Matteo Baldoni
Ulle Endriss (Eds.)

Declarative
Agent Languages
and Technologies IV

4th International Workshop, DALT 2006
Hakodate, Japan, May 2006
Selected, Revised and Invited Papers

LNAI 4327

@ Springer




Matteo Baldoni Ulle Endriss (Eds.)

Declarative
Agent Languages
and Technologies IV

4th International Workshop, DALT 2006
Hakodate, Japan, May &, 2006
Selected, Revised and Invited Papers

@ Springer



Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jorg Siekmann, University of Saarland, Saarbriicken, Germany

Volume Editors

Matteo Baldoni

Universita degli Studi di Torino, Dipartimento di Informatica
via Pessinetto 12, 10149 Torino, Italy

E-mail: baldoni @di.unito.it

Ulle Endriss

University of Amsterdam, Institute for Logic, Language and Computation
Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands
E-mail: ulle@illc.uva.nl

Library of Congress Control Number: 2006938418

CR Subject Classification (1998): .2.11,C.2.4,D.2.4,D.2, D.3, E3.1
LNCS Sublibrary: SL 7 — Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-540-68959-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-68959-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11961536 06/3142 543210



Lecture Notes in Artificial Intelligence =~ 4327
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science



Preface

The workshop on Declarative Agent Languages and Technologies (DALT), in its
fourth edition this year, is a well-established forum for researchers interested in
sharing their experiences in combining declarative and formal approaches with
engineering and technology aspects of agents and multiagent systems. Building
complex agent systems calls for models and technologies that ensure predictabil-
ity, allow for the verification of properties, and guarantee flexibility. Developing
technologies that can satisfy these requirements still poses an important and
difficult challenge. Here, declarative approaches have the potential of offering
solutions that satisfy the needs for both specifying and developing multiagent
systems. Moreover, they are gaining more and more attention in important ap-
plication areas such as the Semantic Web, Web services, security, and electronic
contracting.

DALT 2006 was held as a satellite workshop of AAMAS 2006, the fifth In-
ternational Joint Conference on Autonomous Agents and Multiagent Systems,
in May 2006 in Hakodate, Japan. Following the success of DALT 2003 in Mel-
bourne (LNAT 2990), DALT 2004 in New York (LNAI 3476), and DALT 2005 in
Utrecht (LNAI 3904), the workshop again provided a discussion forum to both
(a) support the transfer of declarative paradigms and techniques to the broader
community of agent researchers and practitioners, and (b) to bring the issue
of designing complex agent systems to the attention of researchers working on
declarative languages and technologies.

This volume contains the 12 contributed articles that were selected by the
Programme Committee for presentation at the workshop as well as three invited
articles, originally presented as short papers at AAMAS 2006, that were extended
by their authors. The volume also includes the article “Producing Compliant
Interactions: Conformance, Coverage, and Interoperability” by Amit K. Chopra
and Munindar P. Singh. Professor Singh, from North Carolina State University,
was the invited speaker for this edition of DALT.

We would like to thank all authors for their contributions, the members of
the DALT Steering Committee for their precious suggestions and support, and
the members of the Programme Committee for their excellent work during the
reviewing phase.

October 2006 Matteo Baldoni
Ulle Endriss



Workshop Organization

Workshop Organizers

Matteo Baldoni University of Turin, Italy
Ulle Endriss University of Amsterdam, Netherlands

Programme Committee

Marco Alberti University of Ferrara, Italy

Natasha Alechina University of Nottingham, UK

Grigoris Antoniou University of Crete, Greece

Matteo Baldoni University of Turin, Italy

Cristina Baroglio University of Turin, Italy

Rafael Bordini University of Durham, UK

Keith Clark Imperial College London, UK

Ulle Endriss University of Amsterdam, Netherlands
Benjamin Hirsch Technical University Berlin, Germany
Shinichi Honiden National Institute of Informatics, Japan
John Lloyd Australian National University, Australia
Viviana Mascardi University of Genoa, Italy

John-Jules Ch. Meyer Utrecht University, Netherlands

Enrico Pontelli New Mexico State University, USA

M. Birna van Riemsdijk Utrecht University, Netherlands

Chiaki Sakama Wakayama University, Japan
Wamberto Vasconcelos University of Aberdeen, UK
Christopher Walton University of Edinburgh, UK

Michael Winikoff RMIT University, Melbourne, Australia

Additional Reviewers
Giovanni Casella

Valentina Cordi
John Knottenbelt

Steering Committee

Joao Leite New University of Lisbon, Portugal
Andrea Omicini University of Bologna-Cesena, Italy
Leon Sterling University of Melbourne, Australia
Paolo Torroni University of Bologna, Italy

Pimar Yolum Bogazici University, Turkey



Lecture Notes in Artificial Intelligence (LNAI)

Vol. 4333: U. Reimer, D. Karagiannis (Eds.), Practical
Aspects of Knowledge Management. XII, 338 pages.
2006.

