q—
LN
o
oM
v
O
-—
wesi)

Ivica Crnkovic

Judith A. Stafford

Heinz W. Schmidt
Kurt Wallnau (Eds.)

Component-Based
Software Engineering

7th International Symposium, CBSE 2004
Edinburgh, UK, May 2004
Proceedings

@ Springer

Ivica Crnkovic Judith A. Stafford
Heinz W. Schmidt Kurt Wallnau (Eds.)

Component-Based
Software Engineering

7th International Symposium, CBSE 2004
Edinburgh, UK, May 24-25, 2004
Proceedings

Springer

Volume Editors

Ivica Crnkovic

Department of Computer Science and Engineering
Milardalen University

Box 883, 72123 Visteras, Sweden

E-mail: ivica.crnkovic@mdh.se

Judith A. Stafford

Department of Computer Science, Tufts University
161 College Avenue, Medford, MA 02155, USA
E-mail: jas@cs.tufts.edu

Heinz W. Schmidt

School of Computer Science and Software Engineering
Monash University

Wellington Road, Clayton VIC 3800 , Australia
E-mail: Heinz.Schmidt@csse.monash.edu.au

Kurt Wallnau

Software Engineering Institute, Carnegie Mellon University
Pittsburgh, Pennsylvania 15213-3890, USA

E-mail: kew @sei.cmu.edu

Library of Congress Control Number: 2004105115

CR Subject Classification (1998): D.2, D.1.5, D.3, E.3.1

ISSN 0302-9743
ISBN 3-540-21998-6 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable to prosecution under the German Copyright Law.

Springer-Verlag is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2004
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Olgun Computergrafik
Printed on acid-free paper SPIN: 11006947 06/3142 543210

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3054

Preface

Component-based software engineering (CBSE) is concerned with the develop-
ment of software-intensive systems from reusable parts (components), the devel-
opment of such reusable parts, and the maintenance and improvement of systems
by means of component replacement and customization. Although it holds con-
siderable promise, there are still many challenges facing both researchers and
practitioners in establishing CBSE as an efficient and proven engineering disci-
pline.

Six CBSE workshops have been held consecutively at the most recent six
International Conferences on Software Engineering (ICSE). The premise of the
last three CBSE workshops was that the long-term success of component-based
development depends on the viability of an established science and technology
foundation for achieving predictable quality in component-based systems.

The intent of the CBSE 2004 symposium was to build on this premise, and to
provide a forum for more in-depth and substantive treatment of topics pertain-
ing to predictability, to help establish cross-discipline insights, and to improve
cooperation and mutual understanding. The goal of the CBSE 2004 symposium
was to discuss and present more complete and mature works, and consequently
collect the technical papers in published proceedings. The response to the Call
for Papers was beyond expectations: 82 papers were submitted. Of those 25 (12
long and 13 short) were accepted for publication. In all 25 cases, the papers
were reviewed by three to four independent reviewers. The symposium brought
together researchers and practitioners from a variety of disciplines related to
CBSE.

CBSE 2004 was privileged to have very competent, engaged and cooperative
organizing and program committees with members involved in the forming of the
symposium, its organization and in the review process. The review process, in-
cluding the virtual review meetings, was organized completely electronically and
succeeded thanks to the devoted work of the members and additional reviewers,
and the excellent support from Richard van de Stadt who provided the elec-
tronic review system. The organizers of the ICSE 2004 conference, in particular
Anthony Finkelstein, the General Chair, and Neno Medvidovic, the Workshops
Chair, with great help and flexibility made it possible to organize CBSE 2004
as an adjunct event to the ICSE 2004 workshops. Springer-Verlag kindly agreed
to publish the proceedings volume and helped greatly in its realisation. Finally
all the contributors, the authors of the accepted papers, invited speakers and
panelists contributed to the success of the symposium. We would like to thank
each of them for their excellent contributions.

March 2004 Ivica Crnkovic
Heinz Schmidt

Judith Stafford

Kurt Wallanu

Message from the General Chair

Many hold that component software is the way to the next level of the software
field’s productivity. Others object that progress has been slow and that funda-
mental road blocks continue to be in the way. Ultimately, it is the need to move
from manufacturing to an industrial approach that encourages the move away
from monolithic software towards component-based engineering. Yet, it is true
that much remains to be done and that component technologies available today
have significant shortcomings. The same holds at the level of methodologies,
processes, design and implementation languages, and tools.

