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PREFACRE

When a system described by an ordinary differential equation
is subjected to perturbations, the perturbed system is again an ordi-
nary differential equation in which the perturbation function is
assumed to be continuous or integrable, and as such, the state of the
system changes continuously with respect to time. However, in many
physical problems (optimal control theory in particular), one can not
expect perturbations to be well behaved. Biological systems such as
heart beats, blood flows, pulse frequency modulated systems and models
for biological neural nets exhibit an impulsive behaviour. Therefore,
perturbations of impulsive type are more realistic. This gives rise
to Measure Differential Equations. The derivative involved in these
equations is the distributional derivative. The fact that their solu-
tions are discontinuous (they are functions of bounded variation),
renders most of the classical methods ineffective, thereby making
their study interesting.

The systems involving impulsive behaviour are in abundance.
We mention below some problems of this kind.

(1) Growth Problem : A fish breeding pond maintained scientifi-
cally is an example of this kind. Here the natural growth of fish
population is disturbed by making catches at certain time intervals
and by adding fresh breed. The natural growth of fish population is
disturbed at some time intervals. This problem therefore involves
impulses. We study such a model in some details in Chapter 1.

(11) Case and Blaquiere Problem [2, 4] : The profit of a roadside
inn on some prescribed interval of time I <t T is a function of
the number of strangers who pass by on the road each day and of the
number of times the inn is repainted during that period. The ability
to attract new customers into the inn depends on its appearance which
is supposed to be indexed by a number xy. During time intervals

between paint jobs, x decays according to the law

xi = -k X1 k = positive constant.

The total profit in the planning period K¢ < t T is supposed to be
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T N(T)
W(T) =A § x;(t)dt - £ C
= a
¢ a=1
where N(T) 1is the number of times the inn is repainted, Ca ’
a =1lyes.y N(T), the cost of each paint job and A > 0 1is a constant.
The owner of the inn wishes to maximize his total profit or equival-
ently to minimize - W(T). The problem has been treated in several
details in [2,4].

(1i1) Control Problem : In an optimal control problem given by a

system

' = f(t, x, u)

representing certain physical process, the central problem is to
select the function wu(t) from a given set of controls so that the
solution x(t) of the system has a preassigned behaviour on a given
time interval [to,T] so as to minimize some cost functional. Suppose
that the control function wu(t) has to be selected from the set of
functions of bounded variation defined on [to,T], then the solution
x(t) of the control system may possess discontinuities. Hence the
given control problem has to be represented by a differential equation
involving impulses.

(iv) Ito’s Equation [15,50] : The dynamic system of control
theory is representable by ordinary vector differential equation of

the form
g—f =f(t, x), t, Lt LT

where x € Rn and f 1is such that the system admits a unique solut-
fon x(t, x,), t, St T for the initlal state x(t,)= x, € i

The Ito’s stochastic differential equation is of the form
dx = f(t, x)dt + G(t, x) dw(t), t0 Lt T

where f is chosen as above, G(t, x) is an n x m matrix valued
function of (t, x), W is a separable wWiener process (Brownian
motion) in Buclidean m-space. This equation is equivalent to a
stochastic integral equation



t t
x(t) = x(t;) + { f(s, x(s))ds + § G(s,x(s))aw(s)
t

o o

defined on I [to,T], (T < o). Assume that f and G are measur-
able in (t,x) for t € I and x & R® and satisfy certain growth
conditions. It is to be noted that

% ¥l
Jj(s, x(s))dw(s) = yl‘_i;méo Jio G(tyy x(t1)) Wty )-H(ty)]

where to < tl £ oo S ty =t and that tJ become dense in
[toyt] as )’ -+ 0o,

Ito’s equation has been studied in several details in [15,50],
The stochastic integral equation is closely related to the measure
integral equation studied in Chapter 2 subsequently.