Vol. 4327: M. Baldoni, U. Endriss (Eds.), Declarative
Agent Languages and Technologies IV. VIII, 257 pages.
2006.

Vol. 4304: A. Sattar, B.-h. Kang (Eds.), AI 2006: Ad-
vances in Artificial Intelligence. XXVII, 1303 pages.
2006.

Vol. 4303: A. Hoffmann, B.-h. Kang, D. Richards, S.
Tsumoto (Eds.), Advances in Knowledge Acquisition
and Management. XI, 259 pages. 2006.

Vol. 4293: A. Gelbukh, C.A. Reyes-Garcia (Eds.), MI-
CAI 2006: Advances in Artificial Intelligence. XX VIII,
1232 pages. 2006.

Vol. 4289: M. Ackermann, B. Berendt, M. Grobelnik, A.
Hotho, D. Mladeni¢, G. Semeraro, M. Spiliopoulou, G.
Stumme, V. Svatek, M. van Someren (Eds.), Semantics,
Web and Mining. X, 197 pages. 2006.

Vol. 4285: Y. Matsumoto, R. Sproat, K.-F. Wong, M.
Zhang (Eds.), Computer Processing of Oriental Lan-
guages. XVII, 544 pages. 2006.

Vol. 4274: Q. Huo, B. Ma, E.-S. Chng, H. Li (Eds.), Chi-

nese Spoken Language Processing. XXIV, 805 pages.
2006.

Vol. 4265: L. Todorovski, N. Lavra¢, K.P. Jantke (Eds.),
Discovery Science. XIV, 384 pages. 2006.

Vol. 4264: J.L. Balcdzar, PM. Long, F. Stephan (Eds.),
Algorithmic Learning Theory. XIII, 393 pages. 2006.

Vol. 4259: S. Greco, Y. Hata, S. Hirano, M. Inuiguchi,
S. Miyamoto, H.S. Nguyen, R. Stowinski (Eds.), Rough
Sets and Current Trends in Computing. XXII, 951 pages.
2006.

Vol. 4253: B. Gabrys, R.J. Howlett, L.C. Jain (Eds.),
Knowledge-Based Intelligent Information and Engineer-
ing Systems, Part IT11. XXXII, 1301 pages. 2006.
Vol. 4252: B. Gabrys, R.J. Howlett, L.C. Jain (Eds.),
Knowledge-Based Intelligent Information and Engineer-
ing Systems, Part II. XXXIII, 1335 pages. 2006.

Vol. 4251: B. Gabrys, R.J. Howlett, L.C. Jain (Eds.),
Knowledge-Based Intelligent Information and Engineer-
ing Systems, Part I. LXVI, 1297 pages. 2006.

Vol. 4248: S. Staab, V. Svitek (Eds.), Managing Knowl-
edge in a World of Networks. XIV, 400 pages. 2006.

Vol. 4246: M. Hermann, A. Voronkov (Eds.), Logic
for Programming, Artificial Intelligence, and Reasoning.
XI1I1, 588 pages. 2006.

Vol. 4223: L. Wang, L. Jiao, G. Shi, X. Li, J. Liu (Eds.),
Fuzzy Systems and Knowledge Discovery. XXVIII,
1335 pages. 2006.

Vol. 4213: J. Fiirnkranz, T. Scheffer, M. Spiliopoulou
(Eds.), Knowledge Discovery in Databases: PKDD
2006. XXII, 660 pages. 2006.

Vol. 4212: J. Firnkranz, T. Scheffer, M. Spiliopoulou
(Eds.), Machine Learning: ECML 2006. XXIII, 851
pages. 2006.

Vol. 4211: P. Vogt, Y. Sugita, E. Tuci, C.L. Nehaniv
(Eds.), Symbol Grounding and Beyond. VIII, 237 pages.
2006.

Vol. 4203: F. Esposito, Z.W. Ras, D. Malerba, G. Semer-
aro (Eds.), Foundations of Intelligent Systems. XVIII,
767 pages. 2006.

Vol. 4201: Y. Sakakibara, S. Kobayashi, K. Sato, T.
Nishino, E. Tomita (Eds.), Grammatical Inference: Al-
gorithms and Applications. XII, 359 pages. 2006.

Vol. 4200: I.LE.C. Smith (Ed.), Intelligent Computing in
Engineering and Architecture. XIII, 692 pages. 2006.

