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Introduction

This book aims to present a systematic treatment of a series of results con-
cerning invariant measures, entropy and Lyapunov exponents of smooth random
dynamical systems. We first try to give a short account about this subject and
the brief history leading to it.

Smooth ergodic theory of deterministic dynamical systems, i.e. the qual-
itative study of iterates of a single differentiable transformation on a smooth
manifold is nowadays a well-developed theory. Among the major concepts of
this theory are the notions of invariant measures, entropy and Lyapunov (char-
acteristic) exponents which culminated in a theorem well known under the name
of Oseledec, and there have been numerous relevant results interesting in theory
itself as well as in applications. One of the most important classes of the results
is Pesin’s work on ergodic theory of differentiable dynamical systems possessing
a smooth invariant measure. Another is related to the ergodic theory of Anosov
diffeomorphisms or Axiom A attractors developed mainly by Sinai, Bowen and
Ruelle. A brief review of these two classes of works is now given in the next two
paragraphs.

In his paper [Pes];, Pesin proved some general theorems concerning the exis-
tence and absolute continuity of invariant families of stable and unstable man-
ifolds of a smooth dynamical system, corresponding to the non-zero Lyapunov
exponents. This set up the machinary for transferring the linear theory of Lya-
punov exponents into non-linear results in neighbourhoods of typical trajectories.
Using these tools Pesin then derived a series of deep results in ergodic theory of
diffeomorphisms preserving a smooth measure ([Pes];). Among these results is
the remarkable Pesin’s entropy formula which expresses the entropy of a smooth
dynamical system in terms of its Lyapunov exponents. Part of the work above
has been extended and applied to dynamical systems preserving only a Borel
measure ([Kat], [Fat] and [Rue],).

We now turn to some results related to the ergodic theory of Axiom A attrac-
tors. Recall that for a given Axiom A attractor there exists a unique invariant
measure, called Sinai-Bowen-Ruelle (or simply SBR) measure, that is character-
ized by each of the following properties ([Sin], [Bow]> and [Rue]z):

(1) Pesin’s entropy formula holds true for the associated system.

(2) Its conditional measures on unstable manifolds are absolutely continuous
with respect to Lebesgue measures on these manifolds.

(3) Lebesgue almost every point in an open neighbourhood of the attractor
1s generic with respect to this measure.

Each one of these properties has been shown to be significant in its own right,
but it is also remarkable that they are equivalent to one another. More crucially,
Ledrappier and Young proved later in their well-known paper [Led], that the
properties (1) and (2) above remain equivalent for all C? diffeomorphisms (That
(2) implies (1) was proved by Ledrappier and Strelcyn in [Led]3). All results
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mentioned above are fundamental and stand at the heart of smooth ergodic
theory of deterministic dynamical systems.

In recent years the counterpart in random dynamical systems has also been
investigated. For an introduction to the scope of random dynamical systems,
one can hardly find better description than that given by Walter [Wal], in re-
viewing the pioneering book FErgodic Theory of Random Transformations by
Kifer ([Kif],):

“Traditionally ergodic theory has been the qualitative study of it-
erates of an individual transformation, of a one-parameter flow of
transformations (such as that obtained from the solutions of an au-
tonomous ordinary differential equation), and more generally of a
group of transformations of some state space. Usually ergodic the-
ory denotes that part of the theory obtained by considering a mea-
sure on the state space which is invariant or quasi-invariant under
the group of transformations. However in 1945 Ulam and von Neu-
mann pointed out the need to consider a more general situation when
one applies in turn different transformations chosen at random from
some space of transformations. Considerations along these lines have
applications in the theory of products of random matrices, random
Schrodinger operators, stochastic flows on manifolds, and differen-
tiable dynamical systems”.

In his book [Kif];, Kifer presented the first systematic treatment of ergodic the-
ory of evolution processes generated by independent actions of transformations
chosen at random from a certain class according to some probability distribu-
tion. Among the major contributions of this treatment are the introduction of
the notions of invariant measures, entropy and Lyapunov exponents for such
processes and a systematic exposition of some very useful properties of them.
This pioneering book establishes a foundation for further study of this subject,
especially for the purpose of the development of the present book.