In the classical analysis of the differential systems, solut-
lons are generally continuous functions while in the case of impulsive
systems, solutions are functions of bounded variations. Hence the
methods of classical analysis are not sufficient to describe the
impulsive behaviour of systems. It is therefore necessary to study
existence, uniqueness and continuation of solution, stability, bound-
edness criteria 1in the case of linear and nonlinear differential
systems involving impulses.

In this monograph an attempt is made to unify the results
from several research papers published during the last fifteen years.
We feel that a monograph of this kind would assist the readers to
reach to the mainstream of this area of research for making new con-
tributions to the subject and employing the techniques in physical
models.,

The monograph is divided into five chapters and deals with
the problems of existence, uniqueness, stability, boundedness and
asymptotic equivalence associated with measure differential equations.
Chapter 1 is on preliminaries. Chapter 2 contains results on
existence and uniqueness. A control problem is also considered.
In Chapter 3, fixed-point theorems and generalized integral inequa-
lities are employed to derive results on stability and asymptotic
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equivalence. To study the predominant effect of the impulses, it is
necessary to consider systems wherein impulses occur not only in
perturbation terms but are also present in the original system itself.
Chapter 4 provides this study. Chapter 5 deals with the extension
of Lyapunov’s second method to the study of impulsive systems.

The notes given at the end of each chapter indicate the
sources which have been consulted. Some research papers which are
closely related but not included are given for guidance and complete-
ness. The g.e.d. mark is used to indicate the end of the proof of
a result. Complete bibliography is given at the end.

We are grateful to the Department of Atomic Energy, Bombay,
India for providing the financial support to this work. Our thanks
are due to the referee of this monograph for fruitful comments and to
Mr. M. Parameswaran of Indian Institute of Technology, Bombay, for
quick and efficient typing of the manuscript.

Panaji, Goa S. G. PANDIT
April, 1982 S. G. DEO
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CHAPTER 1
PRELIMINARIES

The purpose of this chapter is to make the reader familiar
with the prerequisites needed for the study of measure differential
equations.

1.1 The Space BV(J).

Let J = [ ty, ), t, >0 and R" denote the Euclidean
n-space. The norm of x = ( Xy 12,...,xn) € R" is defined as

n
Ix] = Z |x4] »
i=1
whereas that of an n by n matrix M = (mij) as

¥l = X I |m,|
M = X Z m o
1=1 j=1 1
Let f be a function defined on the set oi real numbers and
taking values in R®. cConsider all possible partitions
mT:a =t < tl < eee < tN = b of an interval [a,b] in R. The
quantity

N
V(f,[a,b]) = s;p {1§llf(t1) - f(ti_l)l}

where w7 runs over the set of all partitions of [a,b], is defined as
the total variation of f on [a,b]. f 1is said to be of bounded
variation on [a, <) if f has bounded variation on each interval
[a,t]y a £ t <o and the set V(f,[a,t]) of total variations 1is
bounded. In this case

V(fy[a,©) ) = sup V(f,[a,t]).
t>a
The space of all functions of bounded variation on J and taking

values in RP is denoted by BV(J) = BV(J,R™). The norm of
f € BV(J) is defined by
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e 11" = vee,a) + ecegs )]
Under this norm, BV(J) is a Banach space.

In the space BC(J) of bounded, continuous functionson J,
compact subsets are characterized by the well-known Ascoli-Arzela
theorem. A similar, but rather weak result in BV(J) is the follow-
ing :

Theorem 1.1. Let “f be an infinite family of functions
€ BV([a,b]) such that all functions of the family together with
their total variations are uniformly bounded. Then there exists a
sequence { ¢k} in <) which converges at every point of [a,b] to
some function ¢ € BV([a,b])j moreover,

V(g,y[a,b]) ¢ 1im inf V(¢k9[a)b])-

k —» o

An important property of a function of bounded variation is
that it is differentiable almost everywhere. Moreover, the set of
its points of discontinuity is at most countable. Quite often, we
shall be interested in the following type of functions of bounded
variation :

Definition 1.1. A function u : J - R 1is said to be of
type g if

(1) u 1is a right-continuous function which is of bounded variat-
ion on every compact subinterval of Jy

(ii) the discontinuities tl < t2 < oo are isolated and are
such that t1 > to and tk +00 as k + 0 3

(1i1) u 1is differentiable on each subinterval [tk’ tes1 Vo
k = 1,2ye.. of J, where the derivative at Ty is to be understood
as the right hand derivative.

