clear
insight into what was actually being done. Louis de Broglie introduced waves
as companions of particles; Erwin Schriodinger, guided by mathematical
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analogies with wave optics, discovered the two fundamental differential equa-
tions of quantum mechanics; Max Born, Werner Heisenberg, Pascual Jordan,
and, independently of this group, Paul A. M. Dirac constructed the matrix
mechanics which seemed to defy any wave interpretation. This period repre-
sents an amazing triumph of mathematical technique which, masterly applied
and guided by a physical instinct more than by logical principles, determined
the path to the discovery of a theory which was able to embrace all observable
data. All this was done in a very short time; by 1926 the mathematical shape
of the new theory had become clear.

The third phase followed immediately; it consisted in the physical interpre-
tation of the results obtained. Schridinger showed the identity of wave me-
chanics and matrix mechanies. Born recognized the probability interpretation
of the waves. Heisenberg saw that the mathematical mechanism of the theory
involves an unsurmountable uncertainty of predictions and a disturbance of
the object by the measurement. And here once more Bohr intervened in the
work of the younger generation and showed that the description of nature
given by the theory was to leave open a specific ambiguity which he formu-
lated in his principle of complementarity.

The fourth phase continues up to the present day; it is filled with constant
extensions of the results obtained toward further and further applications,
including the application to new experimental results. These extensions are
combined with mathematical refinements; in particular, the adaptation of the
mathematical method to the postulates of relativity is in the foreground of the
investigations. We shall not speak of these problems here, since our inquiry is
concerned with the logical foundations of the theory.

It was with the phase of the physical interpretations that the novelty of the
logical form of quantum mechanics was realized. Something had been achieved
in this new theory which was contrary to traditional concepts of knowledge
and reality. It was not easy, however, to say what had happened, ie., to
proceed to the philosophical interpretation of the theory. Based on the physical
interpretations given, a philosophy for common use was developed by the
physicists which spoke of the relation of subject and object, of pictures of
reality which must remain vague and unsatisfactory, of operationalism which
is satisfied when observational predictions are correctly made, and renounces
interpretations as unnecessary ballast. Such concepts may appear useful for
the purpose of carrying on the merely technical work of the physicist. But it
seems to us that the physicist, whenever he tried to be conscious of what he
did, could not help feeling a little uneasy with this philosophy. He then became
aware that he was walking, so to speak, on the thin ice of a superficially frozen
lake, and he realized that he might slip and break through at any moment.

It was this feeling of uneasiness which led the author to attempt a philo-
sophical analysis of the foundations of quantum mechanics. Fully aware that
philosophy should not try to construct physical results, nor try to prevent
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physicists from finding such results, he nonetheless believed that a logical
analysis of physics which did not use vague concepts and unfair excuses was
possible. The philosophy of physics should be as neat and clear as physics
itself; it should not take refuge in conceptions of speculative philosophy which
must appear outmoded in the age of empiricism, nor use the operational form
of empiricism as a way to evade problems of the logic of interpretations. Di-
rected by this principle the author has tried in the present book to develop a
philosophical interpretation of quantum physics which is free from meta-
physics, and yet allows us to consider quantum mechanical results as state-
ments about an atomic world as real as the ordinary physical world.

It scarcely will appear necessary to emphasize that this philosophical analysis
is carried through in deepest admiration of the work of the physicists, and that
it does not pretend to interfere with the method of physical inquiry. All that
is intended in this book is clarification of concepts; nowhere in this presenta-
tion, therefore, is any contribution toward the solution of physical problems
to be expected. Whereas physics consists in the analysis of the physical world,
philosophy consists in the analysis of our knowledge of the physical world.
The present book is meant to be philosophical in this sense.

The division of the book is so planned that the first part presents the general
ideas on which quantum mechanics is based; this part, therefore, outlines our
philosophical interpretation and summarizes its results. The presentation is
such that it does not presuppose mathematical knowledge, nor an acquaintance
with the methods of quantum physics. In the second part we present the out-
lines of the mathematical methods of quantum mechanics; this is so written
that a knowledge of the calculus should enable the reader to understand the
exposition. Since we possess today a number of excellent textbooks on quantum
mechanics, such an exposition may appear unnecessary ; we give it, however, in
order to open a short cut toward the mathematical foundations of quantum
mechanics for all those who do not have the time for thorough studies of the
subject, or who would like to see in a short review the methods which they
have applied in many individual problems. Our presentation, of course, makes
no claim to be complete. The third part deals with the various interpretations
of quantum mechanics; it is here that we make use of both the philosophical
ideas of the first part and the mathematical formulations of the second. The
properties of the different interpretations are discussed, and an interpretation
in terms of a three-valued logic is constructed which appears as a satisfactory
logical form of quantum mechanics.