In this book we are mainly concerned with ergodic theory of random dynam-
ical systems generated by (discrete or continuous) stochastic flows of diffeomor-
phisms on a smooth manifold, which we sometimes call smooth ergodic theory
of random dynamical systems. Our main purpose here is to exhibit a system-
atic generalization to the case of such flows of a major part of the fundamental
deterministic results described above. Most generalizations presented in this
book turn out to be non-trivial and some are in sharp contradistinction with
the deterministic case. This is described in a more detailed way in the following
paragraphs.

This book has the following structure. Chapter 0 consists of some necessary
preliminaries. In this chapter we first present some basic concepts and theo-
rems of measure theory. Proofs are only included when they cannot be found in
standard references. Secondly, we give a quick review of the theory of measur-
able partitions of Lebesgue spaces and conditional entropies of such partitions.
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Contents of this part come from Rohlin’s fundamental papers [Roh]; ;. The
major part of this chapter is devoted to developing a general theory of condi-
tional entropies of measure-preserving transformations on Lebesgue spaces. The
concept of conditional entropies of measure-preserving transformations was first
introduced by Kifer (see Chapter II of [Kif];), but his treatment was only jus-
tified for finite measurable partitions of a probability space. Here we deal with
the concept in the case of general measurable partitions (maybe uncountable)
of Lebesgue spaces and prove some associated properties mainly along the line
of [Roh]2, though the paper of Rohlin only deals with the usual entropies of
measure-preserving transformations. Results presented in this chapter serve as
a basis of the later chapters.

The concepts in Chapter I are mainly adopted from Kifer’s book [Kif];. But
for an adequate treatment of entropy formula (in Chapters II, IV, VI and VII) an
extension of the notion of entropy to general measurable partitions is indispen-
sible. So we have to formulate and prove the related theorems in this setting,
which could be accomplished if the reader is familiar with the preliminaries
in Chapter 0. In Section I.1 we first introduce the random dynamical system
At (M, v) (see Section 1.1 for its precise meaning). Then we discuss some prop-
erties of invariant measures of #F*(M,v). When associated with an invariant
measure p, (M, v) will be referred to as #+(M, v, ). Section 1.2 consists of
the concept of the (measure-theoretic) entropy h,( #*(M,v)) of #+(M,v,u)
and of some useful properties of it deduced from its relationship with conditional
entropies of (deterministic) measure-preserving transformations. In Section 1.3
we introduce the notion of Lyapunov exponents of #*(M,v,u) by adapting
Oseledec multiplicative ergodic theorem to this random case.

In Chapter II we carry out the estimation of the entropy of &% (M,v,pu)
from above through its Lyapunov exponents. We prove that for any given
A+ (M, v, u) the following inequality holds true:

hu( ZT(M,v)) < /Z/\() tmi(z)dp,

where A(D(z) < M3)(z) < --- < A()(z) are the Lyapunov exponents of
A%t (M,v, ) at point £ € M and m;(z) is the multiplicity of A()(z). This is an
extension to the present random case of the well-known Ruelle’s (or Margulis-
Ruelle) inequality in deterministic dynamical systems. As in the deterministic
case the above inequality is sometimes also called Ruelle’s (or Margulis-Ruelle)
inequality. In the random case this type of inequality was first considered by
Kifer in Chapter V of [Kif]; (see Theorem 1.4 there), but the proof of his theorem
contains a nontrivial mistake and this led the authors of the present book to an
essentially different approach to this problem (see Chapter II for details). Our
presentation here comes from [Liu];. As compared with the deterministic case,
it involves substantially new techniques (especially the introduction of relation
numbers and the related estimates).