The successful call for contributions to CBSE 2004 was a strong sign of the
growing international attention. Research in academia and industry alike is em-
bracing component software. With a maturing understanding of how components
relate to other approaches, such as services and generators, the field is moving
into a phase that promises good progress on both fundamental and practical
issues. The broad range of topics covered by the authors of the accepted papers
is a clear indication. From fundamental concerns of correctness and extrafunc-
tional properties of composition to the architectural embedding of components,
to methods and processes, and to the implications of using commercial off-the-
shelf components — this symposium covers all of these topics.

With a strong and healthy community forming and growing, it was about
time for CBSE to move from being a well-attended workshop to being a fully
peer-reviewed and published symposium in its own right. This year’s contribu-
tions inspire us to go that much further in the future. Hence, I am confident that
we are seeing but the beginning of what I trust will develop into a successful
series of events.

At this point, I would like to thank Ivica Crnkovic for running a smooth and
efficient paper reviewing and selection process. Heinz Schmidt, Judy Stafford,
and Kurt Wallnau supported the process greatly. I would also like to thank the
two invited speakers, Hans Jonkers and Oscar Nierstrasz, who where quick to
accept the invitation to speak at the newly shaped CBSE 2004 symposium, for
delivering timely and thought-provoking contributions.

March 2004 Clemens Szyperski

Organization

CBSE 2004 was organized by Microsoft Research, USA, Monash University, Aus-
tralia, Méalardalen University, Sweden, Carnegie Mellon University, USA and
Tufts University, USA as an adjunct event to workshops at the 26th Interna-
tional Conference on Software Engineering (ICSE 2004).

Organizing Committee

General Chair Clemens Szyperski (Microsoft Research, US)
Program Chair Ivica Crnkovic (Mélardalen University, Sweden)
Program Co-chairs Heinz Schmidt (Monash University, Australia)

Judith Stafford (Tufts University, USA)
Kurt Wallanu (SEI, Carnegie Mellon University,
USA)

Program Committee

Uwe Afmann, Linkdping University, Sweden

Jakob Axelsson, Volvo Car Corporation, Sweden

Mike Barnett, Microsoft Research, USA

Judith Bishop, University of Pretoria, South Africa

Jan Bosch, University of Groningen, The Netherlands
Michel Chaudron, University of Eindhoven, The Netherlands
Wolfgang Emmerich, University College London, UK
Jacky Estublier, LSR-IMAG, France

Andre van der Hoek, University of California, Irvine, USA
Kathi Fisler, WPI, USA

Dimitra Giannakopoulou, NASA Ames, USA

Richard Hall, IMAG/LSR, France

Bengt Jonsson, Uppsala University, Sweden

Dick Hamlet, Portland State University, USA

George Heineman, WPI, USA

Paola Inverardi, University of L’Aquila, Italy

Shriram Krishnamurthi, Brown University, USA

Jeftf Magee, Imperial College London, UK

Nenad Medvidovic, University of Southern California, USA
Magnus Larsson, ABB, Sweden

Rob van Ommering, Philips, The Netherlands

Heinz Schmidt, Monash University, Australia

Judith Stafford, Tufts University, USA

Dave Wile, Teknowledge, Corp., USA

Kurt Wallnau, SEI, Carnegie Mellon University, USA

VIII

Organization

Co-reviewers

Karine Arnout
Egor Bondarev
Ivor Bosloper
Reinder J. Bril
Marco Castaldi
Humberto Cervantes
Vittorio Cortellessa
Sybren Deelstra
Fernando Erazo
Howard Foster
Holger Hofmann
Anton Jansen
David N. Jansen

Previous events

Michel Jaring
Eckhard Kruse
Christian Lange
Henrik Lonn

Chris Lueer

Sam Malek

Peter Mehlitz
Nikunj Mehta
Theo Dirk Meijler
Marija Mikic-Rakic
Raffaela Mirandola
Mohammad Reza Mousavi
Henry Muccini

CBSE 6 Workshop, Portland, USA (2003)
CBSE 5 Workshop, Orlando, USA (2002)
CBSE 4 Workshop, Toronto, Canada (2001)
CBSE 3 Workshop, Limerick, Ireland (2000)
CBSE 2 Workshop, Los Angeles, USA (1999)
CBSE 1 Workshop, Tokyo, Japan (1998)

Johan Muskens
Martin Naedele
Owen O’Malley
John Penix

Paul Pettersson
Noél Plouzeau
Manos Renieris
Roshanak Roshandel
Kevin B. Simons
Jorge Villalobos
Wang Yi

Lecture Notes in Computer Science

For information about Vols. 1-2937

please contact your bookseller or Springer-Verlag

Vol. 3063: A. Llamos{, A. Strohmeier (Eds.), Reliable
Software Technologies - Ada-Europe 2004. XIII, 333
pages. 2004.