I am greatly indebted to Dr. Valentin Bargmann of the Institute of Ad-
vanced Studies in Princeton for his advice in mathematical and physical
questions; numerous improvements in the presentation, in Part II in particular,
are due to his suggestions. I wish to thank Dr. Norman C. Dalkey of the Uni-
versity of California, Los Angeles, and Dr. Ernest H. Hutten, formerly at Los
Angeles, now in the University of Chicago, for the opportunity of discussing
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with them questions of a logical nature, and for their assistance in matters of
style and terminology. Finally I wish to thank the staff of the University of
California Press for the care and consideration with which they have edited
my book and for their liberality in following my wishes concerning some
deviations from established usage in punctuation.

A presentation of the views developed in this book, including an exposition
of the system of three-valued logic introduced in § 32, was given by the author
at the Unity of Science Meeting in the University of Chicago on September
5,1941.

HaNs REICHENBACH
Department of Philosophy,
University of California,

Los Angeles
June, 1942
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Part 1
GENERAL CONSIDERATIONS

§ 1. Causal Laws and Probability Laws

The philosophical problems of quantum mechanics are centered around two
main issues. The first concerns the transition from causal laws to probability
laws; the second concerns the interpretation of unobserved objects. We begin
with the discussion of the first issue, and shall enter into the analysis of the
second in later sections.

The question of replacing causal laws by statistical laws made its appearance
in the history of physics long before the times of the theory of quanta. Since
the time of Boltzmann’s great discovery which revealed the second principle
of thermodynamics to be a statistical instead of a causal law, the opinion has
been repeatedly uttered that a similar fate may meet all other physical laws.
The idea of determinism, i.e., of strict causal laws governing the elementary
phenomena of nature, was recognized as an extrapolation inferred from the
causal regularities of the macrocosm. The validity of this extrapolation was
questioned as soon as it turned out that macrocosmic regularity is equally
compatible with irregularity in the microcosmic domain, since the law of great
numbers will transform the probability character of the elementary phenomena
into the practical certainty of statistical laws. Observations in the macrocosmic
domain will never furnish any evidence for causality of atomic occurrences so
long as only effects of great numbers of atomic particles are considered. This
was the result of unprejudiced philosophical analysis of the physics of Boltz-
mann.!

With this result a decision of the question was postponed until it was possible
to observe macrocosmic effects of individual atomic phenomena. Even with
the use of observations of this kind, however, the question is not easily
answered, but requires the development of a more profound logical analysis.

Whenever we speak of strictly causal laws we assume them to hold between
idealized physical states; and we know that actual physical states never cor-

1 It is scarcely possible to say who was the first to formulate this philosophical idea.
We have no published utterances of Boltzmann indicating that he thought of the possi-
bility of abandoning the principle of causality. In the decade preceding the formulation
of quantum mechanics the idea was often discussed. F. Exner, in his book, Vorlesungen
tiber die physikalischen Grundlagen der Naturwissenschaften (Vienna, 1919), is perhaps the
first to have clearly stated the criticism which we gave above: ‘Let us not forget that
the prineiple of causality and the need for causality has been suggested to us exclusively
by experiences with macrocosmic phenomena and that a transference of the principle to
microcosmic phenomena, viz. the assumption that every individual occurrence be strictly
causally determined, has no longer any justification based on experience.”’—p. 691. With
reference to Exner, E. Schriodinger has expressed similar ideas in his inaugural address
in Zurich, 1922, published in Naturwissenschaften, 17:9 (1929).

L]



2 PART I. GENERAL CONSIDERATIONS

respond exactly to the conditions assumed for the laws. This discrepancy has
often been disregarded as irrelevant, as being due to the imperfection of the
experimenter and therefore negligible in a statement about causality as a prop-
erty of nature. With such an attitude, however, the way to a solution of the
problem of causality is barred. Statements about the physical world have
meaning only so far as they are eonnected with verifiable results; and a state-
ment about strict causality must be translatable into statements about observ-
able relations if it is to have a utilizable meaning. Following this principle we
can interpret the statement of causality in the following way.

