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PREFACE

This volume has a threefold purpose: to explain the physical concepts
of quantum mechanics, to describe the mathematical formalism, and to
present, illustrativg examples of both the ideas and the methods. The
book is intended to serve as a text at the graduate level and also as a
reference book. It is assumed that the reader is reasonably familiar
with atomic structure, classical mechanics, and differential equations:
In addition, he should have had some contact with electromagnetic theory
and, for the latter part of the book, with the special theory of relativity.

The author believes that the analytical methods employed in the book
will satisfy most theoretical physicists even though no attempt is made
to achieve mathematical rigor. For example, there is little or no dis=_
cussion of the justification for the interchange of sum, derivative, and
integral operations, or for the use of the § function. On the other hand,
the physical reasons for the nature of the results obtained are investigated
wherever possible.

Problems are given at the end of each chapter. They are often used
to illustrate or amplify points discussed in the text. Original theoretical
papers are referred to throughout the book; the list is representative .
rather than exhaustive. Experimental results are, for the most part,
quoted - without reference, since the large amount of documentation—
required for an adequate survey seems out of place in a book on theoretical
physics. Several other books on quantum mechanics and related sub- ~
jects are referred to for more detailed discussions of particular topics. I

The scope of this volume is best outlined if the book is divided into
three parts. The first three chapters constitute an introduction to
quantum mechanics, in which the physical concepts are discussed and
the Schrodinger wave formalism is established. The detailed treatment.
of the wave function (Chap. III) may be omitted in a first reading. The
next eight chapters comprise the central part of the book. This part
presenfs exact solutions of the wave equation for both energy-level and
collision problems, the Heisenberg matrix formalism and transformation
theory, approximation methods, radiation theory, and some applications
to atomic systemg. Since the first eleven chapters correspond to a
typical one-year graduate course, it seemed desirable to include a semi-
classical treatment of electromagnetic radiation in the central part of
the book (Chap. X) even though some of the results are obtained again in
Chap. XIV. The last part of the book corresponds to a short course in
what is often called advanced quantum mechanics. It consists of rela-
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tivistic particle theory and an introduction to quantized field theory and
quantum electrodynamics.

Nearly all this'book was written while the author was at the Uni-
versity of Pennsylvania, and he gratefully acknowledges the continued
encouragement of Prof. G. P. Harnwell. - He is also indebted to Drs. E. H.
Kennard and 8. Pasternack for helpful eriticism of the early chapters, to

' W. Miller and L. Spruch for their careful reading of, most of the manu-
script, and to Profs. F. Bloch, R. F. Christy, and' W. W. Hansen for
valuable comments on certain sections. It is a particular pleasure for
the author to thank Prof. R. Serber for many discussions of both the
conceptual and formal aspects of quantum mechanics that took place
during the last eleven years. :

Finally, the author wishes to acknowledge his indebtedness to Prof.
J. R. Oppenheimer for his introduction to several of the ideas and exam-

-ph.as that appear in the book. Indeed, the writing of this book in its

° present form owes much to the period from 1937 to 1940, which the
author spent in association with Professor Oppenheimer.

LeoNarp I. ScHIFF
STANFORD, CALIFORNIA ‘
June, 1948
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CHAPTER 1
THE PHYSICAL BASIS OF QUANTUM MECHANICS

At the present stage of human knowledge, quantum mechanice 2an
be regarded as the fundamental theory of atomic’ puenomena. The
experimental data on which it is based ate derived from physical events
that lie almost entirely beyond the range of direct human perception.
It is not surprising, therefore, that the theory embodies physical con-
cepts that are foreign to common daily experience. These concepts did
not appear in the_historical development of quantum mechanics, how- _
ever, until a quite complete mathematical formalism had been evolved.
The need for quantitative comparison with observation, which is the
uliimate test of any physical theoiy, in this case led first to-the formalisin
any only later to its interpretation in physical terms.