Vol. 4198: O. Nasraoui, O. Zaiane, M. Spiliopoulou, B.
Mobasher, B. Masand, P.S. Yu (Eds.), Advances in Web
Mining and Web Usage Analysis. IX, 177 pages. 2006.

Vol. 4196: K. Fischer, I.J. Timm, E. André, N. Zhong
(Eds.), Multiagent System Technologies. X, 185 pages.
2006.

Vol. 4188: P. Sojka, I. Kopecek, K. Pala (Eds.), Text,
Speech and Dialogue. XV, 721 pages. 2006.

Vol. 4183: J. Euzenat, J. Domingue (Eds.), Artificial
Intelligence: Methodology, Systems, and Applications.
X111, 291 pages. 2006.

Vol. 4180: M. Kohlhase, OMDoc — An Open Markup
Format for Mathematical Documents [version 1.2]. XIX,
428 pages. 2006.

Vol. 4177: R. Marin, E. Onaindia, A. Bugarin, J. Santos
(Eds.), Current Topics in Artificial Intelligence. XV, 482
pages. 2006.

Vol. 4160: M. Fisher, W. van der Hoek, B. Konev, A.

Lisitsa (Eds.), Logics in Artificial Intelligence. XII. 516
pages. 2006.
Vol. 4155: O. Stock, M. Schaerf (Eds.), Reasoning, Ac-

tion and Interaction in Al Theories and Systems. X VIII,
343 pages. 2006.

Vol. 4149: M. Klusch, M. Rovatsos, T.R. Payne (Eds.),
Cooperative Information Agents X. XII, 477 pages.
2006.

Vol. 4140:].S. Sichman, H. Coelho, S.0O. Rezende (Eds.),
Advances in Artificial Intelligence - IBERAMIA-SBIA
2006. XXIII, 635 pages. 2006.

Vol. 4139: T. Salakoski, F. Ginter, S. Pyysalo, T.
Pahikkala (Eds.), Advances in Natural Language Pro-
cessing. XVI, 771 pages. 2006.



Vol. 4133: J. Gratch, M. Young, R. Aylett, D. Ballin,
P. Olivier (Eds.), Intelligent Virtual Agents. XIV, 472
pages. 2006.

Vol. 4130: U. Furbach, N. Shankar (Eds.), Automated
Reasoning. XV, 680 pages. 2006.

Vol.4120:J. Calmet, T. Ida. D. Wang (Eds.), Artificial In-
telligence and Symbolic Computation. X111, 269 pages.
2006.

Vol. 4118: Z.. Despotovic, S. Joseph, C. Sartori (Eds.),
Agents and Peer-to-Peer Computing. XIV, 173 pages.
2006.

Vol. 4114: D.-S. Huang, K. Li, G.W. Irwin (Eds.), Com-
putational Intelligence, Part 1. XXVII, 1337 pages.
2006.

Vol. 4108: J.M. Borwein, W.M. Farmer (Eds.), Mathe-
matical Knowledge Management. VIII, 295 pages. 2006.
Vol. 4106: T.R. Roth-Berghoter, M.H. Goker, H.A.
Giivenir (Eds.), Advances in Case-Based Reasoning.
X1V, 566 pages. 2006.

Vol. 4099: Q. Yang, G. Webb (Eds.), PRICAI 2006:
Trends in Artificial Intelligence. XXVIII, 1263 pages.
2006.

Vol. 4095: S. Nolfi, G. Baldassarre, R. Calabretta, J.C.T.
Hallam, D. Marocco, J.-A. Meyer, O. Miglino, D. Parisi
(Eds.), From Animals to Animats 9. XV, 869 pages. 2006.
Vol. 4093: X. Li, O.R. Zaiane, Z. Li (Eds.), Advanced
Data Mining and Applications. XXI, 1110 pages. 2006.
Vol. 4092: J. Lang, F. Lin, J. Wang (Eds.), Knowledge
Science, Engineering and Management. XV, 664 pages.
2006.

Vol. 4088: Z.-Z.. Shi, R. Sadananda (Eds.), Agent Com-
puting and Multi-Agent Systems. XVII, 827 pages.
2006.

Vol. 4087: F. Schwenker, S. Marinai (Eds.), Artificial
Neural Networks in Pattern Recognition. IX, 299 pages.
2006.

Vol. 4068: H. Schirfe, P. Hitzler, P. @hrstrgm (Eds.),
Conceptual Structures: Inspiration and Application. XI,
455 pages. 2006.

Vol. 4065: P. Perner (Ed.), Advances in Data Mining. XI,
592 pages. 2006.

Vol. 4062: G.-Y. Wang, J.F. Peters, A. Skowron, Y. Yao
(Eds.), Rough Sets and Knowledge Technology. XX, 810
pages. 2006.