If we characterize physical states in observational terms, i.e., in terms of
observations as they are actually made, we know that we can construct prob-
ability relations between these states. For instance, if we know the inclination
of the barrel of a gun, the powder charge, and the weight of the shell, we can
predict the point of impact with a certain probability. Let A be the so-defined
initial conditions and B a description of the point of impact; then we have a
probability implication A > B (1)

which states that if A is given, B will happen with a determinate probability p.
From this empirically verifiable relation we pass to an ideal relation by con-
sidering ideal states A” and B’ and stating a logical implication

A'> B @)

between them, which represents a law of mechanics. Since we know, however,
that from the observational state A we can infer only with some probability
the existence of the ideal state A’, and that similarly we have only a probability
relation between B and B’, the logical implication (2) cannot be utilized. It
derives its physical meaning only from the fact that in all cases of applications
to observable phenomena it can be replaced by the probability implication (1).
What then is the meaning of a statement saying that if we knew exactly the
initial conditions we could predict with certainty the future states resulting
from them? Such a statement can be meaningfully said only in the sense of a
transition to a limit. Instead of characterizing the initial conditions of shooting
only by the mentioned three parameters, the inclination of the barrel, the
powder charge, and the weight of the shell, we can consider further parameters,
such as the resistance of the air, the rotation of the earth, ete. As a consequence,
the predicted value will change; but we know that with such a more precise
characterization also the probability of the prediction increases. From expe-
riences of this kind we have inferred that the probability p can be made to
approach the value 1 as closely as we want by the introduction of further
parameters into the analysis of physical states. It is in this form that we must
state the principle of causality if it is to have physical meaning. The statement
that nature is governed by strict causal laws means that we can predict the
future with a determinate probability and that we can push this probability as
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close to certainty as we want by using a sufficiently elaborate analysis of the
phenomena under consideration.

With this formulation the principle of causality is stripped of its disguise as
a principle a prior?, in which it has been presented within many a philosophical
system. If causality is stated as a limit of probability implications, it is clear
that this prineiple can be maintained only in the sense of an empirical hypoth-
esis. There is, logically, no need for saying that the probability of predictions
can be made to approach certainty by the introduction of more and more
parameters. In this form the possibility of a limit of predictability was recog-
nized even before quantum mechanics led to the assertion of such a limit.2

The objection has been raised that we can know only a finite number of
parameters, and that therefore we must leave open the possibility of discover-
ing, at a later time, new parameters which lead to better predictions. Although,
of course, we have no means of excluding with certainty such a possibility, we
must answer that there may be strong inductive evidence against such an
assumption, and that such evidence will be regarded as given if continued
attempts at finding new parameters have failed. Physical laws, like the law of
conservation of energy, have been based on evidence derived from repeated
failures of attempts to prove the contrary. If the existence of causal laws is
denied, this assertion will always be grounded only in inductive evidence. The
critics of the belief in causality will not commit the mistake of their adversaries,
and will not try to adduce a supposed evidence a priori for their contentions.

The quantum mechanical criticism of causality must therefore be considered
as the logical continuation of a line of development which began with the intro-
duction of statistical laws into physics within the kinetic theory of gases, and
was continued in the empiricist analysis of the concept of causality. The
specific form, however, in which this criticism finally was presented through
Heisenberg’s principle of indeterminacy was different from the form of the
criticism so far explained.

In the preceding analysis we have assumed that it is possible to measure the
independent parameters of physical occurrences as exactly as we wish; or more
precisely, to measure the simultaneous values of these parameters as exactly
as we wish. The breakdown of causality then consists in the fact that these
values do not strictly determine the values of dependent entities, including the
values of the same parameters at later times. Our analysis therefore contains
an assumption of the measurement of simultaneous values of independent
parameters. It is this assumption which Heisenberg has shown to be wrong.

The laws of classical physics are throughout temporally directed laws, i.e.,
laws stating dependences of entities at different times and which thus establish
causal lines extending in the direction of time. If simultaneous values of differ-

2 Cf. the author’s ‘“Die Kausalstruktur der Welt,”” Ber. d. Bayer. Akad., Math. Kl.
(Munich, 1925), p. 138; and his paper, ‘‘Die I\ausalbehauptung und die ’\Ioghchkelt ihrer
tEmpmschen Nuchprufu.ng, which was written in 1923 and published in Erkenninis 3

1932), p. 32
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ent entities are regarded as dependent on one another, this dependence is
always construed as derivable from temporally directed laws. Thus the cor-
respondence of various indicators of a physical state is reduced to the influence
of the same physical cause acting on the instruments. If, for instance, barom-
eters in different rooms of a house always show the same indication, we explain
this correspondence as due to the effect of the same mass of air on the instru-
ments, i.e., as due to the effect of a common cause. It is possible, however, to
assume the existence of cross-section laws, i.e., laws which directly connect
simultaneous values of physical entities without being reducible to the effects
of common causes. It is such a cross-section law which Heisenberg has stated
in his relation of indeterminacy.