It seems desirable in introducing the subject of quantum mechanics to
depart from the historical order and preface the mathematical develop-
ment with a discussion of the physical concepts. In this chapter we first
review briefly the experimental background and the ideas of the old
quantum theory, then discuss the newer physical concepts of uncertainty
and complementarity, and finally lay the groundwork for the formalism
that will be developed in its most familiar form in Chap. II.  No attempt
will be made to deduce the structure of the formalism, from the funda-
mental experiments; we sHall try to make the theeretical development
seem plausible rather than unique. The justification for the theory,
then, will rest on the agreement between deductions made from it and
experiments, and on the simplicity (in principle more than in practice)
and consistency of the formalism. ' '

'1. EXPERIMENTAL BACKGROUND

Experimental physics prior to 1900 had demonstrated the existence
of a wide variety of phenomena, which for the most part were believed
to be explicable in-terms of what we now call classical theoretical physics.
The motions of mechanical objects were successfully discussed in terms
of Newton’s equations on both celestial .and terrestrial scales. Appli-
cation of this theory to molecular motions produced useful results in the
kinetic theory of gases, and the discovery of the electron by J. J. Thom-
son in 1897 consisted in showing that it behaved like a Newtonian particle.

1



2 . QUANTUM MECHANICS [CraP. 1

‘The wave nature of light had been strongly suggested by the diffraction
experiments of Young in 1803, and was put on a firmer foundation
by Maxwell’s discovery in 1864 of the connection between optical and
electrical phenomena. _

Inadequacy of Classical Physics. The difficulties in the understand-
ing of experimental results that remained at the beginning of this century
were largely concerned with the development of a suitable atomic model
and with the late discoveries of X rays and radioactivity. However,
there were also difficulties associated with phenomena that should have
been unuerstood but actually were not: such things as the spectral dis-
tribution of thermal radiation from a black body, the low-temperature
specific heats of solids, and the appearance of only 5 degrees of freedom
in the motion of a free dla.tomlc molecule at ordinary temperatures.

The beginning of ‘an understanding of the second class of difficulties
was made by Planck in 1900, when he was able to explain the black-body
- spectrum in terms of the assumed emission and absorption of electro-
magnetic radlatlon in discrete quanta, each of which contains an amount
of energy E that is equal to the frequency of the ra,dla.txon v multiplied

by a universal consiau 7 (called Flanck’s consiuiic).

= hy ‘ - (1.1)

This quantum idea was later used by Einstein in accounting for some of
the experimental observations on the photoelectric effcet. In this way
the dual characier of elsctromaguetic radiation became established:
it sometimes behaves like a wave motion, and sometimes like a stream of
corpuscular quanta.

’ At about this time, the existence of discrete values for the measurable
parameters of atomic systems (not only of electromagnetic radiation)
became apparent through Einstein’s and Debye’s theories of the specific
heats of solids, Ritz’s classification of spectral lines, the experiment of
Franck and Hertz on the discrete energy losses of electrons on collision
with atoms, and (somewhat later) the experiment of Stern and Gerlach,
which showed that the component of the magnetic moment of an atom
along an external magnetic field has discrete values.

Summary of Principal Experiments and Inferences. The theoretical
physics of the first quarter of this century thus contained two important
inferences, obtained from the experiments and their interpretations, that
had not existed in 1900: the dual character of electromagnetic radiation,
and the existence of discrete values for physical quantities. The rela.tlons
between the principal experimental conclusions and the theoretical
inferences are shown schematically in Table 1; for a more detailed dis-
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cussion and a bibliography, reference should be made to a book on atomic
physies.? :

Taprel. RELATIONS BETWEEN EXPERIMENTAL INTERPRETATIONS AND THEORETICAL

INFERENCES
Tlec

Diffraction (Young 1803, Laue 1912)................. ... simisn {‘;i:::;omagn etic
Black-body radiation (Planck 1900)
Photoelectric effect (Einstein 1904) {El'ectromagnetic
Compton effect (1923) [~y quanta
Combination principle (Ritz-Rydberg 1908) ] .
Specific heats (Einstein 1907, Debye 1912) g:sg]ei:ic:;.lues
Franck-Hertz experiment (1913) santition

Stern-Gerlach experiment (1922)

A third theoretical mference appeared in 1924 vnth the suggestion by
de Broghe that matter also has a dual (particle-like and wave-like)
character; he assumed that the relation between the momentum p of the
particle and the length A of the corresponding wave is? .