One of the useful properties of the function of bounded variat-
ion is that if [a,b] is a closed interval in R and f be a function
of finite variation on [a,b] then f = g + h where g 1is absolutely
continuous on [a,b] and h' = 0 a. e on [a,b]. Further this deco-
mposition of f is unique except for additive constants.



l.2 Complex Measures.

Let X be a oo - algebra of subsets of a set X. A count-
able collection {Ei} in X such that
(>9)

E= U B
1=1 J

for i # j, 1is called a partition of E. A complex-valued set fun-
ction F on Z such that

oo
pE) = 1§1 pE), Eez

for every paftition {Ei} of E 1s called a complex measure on Z.
Real measures (usually called as signed measures) are defined simil-

arly.

The total variation measure | | of a complex measure p
on £ 1is a set function on X defined by

(o)
| B | (B) = sup { iill P(Ei)l y Be X}

where the supremum runs over all partitions {Ei} of E. It follows
that | | is a positive measure (usually referred to as measure) on
%, with the property that | B | (X) <oo. If B is a positive measure,
then of course | p | = pe

Let F be a real measure on Z. Define

+ -

po= (| I I+ /2, p=(p | - p/2.
P* and Y- are respectively called positive and negative varization
measures of F’ and are positive measures on Z. Further,

+ - | + -
P=p -p o bpl=pr
The integral of a function kf with respect to r is defined as
+ -
éf d P = é fd B - é fd P
f 1s said to be p-integrable if it is both F+ - and 7 - inte-
grable.



Let be a complex measure on X. Then there is a measura-
ble function g such that |g(x)|] =1 for all x € X and

pE) =fedfpl, Bez.

Therefore, integration with respect to a complex measure }1 may be
defined by the formula

I{:fd}lzéfgd|r|, Ee =.

Definition 1.2. Let A be a positive measure and poany
arbitrary (positive or complex) measure on a O~ -algebra I. is
said to be absolutely continuous with respect to A if, for every
€ > 0, there exists a & > O such that | }l(B) | < € for all
EEZ with A®B)< S.

If X 1s a topological space, there exists a smallest
o -algebra & in X such that every open set in X belongs to & .
Members of @& are called Borel sets of X. A measure defined on
the o -algebra of all Borel sets in a locally compact Hausdorff space
X 1is called a Borel measure on X.

Definition l.3. A complex Borel measure defined on the

o~ -algebra @ of all Borel sets in a locally compact Hausdorff space
X is said to be regular if for each E € @& and € > 0, there exist
a set F € @ whose closure is contained in E and a set G € &
whose interior contains E such that | P(C) | < € for every c€ &
with CC G - F.

Let f be a right continuous function on an open interval

I = (a,b). BExtend the domain of f to [a,b] by defining f(a)=f(b)= O.
The set function B defined by P([a,d]) = f(d) - f(a) and
((cyd]) = £f(d) - f(c)y for a < ¢c < d b has a regular, countably
additive extension to the o--algebra of all Borel sets in [a,b].

The restriction of this extension to the o -algebra of Borel subsets
of I 1is called the Borel - Stieltjes measure in I determined by f.
Now let & consist of all sets of the form E U N where E & @
and N is a subset of a set M€ & with | B | (M) = 0. Then &% is
a o -algebra and if the domain of is extended to &% by defining
l.l(E U N) = P(E)’ the extended function is countably additive on é* .