This cross-section law has the form of a limitation of measurability. 1t states
that the simultaneous values of the independent parameters cannot be meas-
ured as exactly as we wish. We can measure only one half of all the parameters
to a desired degree of exactness; the other half then must remain inexactly
known. There exists a coupling of simultaneously measurable values such that
greater exactness in the determination of one half of the totality involves less
exactness in the determination of the other half, and vice versa. This law does
not make half of the parameters functions of the others; if one half is known,
the other half remains entirely unknown unless it is measured. We know,
however, that this measurement is restricted to a certain exactness.

This cross-section law leads to a specific version of the criticism of causality.
If the values of the independent parameters are inexactly known, we cannot
expect to be able to make strict predictions of future observations. We then
can establish only statistical laws for these observations. The idea that there
are causal laws “behind” these statistical laws, which determine exactly the
results of future observations, is then destined to remain an unverifiable state-
ment; its verification is excluded by a physical law, the cross-section law
mentioned. According to the verifiability theory of meaning, which has been
generally accepted for the interpretation of physics, the statement that there
are causal laws therefore must be considered as physically meaningless. It is an
empty assertion which cannot be converted into relations between observa-
tional data.

There is only one way left in which a physically meaningful statement about
causality can be made. If statements of causal relations between the exact
values of certain entities cannot be verified, we can try to introduce them at
least in the form of conventions or definitions; that is, we may try to establish
arbitrarily causal relations between the strict values. This means that we can
attempt to assign definite values to the unmeasured, or not exactly measured,
entities in such a way that the observed results appear as the causal conse-
quences of the values introduced by our assumption. If this were possible, the
causal relations introduced could not be used for an improvement of predic-
tions; they could be used only after observations had been made in the sense
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of a causal construction post hoc. Even if we wish to follow such a procedure,
however, we must answer the question of whether such a causal supplementa-
tion of observable data by interpolation of unobserved values can be consistently
done. Although the interpolation is based on conventions, the answer to the
latter question is not a matter of convention, but depends on the structure of
the physical world. Heisenberg’s principle of indeterminacy, therefore, leads
to a revision of the statement of causality; if this statement is to be physically
meaningful, it must be made as an assertion about a possible causal supple-
mentation of the observational world.

With these considerations the plan of the following inquiry is made clear.
We shall first explain Heisenberg’s principle, showing its nature as a cross-
section law, and discuss the reasons why it must be regarded as being well
founded on empirical evidence. We then shall turn to the question of the inter-
polation of unobserved values by definitions. We shall show that the question
stated above is to be answered negatively; that the relations of quantum
mechanics are so constructed that they do not admit of a causal supplementa-
tion by interpolation. With these results the principle of causality is shown to
be in no sense compatible with quantum physics; causal determinism holds
neither in the form of a verifiable statement, nor in the form of a convention
directing a possible interpolation of unobserved values between verifiable data.

§ 2. The Probability Distributions

Let us analyze more closely the structure of causal laws by means of an
example taken from classical mechanics and then turn to the modification of
this structure produced by the introduction of probability considerations.

In classical physics the physical state of a free mass particle which has no
rotation, or whose rotation can be neglected, is determined if we know the
position q, the velocity v, and the mass m of the particle. The values ¢ and v, of
course, must be corresponding values, i.e., they must be observed at the same
time. Instead of the velocity v, the momentum p = m - v can be used. The
future states of the mass particle, if it is not submitted to any forces, is then
determined; the velocity, and with it, the momentum, will remain constant,
and the position ¢ can be calculated for every time ¢. If external forces inter-
vene, we can also determine the future states of the particle if these forces are
mathematically known.