Vol. 3060: A.Y. Tawfik, S.D. Geodwin (Eds.), Advances in
Artificial Intelligence. XIII, 582 pages. 2004. (Subseries
LNAI).

Vol. 3058: N. Sebe, M.S. Lew, T.S. Huang (Eds.), Com-
puter Vision in Human-Computer Interaction. X, 233
pages. 2004.

Vol. 3054: 1. Crnkovic, J.A. Stafford, H-W. Schmidt, K.
Wallnau (Eds.), Component-Based Software Engineering.
X1, 311 pages. 2004.

Vol. 3053: J. Davies, D. Fensel, C. Bussler, R. Studer
(Eds.), The Semantic Web: Research and Applications.
X111, 490 pages. 2004.

Vol. 3042: N. Mitrou, K. Kontovasilis, G.N. Rouskas, I.
Iliadis, L. Merakos (Eds.), NETWORKING 2004, Net-
working Technologies, Services, and Protocols; Perfor-
mance of Computer and Communication Networks; Mo-
bile and Wireless Communications. XXXIII, 1519 pages.
2004.

Vol. 3034: J. Favela, E. Menasalvas, E. Chivez (Eds.), Ad-
vances in Web Intelligence. XIII, 227 pages. 2004. (Sub-
series LNAI).

Vol. 3033: M. Li, X.-H. Sun, Q. Deng, J. Ni (Eds.),
Grid and Cooperative Computing. XXXVIII, 1076 pages.
2004.

Vol. 3032: M. Li, X.-H. Sun, Q. Deng, J. Ni (Eds.), Grid
and Cooperative Computing. XXXVII, 1112 pages. 2004.

Vol. 3031: A. Butz, A. Kriiger, P. Olivier (Eds.), Smart
Graphics. X, 165 pages. 2004.

Vol. 3028: D. Neuenschwander, Probabilistic and Statis-
tical Methods in Cryptology. X, 158 pages. 2004.

Vol. 3027: C. Cachin, J. Camenisch (Eds.), Advances in
Cryptology - EUROCRYPT 2004. XI, 628 pages. 2004.

Vol. 3026: C. Ramamoorthy, R. Lee, K.W. Lee (Eds.),
Software Engineering Research and Applications. XV,
377 pages. 2004.

Vol. 3025: G.A. Vouros, T. Panayiotopoulos (Eds.), Meth-
ods and Applications of Artificial Intelligence. XV, 546
pages. 2004. (Subseries LNAI).

Vol. 3024: T. Pajdla, J. Matas (Eds.), Computer Vision -
ECCYV 2004, XXVIII, 621 pages. 2004.

Vol. 3023: T. Pajdla, J. Matas (Eds.), Computer Vision -
ECCV 2004. XXVIII, 611 pages. 2004.

Vol. 3022: T. Pajdla, J. Matas (Eds.), Computer Vision -
ECCV 2004. XXVIII, 621 pages. 2004.

Vol. 3021: T. Pajdla, J. Matas (Eds.), Computer Vision -
ECCV 2004. XXVIII, 633 pages. 2004.

Vol. 3019: R. Wyrzykowski, J. Dongarra, M. Paprzycki, J.
Wasniewski (Eds.), Parallel Processing and Applied Math-
ematics. XIX, 1174 pages. 2004.

Vol. 3015: C. Barakat, I. Pratt (Eds.), Passive and Active
Network Measurement. XI, 300 pages. 2004.

Vol. 3012: K. Kurumatani, S.-H. Chen, A. Ohuchi (Eds.),
Multi-Agnets for Mass User Support. X, 217 pages. 2004.
(Subseries LNAI).

Vol. 3011: J.-C. Régin, M. Rueher (Eds.), Integration of Al
and OR Techniques in Constraint Programming for Com-
binatorial Optimization Problems. X1, 415 pages. 2004.

