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Preface

Component-based software engineering (CBSE) is concerned with the develop-
ment of software-intensive systems from reusable parts (components), the devel-
opment of such reusable parts, and the maintenance and improvement of systems
by means of component replacement and customization. Although it holds con-
siderable promise, there are still many challenges facing both researchers and
practitioners in establishing CBSE as an efficient and proven engineering disci-
pline.

Six CBSE workshops have been held consecutively at the most recent six
International Conferences on Software Engineering (ICSE). The premise of the
last three CBSE workshops was that the long-term success of component-based
development depends on the viability of an established science and technology
foundation for achieving predictable quality in component-based systems.

The intent of the CBSE 2004 symposium was to build on this premise, and to
provide a forum for more in-depth and substantive treatment of topics pertain-
ing to predictability, to help establish cross-discipline insights, and to improve
cooperation and mutual understanding. The goal of the CBSE 2004 symposium
was to discuss and present more complete and mature works, and consequently
collect the technical papers in published proceedings. The response to the Call
for Papers was beyond expectations: 82 papers were submitted. Of those 25 (12
long and 13 short) were accepted for publication. In all 25 cases, the papers
were reviewed by three to four independent reviewers. The symposium brought
together researchers and practitioners from a variety of disciplines related to
CBSE.

CBSE 2004 was privileged to have very competent, engaged and cooperative
organizing and program committees with members involved in the forming of the
symposium, its organization and in the review process. The review process, in-
cluding the virtual review meetings, was organized completely electronically and
succeeded thanks to the devoted work of the members and additional reviewers,
and the excellent support from Richard van de Stadt who provided the elec-
tronic review system. The organizers of the ICSE 2004 conference, in particular
Anthony Finkelstein, the General Chair, and Neno Medvidovic, the Workshops
Chair, with great help and flexibility made it possible to organize CBSE 2004
as an adjunct event to the ICSE 2004 workshops. Springer-Verlag kindly agreed
to publish the proceedings volume and helped greatly in its realisation. Finally
all the contributors, the authors of the accepted papers, invited speakers and
panelists contributed to the success of the symposium. We would like to thank
each of them for their excellent contributions.

March 2004 Ivica Crnkovic
Heinz Schmidt

Judith Stafford

Kurt Wallanu



Message from the General Chair

Many hold that component software is the way to the next level of the software
field’s productivity. Others object that progress has been slow and that funda-
mental road blocks continue to be in the way. Ultimately, it is the need to move
from manufacturing to an industrial approach that encourages the move away
from monolithic software towards component-based engineering. Yet, it is true
that much remains to be done and that component technologies available today
have significant shortcomings. The same holds at the level of methodologies,
processes, design and implementation languages, and tools.

The successful call for contributions to CBSE 2004 was a strong sign of the
growing international attention. Research in academia and industry alike is em-
bracing component software. With a maturing understanding of how components
relate to other approaches, such as services and generators, the field is moving
into a phase that promises good progress on both fundamental and practical
issues. The broad range of topics covered by the authors of the accepted papers
is a clear indication. From fundamental concerns of correctness and extrafunc-
tional properties of composition to the architectural embedding of components,
to methods and processes, and to the implications of using commercial off-the-
shelf components — this symposium covers all of these topics.

With a strong and healthy community forming and growing, it was about
time for CBSE to move from being a well-attended workshop to being a fully
peer-reviewed and published symposium in its own right. This year’s contribu-
tions inspire us to go that much further in the future. Hence, I am confident that
we are seeing but the beginning of what I trust will develop into a successful
series of events.

At this point, I would like to thank Ivica Crnkovic for running a smooth and
efficient paper reviewing and selection process. Heinz Schmidt, Judy Stafford,
and Kurt Wallnau supported the process greatly. I would also like to thank the
two invited speakers, Hans Jonkers and Oscar Nierstrasz, who where quick to
accept the invitation to speak at the newly shaped CBSE 2004 symposium, for
delivering timely and thought-provoking contributions.

March 2004 Clemens Szyperski
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Putting Change at the Center
of the Software Process*

Oscar Nierstrasz

Software Composition Group, University of Bern
www.iam.unibe.ch/~scg

Introduction

For over thirty years now, software components have been perceived as being
essential stepping stones towards flexible and maintainable software systems.
But where do the components come from? Once we have the components, how
do we put them together? And when we are missing components, how should
we synthesize them?