Vol. 4049: S. Parsons, N. Maudet, P. Moraitis, I. Rahwan
(Eds.), Argumentation in Multi-Agent Systems. XIV,
313 pages. 2006.

Vol. 4048: L. Goble, J.-J.C.. Meyer (Eds.), Deontic Logic
and Artificial Normative Systems. X, 273 pages. 2006.
Vol. 4045: D. Barker-Plummer, R. Cox, N. Swoboda
(Eds.), Diagrammatic Representation and Inference. XII,
301 pages. 2006.

Vol. 4031: M. Ali, R. Dapoigny (Eds.), Advances in Ap-
plied Artificial Intelligence. XXIII, 1353 pages. 2006.
Vol. 4029: L. Rutkowski, R. Tadeusiewicz, L.A. Zadeh,
J.M. Zurada (Eds.), Artificial Intelligence and Soft Com-
puting — ICAISC 2006. XXI, 1235 pages. 2006.

Vol. 4027: H.L. Larsen, G. Pasi, D. Ortiz-Arroyo, T. An-
dreasen, H. Christiansen (Eds. ), Flexible Query Answer-
ing Systems. XVIII, 714 pages. 2006.

Vol. 4021: E. André, L. Dybkjer, W. Minker, H. Neu-
mann, M. Weber (Eds.), Perception and Interactive Tech-
nologies. XI, 217 pages. 2006.

Vol.4020: A. Bredenfeld. A. Jacoff, I. Noda. Y. Takahashi
(Eds.), RoboCup 2005: Robot Soccer World Cup 1X.
XVII, 727 pages. 2006.

Vol. 4013: L. Lamontagne, M. Marchand (Eds.), Ad-
vances in Artificial Intelligence. XIII, 564 pages. 2006.

Vol. 4012: T. Washio, A. Sakurai, K. Nakajima, H.
Takeda, S. Tojo, M. Yokoo (Eds.), New Frontiers in Ar-
tificial Intelligence. XIII, 484 pages. 2006.

Vol. 4008: J.C. Augusto, C.D. Nugent (Eds.), Designing
Smart Homes. X1, 183 pages. 2006.

Vol. 4005: G. Lugosi, H.U. Simon (Eds.), Learning The-
ory. XI, 656 pages. 2006.

Vol. 4002: A. Yli-Jyrd, L. Karttunen, J. Karhumiki
(Eds.), Finite-State Methods and Natural Language Pro-
cessing. XIV, 312 pages. 2006.

Vol. 3978: B. Hnich, M. Carlsson, F. Fages, F. Rossi
(Eds.), Recent Advances in Constraints. VIII, 179 pages.
2006.

Vol. 3963: O. Dikenelli, M.-P. Gleizes, A. Ricci (Eds.),
Engineering Societies in the Agents World VI. XII, 303
pages. 2006.

Vol. 3960: R. Vieira, P. Quaresma, M.d.G.V. Nunes, N.J.
Mamede, C. Oliveira, M.C. Dias (Eds.), Computational
Processing of the Portuguese Language. XII, 274 pages.
2006.

Vol. 3955: G. Antoniou, G. Potamias, C. Spyropoulos, D.
Plexousakis (Eds.), Advances in Artificial Intelligence.
XVII, 611 pages. 2006.

Vol. 3949: FA. Savaci (Ed.), Artificial Intelligence and
Neural Networks. IX, 227 pages. 2006.

Vol. 3946: T.R. Roth-Berghofer, S. Schulz, D.B. Leake
(Eds.), Modeling and Retrieval of Context. XI, 149
pages. 2006.

Vol. 3944: J. Quinonero-Candela, 1. Dagan, B. Magnini,
F. d’Alché-Buc (Eds.), Machine Learning Challenges.
XIII, 462 pages. 2006.

Vol. 3937: H. La Poutré, N.M. Sadeh, S. Janson (Eds.),
Agent-Mediated Electronic Commerce. X, 227 pages.
2006.

Vol. 3932: B. Mobasher, O. Nasraoui, B. Liu, B. Masand
(Eds.), Advances in Web Mining and Web Usage Anal-
ysis. X, 189 pages. 2006.

Vol. 3930: D.S. Yeung, Z.-Q. Liu, X.-Z. Wang, H. Yan
(Eds.), Advances in Machine Learning and Cybernetics.
XXI, 1110 pages. 2006.

Vol. 3918: W.-K. Ng, M. Kitsuregawa, J. Li, K. Chang
(Eds.), Advances in Knowledge Discovery and Data
Mining. XXIV, 879 pages. 2006.