-

A P _ (1.2)

Up to that time all the evidence had indicated that matter was composed

of discrete Newtonian particles; in particular, sharp tracks of charged

particles such as electrons and helium nuclei had been observed in expan-

sion cloud chambers' like that invented by C. T. R. Wilson in 1911.

-Shortly after this, however, Davisson and Germer (1927) and G. P.
Thomson (1928) independently observed the diffraction of electrons by

crystals, and thus confirmed de Broglie’s principal supposition.

. 2. THE OLD QUANTUM THEORY

What is now called the old quantum theory® was initiated by the work
of Planck on black-body radiation, and earried farther by Einstein and
Debye. However, it was only after Rutherford’s discovery.in 1911 that
an atom consists of a small, massive, positively charged nucleus sur-
rounded by electrons, that the theory could be applied to a quantltatlve
description of atoms.

1 See, for example 'F. K. Richtmyer andE H. Kenpard, “Introduction to Modern
Physms” (McGraw-Hill, New York, 1942) ; M. Born, “Atoxmc Physics” (Bla,ckxe,
Glasgow, 1946).

2 Equation (1.2) is also valid for light quanta, ‘as may be seeu by dnndmg both
sides of Eq. (1.1) by the velocity of light ¢; for a directed beam of hght p = Efcand
A =c¢/v.

3 For a more detailed discussion than is presented in this sectxon see the books eited
sbove, and L. Pauling and E. B. Wilson, Jt., *Introduction to Quantum Mechamcs,”
‘Chap. IT (McGraw-Hill, New York, 1935). -
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Bohr-Sommerfeld Quantization Rules. The first step in this direc-
tion was taken by Bohr in 1913, when he made two postulates concerning
the electronic or extranuclear structure of an atom. The first of these
was that an atomic system can exist in particular stationary or quantized
states, each of which corresponds to a definite energy of the system.
Transitions from one stationary state to another are accompanied by
the gain or loss, as the case may be, of an amount of energy equal to the
energy difference between the two states; the energy gained or lost
appears as a quantum of electromagnetic radiation, or as internal or
kinetic energy of another system. The second postulate (in agreement
with that of Planck and Einstein) was that a radiation quantum has a
frequency equal to its energy divided by Planck’s constant A.

These two postulates by themselves provided some insight into the
Ritz combination principle and the Franck-Hertz experiment. To obtain
specific results for hydrogen, Bohr proposed a simple rule for the selection
. of *those circular orbits which are to constitute stationary states: the
angular momentum must be an integral multiple of A/2r. A more
general quantization rule was discovered independently by W. Wilson
(1915) and by Sommerfeld (1916), thus making possible the application
of Bohr’s postulates to a wider variety of atomic systems. This rule is
applicable to Hamiltonian systems in which the coordinates are cyclic
variables, and states that the integral of each canonical momentum with
respect to its coordinate over a-cycle of its motion must be an integral
multiple of . The rule was:applied with considerable success to the
computation of the fine structure of hydrogen, the spectra of diatomic
molecules, and other problems.

Practical Difficulties. The old quantum theory encountered practical
difficulties in several different respects. Tt could not be applied to
aperiodic systems, it provided only a qualitative and incomplete treat-
ment of the intensities of spectral lines, and it did not give a satisfactory
account of the dispersion of light. Moreover, improvements in experi-
mental techniques soon showed that there were problems, such as the
rotational spectra of some diatomic molecules, to which the theory gave
unambiguous but incorrect answers. : '

The correspondence principle was introduced by Bohr in 1923 in an
effort to make use of the classical theory as a limiting case to infer some
properties of atomic systems, especially the intensities of spectral lines.
Although mucli was achieved in this way, it was clear in the early 1920’s
that the quantum theory as it then existed was unsatisfactory.

Conceptual Difficulties. . Quite apart from the practical difficulties
outiinzd above, the old quﬁum theory failed to give a conceptually
satisfactory account of the fundamental phenomena. Tt was difficult to



Skc. 2] THE PHYSICAL BASIS OF QUANTUM MECHANICS ° 5

understand why the electrostatic interaction between a hydrogen nucleus
and an electron should be effective when the ability of the accelerated
electron to emit electromagnetic radiation disappeared in a stationary
state. The mechanism of emission and absorption of radiation in transi-
tions between stationary states was obscure. The quantization rules
were arbitrary even when they were most effective. And the assumption
of a dual character for light (particle-like on emission and absorption
_and wave-like in transit) seemed to be self-contradictory.