»
The function p with domain A" 1s called the Lebesgue-Stieltjes
measure determined by f, and the integral § g d B is written as
1

b
Jg(tydar(t).
a

since | u |(1') = v(£,I') if I' is any interval in I, the integral
§ gdl p| is written as
I

b
Jg(t)ave(t),
a

where Vf 1s the total variation function of f. If f(t) = t, B is
the Lebesgue measure and the integral § g d p is written as
I

b
Jg(t)dt.
a

When the set E 1is regarded as a variable, § g d P is called the
indefinite integral of g with respect to P % It is of bounded var-
iation and absolutely continuous with respect to F.

Lemma 1.1 Let (X, Z, P ) be a measure space and f a

complex-valued P-integrable function and
AMB) = ffad p s Ee€Z.
B

Then a function g on X to a Banach space Y is )\ -integrable if
and only if fg 1is F-integrable and in this case the relation

Jgdr =Jrfgd poo Ee
B i

holds.

1.3 Distribution and Distributional Derivative.

Let X be a topological space. The support of a complex
function f on X 1is the closure of the set

{xe Xy f(x) #0 }.
For an open subset _N_ of Rn, we denote by dfk J_ ), the collect-

ion of all infinitely partially differentiable functions defined on
= and having a compact support. A classical example of a function



€ c‘: (R™) 1is

exp[ (|| x|| 2-a®)~1], for || x ||

n

(121“1'2)1/2 <ay,ya>0

p(x) = )
0 y for || x ||

v

a.

C?(J‘l_ ) is a normed linear space under addition, scalar multipli-
cation and norm defined by

(a ¢) (x)

a ¢(x)

¢ Il= sap | o(x) |.
X e _N_

A continuous linear functional on CZO (JL) is called a dist-
ribution on _(1_ . The space of distributions on __ , being the dual
space of c‘:(_n_ ), is denoted by C; ().

If ],1 is a complex Borel measure on _{_ , then

T(¢) = fedn , s€C (L)

F e
defines a distribution on _/\_ . In fact, by Riesz Representation
Theorem, the set of all complex Borel measures on L. is, by P ~—> T,
in one - one correspondence with the set of all distributions on _N_ .

Let a complex function f, defined almost everywhere on _N_ ,
be locally integrable on . with respect to the Lebesgue measure, in
the sense that § |f(x)|dx < «© for each compact subset K of 4L .
Then K

Tp() = § £(x) #(x)dx, ¢ € C (L) (1.1)
g .
defines a distribution on L . Two distributions T, and T are
equal as functionals (that is Tp(¢) = Tg(¢) for every ¢ € C, (4))
if and only if f(x) = g(x) a.e. on S . Hence, the set of all
locally integrable functions on L is, by f <—> Tf s in one-one

correspondence with a subset of CZO (JL)' in such a way that ( f and
g being considered equivalent if and only if f(x) = g(x) a.e.),



£ T g T Tpag s @ Tp = Tope

The derivative of a distribution T with respect to x
denoted by Dy T ( or d7T /3% ), is defined by

o¢
d Xy

i,

D

y T 5 = B )y ¢ € C) (Ju)
and is also a distribution on i . A distribution is infinitely

differentiable in the sense of above definition.

Since a locally integrable function f on an open interval
I of the real line can be identified with the distribution Tf on
I, D Tf ( =d Te / dt) 1is denoted by D T and is called the distri-
butional derivative of f to distinguish it from the ordinary deri-
vative f£l¢ =df / dt). If f is absolutely continuous, then Df
is the ordinary derivative ! (which is defined a.e.), £' being
identified with the distribution Tf.. If f is of bounded variation,
then Df 1is the Lebesgue-Stieltjes measure df, df being identified
with the distribution Tdf‘ Thus, for the Heaviside function H(t)
defined by

0 if t < O

H(t) =
1 if t >0

we have
DH=DTy = Tg= &,
where & 1is the Dirac measure. Indeed, for any ¢ « d:kR), we have
dg ©0

D Ty(#) = - Ty(—=) = - J H(E) ¢'(t)at

oo
- § ¢l (t)at = 9(0) ,
o

since ¢ has compact support. Note that the ordinary derivative of

H 1is the zero function a.e. on R.
Now consider the measure differential equation
Dx = F(t,x) + G(t,x)Du (l.2)

where F and G are defined on J X R® with values in K™ and u



is a right-continuous function € BV(J,R). Let S be an open conn-
ected set in R® and I an interval with left end point T, 2ty

Definition 1.4. A function x(.) = x(.3 T,s x,)1s said to be
a solution of (1.2) through (To, xo) on I if x(.) 4is a right-
continuous function € BV(I,S), x(To) = x, and the distributional
derivative of x(.) on (T, T ) for any arbitrary ( € I satisfies
(1.2).