If we consider the fact that p and ¢ cannot be exactly determined, we must
replace strict statements about p and ¢ by probability statements. We then
introduce probability distributions

d(g) and d(p) (1)

which coordinate to every value g and to every value p a probability that this
value will occur. The symbol d( ) is used here in the general meaning of distri-
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bution of; the expressions d(¢) and d(p) denote, therefore, different mathemati-
cal functions. As usual, the probability given by the function is coordinated,
not to a sharp value ¢ or p, but to a small interval dq or dp such that only the

expressions d(g)dg and d(p)dp @

represent probabilities, whereas the functions (1) are probability densities.
This can also be stated in the form that the integrals

fq "dq)dg and fm " d(p)dp @)

represent the probabilities of finding a value of ¢ between ¢; and ¢», or a value
of p between p; and p..

Probability distributions can be determined only for sets of measurements,
not for an individual measurement. When we speak of the exactness of a
measurement we therefore mean, more precisely, the exactness of a type of
measurement made in a certain type of physical system. In this sense we can
say that every measurement ends with the determination of probability func-
tions d. Usually d is a Gauss function, i.e., a bell-shaped curve following an
exponential law (cf. figure 1); the steeper this curve, the more precise is the
measurement. In classical physics we make the assumption that each of these
curves can be made as steep as we want, if only we take sufficient care in the
elaboration of the measurement. In quantum mechanics this assumption is
discarded for the following reasons.

Whereas, in classical physics, we consider the two curves d(g) and d(p) as
independent of each other, quantum mechanics introduces the rule that they
are not. This is the cross-section law mentioned in § 1. The idea is expressed
through a mathematical principle which determines both curves d(q) and d(p),
at a given time ¢, as derivable from a mathematical function y(q); the deriva-
tion is so given that a certain logical connection between the shapes of the
curves d(g) and d(p) follows. This contraction of the two probability distri-
butions into one function ¢ is one of the basic principles of quantum mechanics.
It turns out that the connection between the distributions established by the
principle has such a structure that if one of the curves is very steep, the other
must be rather flat. Physically speaking, this means that measurements of p
and ¢ cannot be made independently and that an arrangement which permits
a precise determination of ¢ must make any determination of p unprecise,
and vice versa.

The function ¢(g) has the character of a wave; it is even a complex wave,
i.e.,a wave determined by complex numbers y. Historically speaking, the intro-
duction of this wave by L. de Broglie and Schrédinger goes back to the strug-
gle between the wave interpretation and the corpuscle interpretation in the
theory of light. The y-function is the last offspring of generations of wave
concepts stemming from Huygens’s wave theory of light; but Huygens would
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scarcely recognize his ideas in the form which they have assumed today in
Born’s probability interpretation of the y-function. Let us put aside for the
present the discussion of the physical nature of this wave; we shall be con-
cerned with this important question in later sections of our inquiry. In the
present section we shall consider the y-waves merely as a mathematical instru-
ment used to determine probability distributions; i.e., we shall restrict our
presentation to show the way in which the probability distributions d(g) and
d(p) can be derived from ¥/(g).

The derivation which we are going to explain coordinates to a curve y(q) at
a given time the curves d(g) and d(p); this is the reason that ¢ does not enter
into the following equations. If, at a later time,
¥(g) should have a different shape, different func- 1
tions d(g) and d(p) would ensue. Thus, in gen-
eral, we have functions y(q,t), d(g,t), and d(p,?).
We omit the ¢ for the sake of convenience.

The derivation will be formulated in two rules,
the first determining d(g), and the second de-
termining d(p). We shall state these rules here
only for the simple case of free particles. The
extension to more complicated mechanical sys- d(q)
tems will be given later (§ 17). We present first T

the rule for the determination of d(gq). 2/1 I \2
Rule of the squared y-function: The probability —q

of observing a value q is determined bg{ the square Wi 1. Guirva 1-1-1 eepresants

of the y-function according to the relation a precise measurement, curve

2-2-2 a less precise measure-

d(g) = |¢(9)|? (4) mentofq. Both curves are Gauss

distributions, or normal curves.
The explanation of the rule for the determina-
tion of d(p) requires some introductory mathematical remarks. According to
Fourier a wave of any shape can be considered as the superposition of many
individual waves having the form of sine curves. This is well known from
sound waves, where the individual waves are called fundamental tone and
overtones, or harmonics. In optics the individual waves are called monochro-
matic waves, and their totality is called the spectrum. The individual wave
is characterized by its frequency v, or its wave length A\, these two charac-
teristics being connected by the relation » - X = w, where w is the velocity
of the waves. In addition, every individual wave has an amplitude ¢ which
does not depend on ¢, but is a constant for the whole individual wave. The
general mathematical form of the Fourier expansion is explained in § 9; for
the purposes of the present part it is not necessary to introduce the mathe-
matical way of writing.
The Fourier superposition can be applied to the wave y, although this wave
is considered by us, at present, not as a physical entity, but merely as a mathe-
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matical instrument. In case the wave ¥ consists of periodic oscillations ex-
tended over a certain time, such as in the case of sound waves produced by
musical instruments, the spectrum furnished by the Fourier expansion is
discrete. Thus the individual waves of musical instruments have the wave