In order to illustrate the conceptual difficulties and the way in which
they are dealt with by the new quantum mechanics, we consider in some
detail a simple diffraction experiment, which is illustrated schematically
in Fig. 1. A light source S illuminates a diaphragm A in which two slits

«\e

A B
Fi16. 1. A diffraction experiment in which light from S passes tbrough the two slits in 4 to
form a diffraction pattern at B.
are cut. A diffraction pattern appears at a photosensitive screen B,
“and the ejected photoelectrons are most numerous at the diffraction
peaks. Here we have the radiation behaving as a wave during its passage
from source through slits to screen, but behaving as a stream of light
quanta or photons when it ejects electrons from B. We now know that a
similar experiment could be set up with matter instead of radiation.
The diffraction pattern of electrons scattered from a erystal (analogous
to the slits in A) may be detected as a distribution of electron tracks in a
- Wilson cloud chamber (analogous to the screen B), so that the wave and
particle aspects of matter appeai in the same experiment.

In the situation illustrated in Fig. 1, we might at first suppose that
the diffraction pattern is due to an interference between different photons
passing through the two slits, thus explaining the observations entirely
in terms of the particle picture. That this is not a sufficient explanation
may be shuwn by decreasing the intensity of the light until an average of
only one photon at a time is in transit between source and screen. The
diffraction pattern still appears as the distribution of the large number of
photons accumulated over a sufficiently long timé. Thus we must con-
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clude that diffraction is a statistical property of a single photon, and does
not involve an interaction between photons. From the point of view of
the particle picture, we may then ask how it is that a stream of inde-
pendent photons, each of which presumably can go through only one of
the slits, can produce a diffraction pattern that appears only when both
slits are open. Or to put the question in another way, how can the
presence of a slit through which a photon does not go prevent that photon
from reaching a part of the screen it would be likely to reach if that slit
were closed ? .

Quantum-mechanical Viewpoint. In this question is implicit the
assumption that the photon actually does go through a particular one
of the two slits. This assumption is natural from the point of view of the
classical theory or the old quantum theory since these theories regard a
photon or other particle as having a definite and determinable position
at each instant of time. The quantum mechanics, however, discards this

- asfumption, and asserts instead that the position of a photon has meaning
only when the experiment includes a position determination. Moreover,
this part of the experiment will affect the remainder of the experiment
and cannot be considered separately. Thus from the point of view of
quantum mechanics, the question asked in thé last paragraph is without
meaning, since it assumes that the photon goes through a particular one
of the two slits (thus making it possible to close the other slit) when there
is no provision in the experiment for determining through which slit 'the
photon actually goes. .

The quantum mechanics resolves the situatton by’ telling us that the
diffraction pattern is destroyed if a sufficiently careful attempt is made
to determine through which. slit each photon passes.(see Sec. 4). We
must then be prepared to forego the customary mental picture of a
photon (or an electron) as a classical particle that has at each instant of
time a’ position that can be determined without damage to diffraction
patterns of the type discussed here. Thus classical causality, which
requires that the motion of a particle at any time be uniquely determin-
able from its motion at an earlier time, must also be abandoned. - The
new theory that is forced upon us in this way is so successful in other
respects as well that, at the present state of knowledge, we must regard
such classically incomplete descriptions as a fundamental property of
nature.

8. UNCERTAINTY AND COMPLEMENTARITY

Before presenting a more quantitative discussion of the diffraction
experiment outlined in Sec. 2, we consider two principles that express
in qualitative terms the physical conten¢ of the theory of quantum
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mnechanics. We restrict ourselves here to a discussion of their meaning,
and give arguments for their validity in Sec. 4.