Vol. 3913: O. Boissier, J. Padget, V. Dignum, G. Linde-
mann, E. Matson, S. Ossowski, J.S. Sichman, J. Vazquez-
Salceda (Eds.), Coordination, Organizations, Institu-
tions, and Norms in Multi-Agent Systems. XII, 259
pages. 2006.



Table of Contents

Invited Talk

Producing Compliant Interactions: Conformance, Coverage,
and Interoperability . ....... ... . .
Amit K. Chopra and Munindar P. Singh

Invited Papers

Towards Theory Translation........... ... .. ... . . ...
Dejing Dou and Drew McDermott

The Complexity of Model Checking Concurrent Programs Against
CTLEK Specifications .. ..........ouinintene et
Alessio Lomuscio and Franco Raimondi

Dynamic Model Checking for Multi-agent Systems ...................
Nardine Osman, David Robertson, and Christopher Walton

Contributed Papers

Automating Belief Revision for AgentSpeak .........................
Natasha Alechina, Rafael H. Bordini, Jomi F. Hubner,
Mark Jago, and Brian Logan

A Foundational Ontology of Organizations and Roles . ................
Guido Boella and Leendert van der Torre

When Agents Communicate Hypotheses in Critical Situations .........
Gauvain Bourgne, Nicolas Maudet, and Suzanne Pinson

A Fibred Tableau Calculus for Modal Logics of Agents ...............
Vineet Padmanabhan and Guido Governatori

Programming Declarative Goals Using Plan Patterns .................
Jomi F. Hibner, Rafael H. Bordini, and Michael Wooldridge

JADL — An Agent Description Language for Smart Agents ............
Thomas Konnerth, Benjamin Hirsch, and Sahin Albayrak

Agreeing on Defeasible Commitments...............................
Toan Alfred Letia and Adrian Groza



VIII Table of Contents

A Dynamic Logic Programming Based System for Agents with
Declarative Goals ... ... 174
Vivek Nigam and Joao Leite

A Collaborative Framework to Realize Virtual Enterprises
USTE BAPT v vsies 55idc swarme anibamids $a s d0s Eaaiis Fnbmh §ma s iias 191
Gobinath Narayanasamy, Joe Cecil, and Tran Cao Son

A Modeling Framework for Generic Agent Interaction Protocols ....... 207
Jos€ Ghislain Quenum, Samir Aknine, Jean-Pierre Briot, and
Shinichi Honiden

Plan Generation and Plan Execution in Agent Programming .......... 225
M. Birna van Riemsdigk and Mehdi Dastani

A Functional Program for Agents, Actions, and Deontic
DPECICALIONS : s s s 5o ime smsmycwsamsme sasmusss S sms §Bams SEms e s o 239
Adam Zachary Wyner

Author Index . ... ... . . 257



Producing Compliant Interactions: Conformance,
Coverage, and Interoperability

Amit K. Chopra and Munindar P. Singh

North Carolina State University

Abstract. Agents in an open system interact with each other based on (typically,
published) protocols. An agent may, however, deviate from the protocol because
of its internal policies. Such deviations pose certain challenges: (1) the agent
might no longer be conformant with the protocol—how do we determine if the
agent is conformant? (2) the agent may no longer be able to interoperate with
other agents—how do we determine if two agents are interoperable? (3) the agent
may not be able to produce some protocol computations; in other words, it may
not cover the protocol—how we determine if an agent covers a protocol?

We formalize the notions of conformance, coverage and interoperability. A
distinctive feature of our formalization is that the three are orthogonal to each
other. Conformance and coverage are based on the semantics of runs (a run being
a sequence of states), whereas interoperability among agents is based upon the
traditional idea of blocking. We present a number of examples to comprehensively
illustrate the orthogonality of conformance, coverage, and interoperability.

Compliance is a property of an agent’s execution whereas conformance is a
property of the agent’s design. In order to produce only compliant executions,
first and foremost the agent must be conformant; second, it must also be able to
interoperate with other agents.

1 Introduction

We investigate the topic of an agent’s compliance with a protocol by checking its design
for conformance with the protocol and interoperability with other agents. Our agents are
set in an open environment, and thus expected to be autonomous and heterogeneous.
The interactions of agents are characterized in terms of protocols. The autonomy of
an agent is reflected in its policies, which affect how it interacts with others, possibly
resulting in deviations from the given protocol.