Lehman and Belady established in a classic study that a number of “Laws”
of Software Evolution apply to successful software projects [10]. Of these, the
two most insightful are perhaps:

— Continuing change: A program that is used in a real-world environment must
change, or become progressively less useful in that environment.

—~ Increasing complezity: As a program evolves, it becomes more complex, and
extra resources are needed to preserve and simplify its structure.

In this light we can observe that many recent trends in software engineering
can actually be seen as obstacles to progress, since they offer metaphors that do
not help address these issues [11]. “Software Engineering” itself can be seen as
a dangerous metaphor that draws too strong an analogy between engineering of
hardware and software. Similarly “software maintenance” is clearly a lie when
we consider that real maintenance tasks are actually continuous development.

We know that successful software systems are doomed to change. But our
programming languages and tools continue to focus on developing static, un-
changing models of software. We propose that change should be at the center
of our software process. To that end, we are exploring programming language
mechanisms to support both fine-grained composition and coarse-grained exten-
sibility, and we are developing tools and techniques to analyse and facilitate
change in complex systems. In this talk we review problems and limitations
with object-oriented and component-based development approaches, and we ex-
plore both technological and methodological ways in which change can be better
accommodated.

* Extended summary of an invited talk at CBSE 2004 — International Symposium on
Component-Based Software Engineering — Edinburgh, Scotland, May 24-25, 2004.

I. Crnkovic et al. (Eds.): CBSE 2004, LNCS 3054, pp. 1-4, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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Language Support for Composition

What programming languages provide specific mechanisms that either take into
account or support the fact that programs change over time? It is notable that
mainstream programming languages largely emphasize the construction of static
software structures, and disregard the fact that these structures are likely to
change. We have been experimenting with various programming languages and
language extensions that address certain aspects of change.

Piccola is a small language for composing applications from software compo-
nents [1, 13]. Whereas we have many programming languages that are well-suited
for building components, few focus on how components are put together. Piccola
provides a notion of first-class namespaces that turns out to be immensely useful
for expressing, packaging and controlling the ways in which software components
are composed [12].

Traits are a fine-grained mechanism for decomposing classes into sets of re-
lated methods [15]. Traits overcome a number of difficulties with single and mul-
tiple inheritance, while avoiding the fragility inherent in mixins by sidestepping
traditional linearization algorithms for composing features. Traits have proven
to be extremely useful in refactoring complex class libaries [6].

Classbozes offer a minimal module system for controlling class extensions
[4]. Class extensions support unanticipated change to third-party classes where
subclassing is not an option. In classboxes, as in traits and Piccola, we note
that the notion of first-class namespaces is an important means to manage and
control change. We conjecture that programming languages that better support
change will place more emphasis on such mechanisms.

Mining Components

Support for change is clearly not just a language issue. We also need good tools
to analyze and manage code.

We have been developing a reengineering platform called Moose that serves
as a code repository and a basis for analyzing software systems [7]. In this context
we have developed a series of tools to aid in the understanding and restructuring
of complex software systems.

CodeCrawler is a software visualization tool based on the notion of polymetric
views — simple graphical visualizations of of direct software metrics [8]. One of
the most striking applications of polymetrics views is in analyzing the evolution
of a software system [9]: an evolution matriz quickly reveals which parts of a
system are stable or undergoing change. We are further exploring the use of
historical data to predict change in software systems [14].

We are also exploring ways to mine recurring structures from software sys-
tems. ConAn is a tool that applies formal concept analysis to detect recurring
“concepts” in models of software. We have applied this approach to detect im-
plicit contracts in class hierarchies [3] and to detect recurring “software patterns”
[2]. We are now exploring ways to assess and improve the quality of the module
structure of applications with respect to various reengineering operations.
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Where Are We? Where Do We Go?

To conclude, we would do well to note that change is inevitable in software. As
a consequence software components, being the stable part of software systems,
can offer at most half of any equation that would help to improve software
productivity.

There is a need for both languages and tools that offer better support to help
us cope with and even exploit change.

Nevertheless, we should beware that any new techniques or methods carry
some danger with them. Not only do metaphors sometimes blind us, but, as
Berry points out [5], any technique that addresses a key difficulty in software
development typically entails some painful steps that we will seek to avoid. To
achieve any benefit, we must first overcome this pain.
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