After the first version of this book was completed, the authors received a
preprint [Bah] by J. Banmiiller and T. Bogenschiitz which gives an alternative
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treatment of Ruelle’s inequality. Their argument shows that the mistake men-
tioned above is inessential and can be corrected with some careful modifications,
and their argument is also carried out within a more general framework of “sta-
tionary” random dynamical systems. It turns out, then, that the correction of
the mistake in the original Chapter II is at the expense of an extraneous hypoth-
esis (see Remark 2.1 of Chapter II). However, the treatment in that chapter (for
example, the argument about the C%-norms and relation numbers) is besides
its own right very useful for the later chapters. For this consideration and in
order not to change drastically the original (carefully organized) sketch of the
book, we retain here the original Chapter II and also introduce Bahnmuiller and
Bogenschiitz’s argument (with some modifications) in the Appendix (it involves
some results in Chapter VI).

Chapter III deals with the theory of stable invariant manifolds of (M, v, u).
We present there an extension to the random case of Pesin’s results concerning
the existence and absolute continuity of invariant families of stable manifolds
([Pes];). Although some new technical approaches are employed, our treatment
goes mainly along Pesin’s line with some ideas being adopted from [Kat], [Fat]
and [Bri]. Besides their own rights, results in this chapter serve as powerful tools
for the treatment of entropy formula given in later chapters.

In Chapter IV we extend Pesin’s entropy formula to the case of &% (M, v, ),
i.e. we prove that

ha( 2 (M,0) = [ 30 AD@) (o)

when p is absolutely continuous with respect to the Lebesgue measure on M.
This formula takes the same form as in the deterministic case, but now the
meaning of the invariant measure p is quite different since it is no longer nec-
essarily invariant for individual sample diffeomorphisms; we also have to point
out that the implication of this result exhibits a sharp contradistinction with
that in the deterministic case (see the arguments in Section IV.1 and those at
the end of Chapter V). This result was first proved by Ledrappier and Young
([Led];) in the setting of the two-sided random dynamical system #(M,v,pu)
(see Chapter VI for its meaning), and a more readable treatment of it was later
given in [Liu]; within the present one-sided setting &*(M,v,u). In this chapter
we follow the latter paper. As compared with the deterministic case ([Pes]; and
[Led]s), the proof of the result given here involves the new ideas of employing
the theory of conditional entropies and of applying stable manifolds instead of
unstable manifolds. Aside from these points, the proof follows essentially the
same line as in the deterministic case, although the technical details are much
more complicated.

In Chapter V we apply our results obtained in the previous chapters to
the case of stochastic flows of diffeomorphisms. Such flows arise essentially as
solution flows of stochastic differential equations and all the assumptions made
in the previous chapters can be automatically verified in this case. Thus we reach
and finish with an important application to the theory of stochastic processes.



Chapter VI is devoted to an extension of the main result (Theorem A) of
Ledrappier and Young’s remarkable paper [Led]; to the case of random diffeo-
morphisms. Roughly speaking, in the deterministic case one has Theorem A
in [Led], which asserts that Pesin’s entropy formula holds true if and only if
the associated invariant measure has SBR (Sinai-Bowen-Ruelle) property, i.e. it
has absolutely continuous conditional measures on unstable manifolds; for the
case of random diffeomorphisms we prove in this chapter that Pesin’s entropy
formula holds true if and only if the associated family of sample measures, i.e.
the natural invariant family of measures associated with individual realizations
of the random process has SBR property. This result looks to be a natural
generalization of the deterministic result to the random case, but it has a non-
trivial consequence (Corollary VI.1.2) which looks unnatural and which seems
hopeless to obtain if one follows a similar way as in the deterministic case (i.e.
by using the absolute continuity of unstable foliations). This generalization was
actually known first to Ledrappier and Young themselves, though not clearly
stated. Here we present the first detailed treatment of this result. Although
the technical details are rather different, our treatment follows the line in the
deterministic case provided by [Led]; 3. The sources of this chapter are [Led]; 23
and [Liu]s.