Vol. 3010: K.R. Apt, FE. Fages, F. Rossi, P. Szeredi, J.
Vincza (Eds.), Recent Advances in Constraints. VIII, 285
pages. 2004. (Subseries LNAI).

Vol. 3009: F. Bomarius, H. Iida (Eds.), Product Focused
Software Process Improvement. XIV, 584 pages. 2004.

Vol. 3008: S. Heuel, Uncertain Projective Geometry.
XVII, 205 pages. 2004.

Vol. 3007: J.X. Yu, X. Lin, H. Lu, Y. Zhang (Eds.), Ad-
vanced Web Technologies and Applications. XXII, 936
pages. 2004,

Vol. 3006: M. Matsui, R. Zuccherato (Eds.), Selected Ar-
eas in Cryptography. XI, 361 pages. 2004.

Vol. 3005: G.R. Raidl, S. Cagnoni, J. Branke, D.W. Corne,
R. Drechsler, Y. Jin, C.G. Johnson, P. Machado, E. Mar-
chiori, F. Rothlauf, G.D. Smith, G. Squillero (Eds.), Ap-
plications of Evolutionary Computing. XVII, 562 pages.
2004.

Vol. 3004: J. Gottlieb, G.R. Raidl (Eds.), Evolution-
ary Computation in Combinatorial Optimization. X, 241
pages. 2004.

Vol. 3003: M. Keijzer, U.-M. O’Reilly, S.M. Lucas, E.
Costa, T. Soule (Eds.), Genetic Programming. XI, 410
pages. 2004.

Vol. 3002: D.L. Hicks (Ed.), Metainformatics. X, 213
pages. 2004.

Vol. 3001: A. Ferscha, F. Mattern (Eds.), Pervasive Com-
puting. XVII, 358 pages. 2004.

Vol. 2999: E.A. Boiten, J. Derrick, G. Smith (Eds.), Inte-
grated Formal Methods. XI, 541 pages. 2004.

Vol. 2998: Y. Kameyama, P.J. Stuckey (Eds.), Functional
and Logic Programming. X, 307 pages. 2004.

Vol. 2997: S. McDonald, J. Tait (Eds.), Advances in Infor-
mation Retrieval. XIII, 427 pages. 2004.

Vol. 2996: V. Diekert, M. Habib (Eds.), STACS 2004. X VI,
658 pages. 2004.

Vol.2995: C. Jensen, S. Poslad, T. Dimitrakos (Eds.), Trust
Management. XIII, 377 pages. 2004.

Vol. 2994: E. Rahm (Ed.), Data Integration in the Life
Sciences. X, 221 pages. 2004. (Subseries LNBI).

Vol. 2993: R. Alur, G.J. Pappas (Eds.), Hybrid Systems:
Computation and Control. XII, 674 pages. 2004.

Vol. 2992: E. Bertino, S. Christodoulakis, D. Plexousakis,
V. Christophides, M. Koubarakis, K. Béhm, E. Ferrari
(Eds.), Advances in Database Technology - EDBT 2004.
XVIII, 877 pages. 2004.

Vol. 2991: R. Alt, A. Frommer, R.B. Kearfott, W. Luther
(Eds.), Numerical Software with Result Verification. X,
315 pages. 2004.

Vol. 2989: S. Graf, L. Mounier (Eds.), Model Checking
Software. X, 309 pages. 2004.

Vol. 2988: K. Jensen, A. Podelski (Eds.), Tools and Algo-
rithms for the Construction and Analysis of Systems. XIV,
608 pages. 2004.

Vol. 2987: 1. Walukiewicz (Ed.), Foundations of Software
Science and Computation Structures. XIII, 529 pages.
2004.

Vol. 2986: D. Schmidt (Ed.), Programming Languages and
Systems. XII, 417 pages. 2004.

Vol. 2985: E. Duesterwald (Ed.), Compiler Construction.
X, 313 pages. 2004.

Vol. 2984: M. Wermelinger, T. Margaria-Steffen (Eds.),
Fundamental Approaches to Software Engineering. XII,
389 pages. 2004.

Vol. 2983: S. Istrail, M.S. Waterman, A. Clark (Eds.),
Computational Methods for SNPs and Haplotype Infer-
ence. IX, 153 pages. 2004. (Subseries LNBI).

Vol. 2982: N. Wakamiya, M. Solarski, J. Sterbenz (Eds.),
Active Networks. X1, 308 pages. 2004.