Deviations complicate the task of determining compliance. To take a simple example,
a customer in a purchase protocol may send reminders to a merchant at its own discre-
tion even though the protocol did not encode sending reminders. Some deviations can
be flagrant violations. For example, a customer may not pay after receiving the goods
it ordered. What can we say about the compliance of these agents? Sending a reminder
seems like an innocuous deviation from protocol, whereas not sending the payment ap-
pears more serious. One could argue that sending reminders could have been easily in-
corporated into the protocol. However, when we consider that deviations in protocol are
a manifestation of the individual policies of agents, the number of possible deviations
from a protocol is potentially infinite. As more deviations are encoded, the resulting

M. Baldoni and U. Endriss (Eds.): DALT 2006, LNAI 4327, pp. 1-15, 2006.
(© Springer-Verlag Berlin Heidelberg 2006



2 A.K. Chopra and M.P. Singh

protocol would become large and unwieldy. If each deviant protocol were published
as a separate protocol, too many niche protocols would arise. It is better to maintain a
smaller number of general protocols and to entertain deviations from such protocols.
However, not all deviations are acceptable from the point of view of compliance.

1.1 Compliance: Conformance and Interoperability

For an agent to be compliant with a protocol, first and foremost it must be conformant
with the protocol. While agent compliance can only be checked by monitoring the mes-
sages the agent exchanges with its peers at runtime, conformance can be verified from
its design. The design of an agent involves two primary components: protocols and poli-
cies. Protocols are the public part of the design and can be considered fixed for the set of
agents that adopt specific roles in the protocol. However, the policies are private to each
agent, and potentially unique to each agent. Hence, the design of an agent is a function
of its policies. An agent is conformant with a protocol if it respects the semantics of the
protocol. A useful criterion when considering conformance is the satisfaction of com-
mitments. Our definition of conformance supports commitments, but it is more general.

The distinction between conformance and compliance is important: an agent’s de-
sign may conform, but its behavior may not comply. This may be not only because of
the agent’s failure or unreliable messaging (which do not concern us here), but also be-
cause an agent’s design may preclude successful interoperation with its peers. In other
words, even though an agent is individually conformant, it may not be able to generate
compliant computations because of the other agents with whom it interacts, apparently
according to the same protocol. Interoperability is distinct from conformance; interop-
erability is strictly with respect to other agents, whereas conformance is with respect to
a protocol.

1.2 Coverage

A protocol may offer a number of alternative execution paths. Some of those paths may
be impossible for an agent who deviates from the protocol. Such a reduction in possi-
ble paths may be viewed as a reduction in the capabilities of an agent. Conversely, the
agent’s design may make it possible to interact along paths unforeseen in the protocol.
Such an addition may be viewed as an increase in the capabilities of an agent. Infor-
mally, we say an agent covers a protocol if it capable of taking any of the paths in the
protocol.

This notion of coverage is an important one: if an agent covers a protocol it would
appear to be at least as flexible as the protocol. That is, the agent can handle whatever the
protocol can “throw” at it. Moreover, in some settings it may be institutionally required
that an agent cover a protocol. For example, a tax official must report discrepancies in
reviewed filings to the main office; the official cannot ignore them.

1.3 Contributions and Organization

Our contributions include (1) an account of conformance and coverage based on a se-
mantics for protocols suitable for open systems; (2) showing how conformance, cover-
age, and interoperability are orthogonal concerns; and (3) establishing that in order to



Producing Compliant Interactions: Conformance, Coverage, and Interoperability 3

only produce compliant interactions, one has to consider both an agent’s conformance
with the protocol, and its interoperability with other agents.

Section 2 presents the representation of protocols as transition systems. Section 3
discusses the way in which an agent may deviate from protocol. Section 4 defines con-
formance and coverage. Section 5 discusses the interoperability of agents. Section 6
shows that conformance, coverage, and interoperability are orthogonal; it also discusses
the relevant literature.

2 Protocols

We represent protocols as transition systems; the transition systems are similar to those
described by C'+ specifications [5]. The signature of a transition system is the set o of
constants that occur in it. Here 02“* and o/! represent the sets of actions and fluents,
respectively. Each constant ¢ is assigned a nonempty finite domain Dom(c) of symbols.
An interpretation of o is an assignment ¢ = v for each ¢ € o where v € Dom(c).

Informally, a transition system is a graph with states as vertices and actions as edges.
A state s is a particular interpretation of o/!, the set of fluents; a transition is a triple
(s,e,s") where s and s are states, and e is an interpretation of a“*, the set of actions.
In addition, the initial and final states are marked.

Definition 1. A transition system is a (o/!, 0%, S, 50, F, ), where /! is the set of
. ) . £l .

fluents, 0! is the set of actions, S is the set of states such that S C 297, 5o € S is an

initial state, F© C S is the set of final states, 6 C S x E x S is the set of transitions,

act

where £ C 279 .