In Chapter VII we study the case when a hyperbolic attractor is subjected to
certain random perturbations. Based on our elaboration given in the previous
chapters, a random version of the deterministic results mentioned above for
Axiom A attractors is derived here. The idea of this chapter comes from [You]
and [Llu]5

Random dynamical systems, though only at an early stage of development
by now, have been widely used and taken care of, especially in applications. In
this book, our intention is to touch upon only a part of this subject which we can
treat with mathematical rigor. For this reason, we naturally restrict ourselves
to the finite dimensional case. Infinite dimensional dynamical systems with
random effect should be more interesting from a physical point of view. Scientists
from both probability theory and partial differential equations have already paid
jointly sufficient attention to this new and important field (a conference was
organized by P. L. Chow and Skorohod in 1994). We hope their efforts will
lead to a substantially new mathematical theory which, we believe, could be
considered as the core of the so-called “Nonlinear Science”.

We would like to express our sincere thanks to Prof. Ludwig Arnold since
conversations with him were very useful for the preparation of Chapter VII. Our
gratitude also goes to Profs. Qian Min-Ping and Gong Guang-Lu for helpful
discussions. During the elaboration of this book the first author is supported
by the National Natural Science Foundation of China and also by the Peking
University Science Foundation for Young Scientists. Finally, it is acknowledged
that part of the work on this book was done while the first author was in the
Institute of Mathematics, Academia Sinica as a postdoctor and he expresses here
his gratitude for its hospitality.
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Chapter 0 Preliminaries

In this chapter we first present some basic concepts and facts from measure
theory. Then we give a quick review of the theory of measurable partitions
of Lebesgue spaces and conditional entropies of such partitions. A detailed
treatment of this theory is presented in Rohlin’s fundamental papers [Roh]; .
The rest of this chapter is devoted to developing, following the scheme of [Roh];,
a general theory of conditional entropies of measure-preserving transformations
on Lebesgue spaces.

§1 Measure Theory

Let (X,B,p) be a measure space. Two sets By,B; € B are said to be
equivalent modulo zero, written B; = B (mod 0), if the symmetric difference
B;AB; has measure zero. When we write A; = A, (mod 0) for two subsets
A1, As of B we mean that for each A; € A; there exists Ay € Ay such that
A; = Ay (mod 0) and vice versa. Let A be a subset of B, we say that A
generates B (mod 0) if B = By (mod 0), where B is the o-algebra generated by
A. The following is the well-known approximation theorem (see, e.g. [Rud]):

Theorem 1.1. If (X, B, pn) is a probability space, a subalgebra A C B generates
B (mod 0) if and only if, for every B € B and € > 0, there exists A € A such
that p(AAB) < e.

Before going further, let us first review some definitions and simple facts
about function spaces on a measure space. Let (X, B, ) be a measure space and
let 1 < p < +oo. We denote by LP(X, B, u) the quotient of the set of functions
f : X — C such that |f|P is integrable, under the equivalence relation that
identifies functions which coincide a.e. We endow LP(X, B, u) with the norm

|| - ||p defined by K
11 = ([ 19Pdn)’

which makes L?(X, B, u) a Banach space. For p = 2, the norm || - ||2 comes from
an inner product

< fig>= /X fadu

with respect to which L%(X, B, 1) is a Hilbert space.

Given a probability space (X,B,p), if there exists a countable subset of
B which generates B (mod 0), then we say it is separable, several equivalent
descriptions of this kind of separability are given by the following



Theorem 1.2. For a probability space (X,B,pn), the following properties are
equivalent:

1) (X, B, u) s separable;

2) L'(X, B, i) is separable;

3) LP(X,B, u) s separable for every 1 < p < +o0;

4) There exists a countable subalgebra A C B which generates B (mod 0).

A complete separable metric space is known as a Polish space. This kind of
spaces provide an important class of separable measure spaces by the following
theorem ( see, for instance, [Man);):

Theorem 1.3. If X 1s a Polish space, B is the Borel o-algebra of X and p is a
probability measure on B, then (X,B,p) is separable.

We formulate below a theorem concerning the regularity of finite Borel
measures on Polish spaces (see [Coh]).

Theorem 1.4. Let (X,B,u) be a probability space, where X is a Polish space
and B is the Borel o-algebra of X. Then for every Borel set B € B and € > 0
there ezists a compact set K C B such that uy(B\K) < €.