For example, the solution of

Dx =1 + DH , x(o) =0

where H 1s the Heaviside function, is

t -1 if t <O
x(t) =
t if t > 0.

1.4 Growth Problem

Growth of bacteria in medicine, decay of radioactive elements
in physics, increase in population and pollution etc. are some of the
problems studied by employing differential equations of evolution

type.

Let x(t) denote the quantity of an entity under considerat-
ion at time t. Assuming that the rate of growth of x(t) at any time
t is proportional to x(t), we arrive at a simple differential equat-
ion

dx(t)
(1) ot = a x(t), x(t)) =x, , (a is real )
where aq 1s the constant of proportionality. The growth or decay of
the entity would depend on the sign of a. The unique soclution of this
problem is then given by
a(t - t))

(2) x(t) = e IO [ t 2 tO .

Let us study a somewhat new situation where this model needs to be
modified.



Consider a fish breeding pond where in fish are grown scienti-
fically. Some variety of fish breed is released in a pond and allowed
to grow. After some fixed time intervals tl,t2 .+« partially grown
fish are removed from the pond and simultaneously new breed of fish
is released in it. The growth of fish population is impulsive. The
impulses are given at times tl, t2... . This problem can be solved
satisfactorily if the model (1) is replaced by

(3) Dx(t) =a x(t) Du, x(ty) = x, 3

where D 1is the distributional derivative, u 1s a right continuous
function of bounded variation.

(ee]
Assume that u is of the form u(t) =t + X ay Hk(t)
k=1

0 if t < te
where Hk(t) = " - . i
2 Y
where a, are real numbers. Generally a right continuous function
of bounded variation contains an absolutely continuous part and a
singular part. Note that the discontinuities of u are isolated.
Further

(0]
Du =1+ Z a, H_(t.)
k=1 k 'k k
where Hk(tk) is the Dirac measure concentrated at tk. It has been
shown subsequently that the unique solution of this equation is given

by

a(t -t )
e
M) x(®) s %, s 8 FL, Lt .
I[ (1- ay )
=1

Clearly, if a4y =0 for 1 =1,2,... in (4) then the equation (3)
reduces to (1) and the solution (4) reduces to (2).

By considering several varieties of fish growing in one pond,
the model of growth given in (3) can be generalized to a system of

equations.
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Before we proceed further, we wish to bring to the notice of
readers the following important point : The terms distribution and
distributional derivative used in the monograph are in a special sense
and not in the general sense, as for example widely used in the liter-
ature on partial differential equations. Here, by a distribution, we
shall always mean a continuous linear functional generated by a locally
integrable function, given by formula (1.1). With this understanding,
it follows that the measure differential equation (1.2) is identified
with the ordinary differential equation x' = F(t,x) + G(t,x) u' when
u 1is an absolutely continuous function.

l.5 Notes.

Theorem 1.1 1is known as Helly’s Selection Principle, its
proof is given in Graves [11l, Chap. XII, Theorem 33]. Lemma 1.l is
taken from Dunford and Schwartz [8, Cor.6, p.180]. The approach to
the Theory of distributions used in this monograph is due to
Halperin [13], see also Yosida [51] for more details. For an altern-
ative approach to the study of differential systems with discontinuous
solutions see Stallard [46], Halany and Wexler [12], Fleishman and
Mahar [9], Ligeza[24,25], Stuart [48] and Mottoni and Texi [27].