Uncertainty Principle. The first of these is the uncertainty principle,
developed by Heisenberg! in 1927. According to this principle, it is
impossible to specify precisely and simultaneously the values of both
members of particular pairs of physical variables that describe the behav-
jor of an atomic system. The members of these pairs of variables are
canonically conjugate to each other in the Hamiltonian sense: a rectangu- .
lar coordinate z of a particle and the corresponding component of momen-
tum p., & component J, of angular momentum of a particle and its
‘angular position ¢ in the perpendicular (zy) plane, the energy E of a par-
ticle and the time ¢ at which it is measured, etc. Put more quantitatively,
the uncertainty principle states that the order of magnitude of the
product of the uncertainties in the knowledge of the two variables must
be at least Planck’s constant k divided by 27 (A = h/2r = 1.054 X 10~*

erg-second),? so that °
Ax . Apz Z ﬁl ’ (3.1)
Ap-AJ. > h (3.2
At-AE = | 3.3)

" The relation (3.1) means that a component of the momentum of a
‘patticle cannot be precisely specified without our loss of all knowledge
of the corresponding component of its position at that time, that a particle
cannot be precisely localized in a particular direction without our loss of
all knowledge of its momentum component in that direction, and that in
intermediate cases the product of the uncertainties of the simultaneously
measyrable values of corresponding position and momentum components
is at least of the order of magnitude of A. Similarly, Eq. (3.2) means,
for example, thatr the precise measurement of the angular position of a
particle in an orbit carries with it the loss at that time of all knowledge
of the component of angular momentum perpendicular to the plane of
the orbit. Equation (3.3) means that an energy determination that
has an accuracy AE must occupy at least a time interval At ~ #/AE;
thus if a system maintains a particular state of motion not longer than
a time At, the energy of the system in that state is uncertain by at least
the amount AE ~ A/At, since At is the longest time interval available for
the energy determination: The smallness of  makes the uncertainty
principle of interest primarily in connection with systems of atomic size.

1'W. Heisenberg, Zeits. f. Physik, 48, 172 (1927).
2 R. T. Birge, Rev. Mod. Phys. 18, 233 (1941).
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 As we shall see in Sec. 12, the uncertainty principle may be obtained
directly from the mathematical formulation of the theory, and this is
actually the way in which it was first obtained by Heisenberg.

Complementarity Principle. In order to understand the implications
of the uncertainty principle in more physical terms, Bohr! introduced the
complementarity principle in 1928. This principle states that atomic
phenomens cannot be described with the completeness demanded by
classical dynamics; some of the elements that complement each other to
make up a-complete classical description are actually mutually exclusive,
and these complementary elements are all necessary for the description of
various aspects of the phenomena. From the point of view of the experi-
menter, the complementarity principle asserts that the physical apparatus
available to him has such properties that more precise measurements
than those indicated by the uncertainty principle cannot be made.

This is not to be regarded as a deficiency of the experimenter or of his
tethniques. It is rather a law of nature that, whenever an attempt is
madeto measure precisely one of the pair of canonical variables, the other
is changed by an amount that cannot be too closely calculated without
interfering with the primary attempt. This is fundamentally different
from the classical situation, in which a measurement also disturbs the
system that is under observation, but the amount of the disturbance can
be calculated and taken into account. Thus the cowplementarity
principle typifies the fundamental limitations on the classical concept
that the behavior of atomic systems can be described independently
of the means by which they are observed.

Limitations on Experiment. :In the atomic field, we must choose
between various experimental arrangements, each designed to measure
the two members of a pair of canonical variables with different degrees
of precision that are compatible with the uncertainty relations. In
particular, there are two extreme arrangements, each of which measures
one member of the pair with great precision. According to classical
theory, these extreme experimental arrangements complement each other;
the results of both may be obtained at once and are necessary to supply
a complete classical description of the system. In quantum mechanics,
however; the extreme complementary experiments are mutually exclusive
and cannot be performed together.

Tt is in this sense that the classical concept of causality disappears in
the atomic field. ' There is causality in so far as the quantum laws that
describe the behavior of atoms are perfectly definite; there is not, how-
ever, a causal relationship between successive configurations of an

1 N. Bohr, Nature, 1/21, 580 (1928); ‘““Atomic Theory and the Description of
Nature,” especially Part [I (Cambridge, London, 1934); Phys. Rev., 48, 696 (1935).