Figure 1 shows the transition system of a purchase protocol. The protocol has two roles:
merchant (mer) and customer (cus) engaging in the steps below:

1. The customer sends a request for quotes to the merchant.

2. The merchant responds either by sending an offer for the goods for which the cus-
tomer requested a quote, or by indicating the nonavailability of requested goods in
which case the protocol ends. By sending an offer, the merchant creates the con-
ditional commitment CC(mer, cus, a_price, an_item) meaning that if the customer
pays price a_price, then the merchant will send the goods an_item.

3. The customer can respond to the offer by either sending an accept, or a reject. Ac-
cepting the quote creates a conditional commitment CC(cus, mer, an_item, a_price),
meaning that if the merchant sends the goods, then the customer will pay. If the cus-
tomer sends a reject, the protocol ends.

4. If the customer sends a payment to the merchant, then CC(cus, mer, an_item,
a_price) is discharged and CC(mer, cus, a_price, an_item) is reduced to C(mer, cus,
an_item) meaning that the merchant is now committed to sending the goods. But
if the merchant sends an_item to the customer, then CC(mer, cus, a_price,an_item)
is discharged and CC(cus, mer, an_item, a_price) is reduced to C(cus, mer, a_price)
meaning that the customer is now committed to paying for the goods.

5. If the customer has paid in the previous step, then the merchant sends the goods,
thereby discharging its commitment. But if the merchant has sent the goods in



4 A.K. Chopra and M.P. Singh

sendRequest(cus,mer,an_item)

sendNoOffer(mer,cus,an_item)

sendOffer(mer,cus,an_item,a_price)

sendReject(cus,mer,an_item) sendAccept(cus,mer,an_item,a_price)

CCf{cus,mer,an_item,a_price)

(&) ‘&) CC(mer,cus,a_price,an_item)
sendGoods(mer,cus,an_item,a_price) sendPayment(cus,mer,an_item,a_price)

C(cus,mer,a_price) C(mer,cus,an_item)

sendPayment(cus,mer,an_item,a_price) sendGoods(mer,cus,an_item,a_price)

Fig. 1. A purchase protocol

the previous step, then the customer sends the payment, thereby discharging its
commitment. In either case, no commitments or conditional commitments hold in
the resulting state, which is a final state of the protocol.

Table 1 shows the interpretation of states in the transition system. An action starting
with ‘send’ represents a single message exchange between roles with the sender role
and receiver role as the first and second arguments, respectively. The fluents initial and
final mark the start state and the final states respectively.

We now introduce some definitions related to transition systems.

Definition 2. A path in a transition system is a series of transitions (sg,eg, $1),
(s1,€1,82), ...,(Sf—1,€ef_1,ss) such that sq is the initial state, and s is a final state.

A path may be abbreviated as (so, €g, s1,€1,...,€5_1,5f). Given a path p = (s9, €,
S1y.-vy8is€iy... €f_1,5f),wesaye; € p(0<i< f),ands; € p(0<i<f)

We restrict our attention to two-party protocols. All the actions performed by the
agents are communications. We further assume about the transition system of any pro-
tocol or agent that (1) only one action is performed along any transition; (2) in any
transition (s, e,s’), s Z s’; (3) there exist no transitions (s, e, s’) and (s, €', s’) such
that e = €’ (in other words, no two distinct actions cause a transition into the same
destination state from the same origin state); (4) the transition system is deterministic;
and (5) along any path in the transition system, an action is performed at most once.

Definition 3. A run in a transition system is a series of states (sg, s1, ..., S¢) such that
there exists a path (s, €g, s1,€1,...,€f5_1, S¢) in the transition system.

For example, the protocol of Figure 1 has the runs: (sg, s1, Ss), (S0, 1, S2, $7), (S0, S1,
S92, 83, 84, S¢), and (so, S1, S2, 83, S5, S6). Note that given the above restrictions, each
run maps to a unique path and vice versa.

Definition 4. The t-span [T] of a transition system 7" is the set of paths in 7.



Producing Compliant Interactions: Conformance, Coverage, and Interoperability 5

Table 1. States in Figure 1

State|Fluents

so |initial

s1 |request(cus, mer, an_item)

s2 |request(cus, mer, an_item), offer(mer, cus, an_item, a_price),
CC(cus, mer, an_item, a_price)
s3 |request(cus, mer, an_item), offer(mer, cus, an_item, a_price),
accept(cus, mer, an_item, a_price), CC(cus, mer, an_item, a_price),
CC(mer, cus, a_price, an_item)
s4 |request(cus, mer, an_item), offer(mer, cus, an_item, a_price),
accept(cus, mer, an_item, a_price), goods(mer, cus, an_item, a_price),
C(cus, mer, a_price)
ss |request(cus, mer, an_item), offer(mer, cus, an_item, a_price),
accept(cus, mer, an_item, a_price), pay(cus, mer, an_item, a_price),
C(mer, cus, an_item)
s¢ |request(cus, mer, an_item), offer(mer, cus, an_item, a_price),
accept(cus, mer, an_item, a_price), goods(mer, cus, an_item, a_price),
pay(cus, mer, an_item, a_price), final
s7 |request(cus, mer, an_item), offer(mer, cus, an_item, a_price),
reject(cus, mer, an_item, a_price), final
ss |request(cus, mer, an_item), no_offer(mer, cus, an_item), final

Notice that t-span is thus defined for protocols, role skeletons, and agents.