Let (X,B) be a measurable space and let p : B — [0,4+00] and v : B —
[0, +00] be measures. We say that p is absolutely continuous with respect to v,
and we write 4 << v, if B € B and v(B) = 0 imply u(B) = 0. The following
Radon-Nikodym theorem characterizes this kind of absolute continuity.

Theorem 1.5. If (X,B,v) is o-finite, then p << v if and only if there ezxists
f: X — R*, integrable with respect to v on all sets B € B such that v(B) < +oo,
satisfying the following condition for every B € B:

u(B) = | sav

The function f is unique a.e. (with respect to v), and is denoted by du/dv. A
function g : X — C is in L' (X, B, ) if and only if gf is in L'(X,B,v), and in

this case we have
/ gdp = / gfdv.
X X

If u(X) < +oo then f € L1(X,B,v).

The function f is called the Radon-Nikodym derivative of p with respect to v.
Let (X, B, u) be a measure space and let A be a sub-o-algebra of B. For
every f € L'(X,B,pu), the Radon-Nikodym theorem allows us to prove easily
that there exists a unique function, written E(f|A), in L!(X,A,u) such that
[A E(flA)dpu = [, fdu for every A € A. This function E(f|A) is called the



conditional ezpectation of f with respect to A. We now define the conditional
ezpectation operator E(-|A) : L'(X, B, u) — LY (X, A, pn), f — E(f|A).

Theorem 1.6. Let (X, B, y1) be a probability space and let A be a sub-o-algebra of
B. The restriction of the conditional ezpectation operator E(-|A) to L*(X, B, p)
is the orthogonal projection of L%(X, B, ) onto L%(X, A, ).

Proof. For f € L'(X,B,u) we know that E(f|A) is the only .A-measurable
function such that fA E(f|A)dp = [, fdu for every A € A. Let P denote the
orthogonal projection of L%(X,B,u) onto the closed subspace L%(X,.A,u). If
f € L*(X,B, ), then Pf is A-measurable and if A € A

/ fdp =< f,xa >=<f,Pxa >=< Pf,xa >=/ Pfdp.
A A
Therefore Pf = E(f|A). o

The Radon-Nikodym theorem also allows us to introduce the general defi-
nition of Jacobian of absolutely continuous maps between measure spaces.

Let (X, B, 1) and (Y, A,v) be two o-finite measure spaces, and let 7 : X —
Y be a map. We say that T' is absolutely continuous if the following three
conditions hold: (i) 7" is injective; (ii) if B € B then TB € A; (iii) B € B and
#(B) =0 imply v(TB) = 0.

Assume that T is absolutely continuous. We now define on B a new measure
pr by the formula pr(B) = v(T'B). The measure pr is absolutely continuous
with respect to the measure p. Thus by the Radon-Nikodym theorem one can
introduce the measurable function J(T') = dur/dp defined on X it is called the
Jacobian of the map T.

It 1s easy to see that, when the absolutely continuous map 7' is bijective
and 7! is also absolutely continuous, we have

1

0= 57y

for p almost all points of X (we admit here 1/0 = 400 and 1/ + co = 0).
When X and Y are two Riemannian manifolds without boundary and of
the same finite dimension, f : X — Y is a C! diffeomorphism, and Ax and Ay
are the respective Lebesgue measures on X and Y induced by the Riemannian
metrics, then in this particular case it is easy to see that for any z € X one has

1)@ = LD 0 = a1 g),

where T f is the derivative of f at z, and for any h € L}(Y,Ay) one has

[ (o N@)det T fltrna) = [ hw)drv (o)
X Y



Next, we have the following Lebesgue-Vitali theorem on differentiation (see,
e.g., [Shi)):

Theorem 1.7. Let A C R"™ be a Borel set, and h : A — C an integrable function
with respect to the Lebesgue measure A of R™. Then the following holds true for
A-almost every x € A :

1
lim —/ hd\ = h(z),
r—0 /\(Br(z)ﬂA) B,—(I)nA ( )
where B.(z) = {y € R*: d(z,y) <r}.
A simple application of the Lebesgue-Vitali theorem yields the following:

Theorem 1.8. Let T : (X,B,p) — (Y, A,v) be an absolutely continuous map,
where X is a Borel subset of R™ with A\(X) < +o0o, B is the o-algebra of Borel
subsets of X and p is absolutely continuous with respect to A|x. Then there
holds the following formula for p-almost every z € X :

lim ,llT(Br(l') nX)

lim B, @ nx) ~ D

Proof. Let h = du/d), then
. pr(Br(z)NX)
hm (B, (z) N X)
AM(Br(z)Nn X)~? fB,(z)nX J(T)hd\
= lim
r=0  A(B;(z)NX)~! fB,(z)nX hdX
=J(T)(z), p—aez€X.

This completes the proof. ]
An easy application of Theorem 1.7 also gives

Theorem 1.9. If A C R" is a Borel set and p is a Borel measure on R™ which
1s absolutely continuous with respect to A, then the limit

lim #(Br(z) N 4)
r—0  p(B,(z))

ezists p-almost everywhere in R™, and is equal to 0 ifz ¢ A and to 1 if z € A.

When the above limit exists for z € A and is equal to 1, we call z a density point
of A with respect to p.



We conclude this section with the notion of Lebesgue spaces. A map be-
tween two measure spaces is called an invertible measure-preserving transfor-
mation if it is bijective and measure-preserving and so is its inversion. Two
measure spaces (X;,B;, p;),7 = 1,2 are said to be isomorphic mod 0 if there
exist Y7 € By,Y, € By with p;(X;\Y)) = 0 = pa(X,\Y2) and there ex-
ists an invertible measure-preserving transformation ¢ : (Y1, Bily,,t1ly,) —
(Y2, B2y, p2ly,). Given a probability space (X,B,u), let Xo = X\{z :z € X
with {z} € B and p({z}) > 0} and s = p(Xo). We call (X,B,u) a Lebesgue
space if (Xo,B|x,, #|x,) is isomorphic mod 0 to the space ([0, s], £([0,s]),!),
where £([0, s]) is the o-algebra of Lebesgue measurable subsets of [0, s] and [ is
the usual Lebesgue measure. There is now the following important theorem (see

[Roy]):

Theorem 1.10. Let X be a Polish space, p a Borel probability measure on X,
and B,(X) the completion of the Borel o-algebra of X with respect to p. Then
(X,Bu(X),p) 1s a Lebesgue space.

Throughout the remaining sections of this chapter it is always assumed that
(X, B, p) 1s a Lebesgue space.

§2 Measurable Partitions

Let (X, B, u) be a Lebesgue space.

Any collection of non-empty disjoint sets that covers X is said to be a
partition of X. Subsets of X that are unions of elements of a partition £ are
called &-sets.

A countable system {B, : @ € A} of measurable {-sets is said to be a basis
of £ if, for any two elements C and C’ of £, there exists an o € A such that either
C C By,C' ¢ By or C ¢ By,C' C By. A partition with a basis is said to be
measurable. Obviously, every element of a measurable partition is a measurable
set.

For z € X we will denote by £(z) the element of a partition £ which contains
z. If €, ¢ are measurable partitions of X, we write £ < &' if £'(z) C &(z) for
p-almost every z € X, £ = €' is also considered up to mod 0.

For any system of measurable partitions {{,} of X there exists a prod-
uct \/, €a, defined as the measurable partition £ satisfying the following two
conditions : 1) £, < € for all a; 2) if €, < & for all a, then £ < ¢'.

For any system of measurable partitions {£,} of X there exists an intersec-
tion A, €a, defined as the measurable partition £ satisfying the conditions : 1)
Ea > € for all a; 2) if €, > €' for all «, then € > ¢'.

For measurable partitions &,, n € N and £ of X, the symbol &, / &

indicates that £, < & < --- and \/[ % €, = €, the symbol &, \ € indicates that
n=1

G126> - and A2 6 =€
If {By,Ba,---} is a basis for the partition £ and f, is the partition of X
into the sets B, and X\ By, then the partitions &, = V?=1 [; form an increasing