lengths )\,2,2, 2, - - - where \ is the wave length of the fundamental tone

and the other values represent the harmonics. In case the wave ¥ consists of
only one simple impact moving along the g-axis, i.e., in case the function y is
not periodic, the Fourier expansion furnishes a continuous spectrum, i.e., the
frequencies of the individual waves constitute, not a discrete, but a continuous
set. As before, each of these individual waves possesses an amplitude ¢, which
can be written (), since it depends on the wave length \ but is independent
of g.

It is the amplitudes ¢(A\) which are connected with the momentum. We
shall not try to explain here the trend of thought which led to this connection
and which is associated with the names of Planck, Einstein, and L. de Broglie.
Such an exposition may be postponed to a later section (§ 13). Let us suppress
therefore any question of why this connection holds true, and let us rely,
instead, upon the authority of the physicist who says that this is the case.
Suffice it to say, therefore, that every wave of the length X is coordinated to a
momentum of the amount h

= - 5
P=3 ®)
where h is Planck’s constant. The probability of finding a momentum p then
is connected with the amplitude ¢ belonging to the coordinated wave . This is
expressed in the following rule.!

Rule of spectral decomposition: The probability of observing a value p s deter-
mined by the square of the amplitude o(\) occurring within the spectral decompo-
sition of ¥(q), in the form 1
d(p) = fr [e(N)[? (6)
The factor :;‘ results from the relation between p and \ expressed in (5).?

The two rules show clearly the connection which the y-function establishes
between the two distributions d(g) and d(p), so far as it reduces these two
distributions to one root. We shall later show that this kind of connection is not

1 The name ‘‘prineiple of spectral decomposition’” has been introduced by L. de Broglie,
Introduction a U Etude de la M écanique ondulatoire (Paris, 1930), p. 151. In his later book,
La Mécanique ondulatoire (Paris, 1939), p. 47, he uses also the name “‘principle of Born,”
ginee this principle was introduced by Born. For the rule of the squared y-function he
uses the name ‘‘principle of interference’” and in his later book the name ‘“‘principle of
loealization’”.

2 Mathematically speaking, this factor corresponds to a density function r ag introduced
in (22), §9. The third power in h originates from the fact that we assume the waves
t0 be three-dimensional.
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restricted to the simple case of one mass particle, and that the same logical
pattern is established by quantum mechanics for the analysis of all physical
situations. For every physical situation there exists a y-function, and the prob-
ability distributions of the entities involved are determined by two rules of the
kind described. This is one of the basic principles of quantum mechanics. We
shall now construct the implications of this principle, returning once more to
the simple case of the mass particle.

§ 3. The Principle of Indeterminacy

It can be shown that the derivation of the two distributions d(g) and d(p)
from a function ¥ leads immediately to the principle of indeterminacy. Let us
consider a particle moving in a straight line, and let us assume that the func-

<«— respectively,y orp —>
Fig. 3

Fig. 2. Distribution of the position g, in the form of a Gauss curve.

Fig. 3. The dotted line indicates the direct Fourier expansion of the
curve of fig. 2. The solid line is constructed through the Fourier expan-
sion of a y-function from which the curve d(g) of fig. 2 is derivable, and
represents the distribution d(p) of the momentum, coordinated to d(q).

tion ¢ is practically equal to zero except for a certain interval along the line.
The function |¢(g)|? i.e., the function d(g), then will have the same property;
let us assume that it is a Gauss curve such as is shown in figure 2. The shape
of the curve means that we do not know the location of the particle exactly;
with practical certainty it is within the interval where the curve is noticeably
different from zero, but for a given place within this interval we know only
with a determinate probability that the particle is there. Our diagram, of
course, represents the situation only for a given time ¢; for a later time, when
the particle has moved to the right, we shall have a similar curve, but it will be
shifted to the right.!

! The curve will also gradually change its form. This, however, is irrelevant for the
present discussion.