For example, {(so, 51.52,57), (S0, 51, 58), (S0, 51, 52, 53, S4, S6), (S0, 51, S2, S3,
S5, S6) } 1s the t-span of the purchase protocol of Figure 1.

3 Deviating from Protocol

A role skeleton is a projection of a protocol onto a particular role; it is the transition
system of the role. Figure 2 shows the customer skeleton. A customer’s policies are
combined with the customer role to create a new transition system representing the
customer agent. Saying an agent is conformant with a protocol is the same as saying it
is conformant with the role it adopts in the protocol; the same holds for coverage. Also
note that if the transition system of an agent is identical to the skeleton of the role it
adopts, we shall say that the agent follows the role.

The policies that go into designing an agent may be such that it follows a protocol.
Or, they may be such that the agent encodes deviations from the protocol. Below, we
list some common kinds of deviations.

Narrowing. The t-span of an agent is a proper subset of the t-span of the role skeleton
it adopts: a typical reason for this would be to simplify its implementation.

Example 1. As shown in the agent’s transition system in Figure 3, the customer re-
quires the goods to arrive before it sends the payment. Essentially, the customer has
removed a run from the role skeleton, namely, the run in which payment happens
before the delivery of goods.



6 A.K. Chopra and M.P. Singh

sendRequest(mer,an_item)

recvNoOffer(mer,an_item)

recvOffer(mer,an_item,a_price)
sendAccept(mer,an_item,a_price)

sendReject(mer,an_item)

recvGoods(mer,an_item,a_price) endPayment(mer,an_item,a_price)

recvGoods(mer,an_item,a_price)

sendPayment(mer,an_item,a_price)

Fig. 2. Customer role skeleton

sendRequest(mer,an_item)

recvNoOffer(mer,an_item)
recvOffer(mer,an_item,a_price)

sendAccept(mer,an_item,a_price)

sendReject(mer,an_item)

recvGoods(mer,an_item,a_price)
sendPayment(mer,an_item,a_price)

Fig. 3. Customer who sends payment only after receiving goods

Broadening. The t-span of the role skeleton is a proper subset of the t-span of the

agent that adopts that role: a typical reason for this would be to handle scenarios
not encoded in the protocol.

Example 2. The customer agent sends a reminder to the merchant about its com-
mitment to send goods. Thus, in addition to the original runs, the customer agent
includes the run in which it sends a reminder. For the sake of brevity, Figure 4 only
shows the additional run; the remaining runs are as in Figure 2. 1

Lengthening. The t-span of an agent is similar to that of the role skeleton except that
some runs in the t-span of the agent are longer than the corresponding runs in the
role skeleton: the reason is that additional actions happen along the path corre-
sponding to the run.



Producing Compliant Interactions: Conformance, Coverage, and Interoperability 7

sendRequest(mer,an_item)

recvOffer(mer,an_item,a_price)

sendAccept(mer,an_item,a_price)

sendReminder(mer,an_item,a_price)
recvGoods(mer,an_item,a_price)

sendPayment(mer,an_item,a_price)

Fig. 4. The run in which customer sends a reminder

Example 3. If we replace the run (sg, s1, S2, $3, S4, Se) in the customer role skele-
ton (shown in Figure 2) with the run in which a reminder is sent (shown in Figure 4),
then it represents an example of lengthening. 1

Example 4 illustrates the shortening of runs.

Example 4. Consider the customer of Figure 5. After receiving goods, the customer
does not send payment for them. State s4 is a final state for this customer. 1

sendRequest(mer,an_item)

recvNoOffer(mer,an_item)

recvOffer(mer,an_item,a_price)
sendAccept(mer,an_item,a_price)

sendReject(mer,an_item)

recvGoods(mer,an_item,a_price) endPayment(mer,an_item,a_price)

recvGoods(mer,an_item,a_price)

Fig. 5. Customer who does not pay for received goods

Gating. An agent may broaden or lengthen a protocol in such a way that it expects to
receive additional messages from its partners in order to proceed.