Vol. 2981: C. Miiller-Schloer, T. Ungerer, B. Bauer (Eds.),
Organic and Pervasive Computing - ARCS 2004. X1, 339
pages. 2004.

Vol. 2980: A. Blackwell, K. Marriott, A. Shimojima (Eds.),
Diagrammatic Representation and Inference. XV, 448
pages. 2004. (Subseries LNAI).

Vol. 2979: 1. Stoica, Stateless Core: A Scalable Approach
for Quality of Service in the Internet. XVI, 219 pages.
2004.

Vol. 2978: R. Groz, R.M. Hierons (Eds.), Testing of Com-
municating Systems. XII, 225 pages. 2004.

Vol. 2977: G. Di Marzo Serugendo, A. Karageorgos, O.F.
Rana, F. Zambonelli (Eds.), Engineering Self-Organising
Systems. X, 299 pages. 2004. (Subseries LNAI).

Vol. 2976: M. Farach-Colton (Ed.), LATIN 2004: Theo-
retical Informatics. XV, 626 pages. 2004.

Vol. 2973: Y. Lee, J. Li, K.-Y. Whang, D. Lee (Eds.),
Database Systems for Advanced Applications. XXIV, 925
pages. 2004.

Vol. 2972: R. Monroy, G. Arroyo-Figueroa, L.E. Sucar, H.

Sossa (Eds.), MICAI 2004: Advances in Artificial Intelli-
gence. XVII, 923 pages. 2004. (Subseries LNAI).

Vol. 2971: J.1. Lim, D.H. Lee (Eds.), Information Security
and Cryptology -ICISC 2003. XI, 458 pages. 2004.

Vol. 2970: F. Fern4ndez Rivera, M. Bubak, A. G6mez Tato,
R. Doallo (Eds.), Grid Computing. XI, 328 pages. 2004.

Vol. 2968: J. Chen, S. Hong (Eds.), Real-Time and Em-
bedded Computing Systems and Applications. XIV, 620
pages. 2004.

Vol. 2967: S. Melnik, Generic Model Management. XX,
238 pages. 2004.

Vol. 2966: F.B. Sachse, Computational Cardiology. X VIII,
322 pages. 2004.

Vol. 2965: M.C. Calzarossa, E. Gelenbe, Performance
Tools and Applications to Networked Systems. VIII, 385
pages. 2004.

Vol. 2964: T. Okamoto (Ed.), Topics in Cryptology — CT-
RSA 2004. XI, 387 pages. 2004.

Vol. 2963: R. Sharp, Higher Level Hardware Synthesis.
XVI, 195 pages. 2004.

Vol. 2962: S. Bistarelli, Semirings for Soft Constraint
Solving and Programming. XII, 279 pages. 2004.

Vol. 2961: P. Eklund (Ed.), Concept Lattices. IX, 411
pages. 2004. (Subseries LNAI).

Vol. 2960: P.D. Mosses (Ed.), CASL Reference Manual.
XVII, 528 pages. 2004.

Vol. 2959: R. Kazman, D. Port (Eds.), COTS-Based Soft-
ware Systems. XIV, 219 pages. 2004.

Vol. 2958: L. Rauchwerger (Ed.), Languages and Compil-
ers for Parallel Computing. XI, 556 pages. 2004.

Vol. 2957: P. Langendoerfer, M. Liu, I. Matta, V. Tsaous-
sidis (Eds.), Wired/Wireless Internet Communications.
X1, 307 pages. 2004.

Vol. 2956: A. Dengel, M. Junker, A. Weisbecker (Eds.),
Reading and Learning. XII, 355 pages. 2004.

Vol. 2954: F. Crestani, M. Dunlop, S. Mizzaro (Eds.), Mo-
bile and Ubiquitous Information Access. X, 299 pages.
2004.

Vol. 2953: K. Konrad, Model Generation for Natural Lan-
guage Interpretation and Analysis. XIII, 166 pages. 2004.
(Subseries LNAI).

Vol. 2952: N. Guelfi, E. Astesiano, G. Reggio (Eds.), Sci-

entific Engineering of Distributed Java Applications. X,
157 pages. 2004.

Vol. 2951: M. Naor (Ed.), Theory of Cryptography. XI,
523 pages. 2004.

Vol. 2949: R. De Nicola, G. Ferrari, G. Meredith (Eds.),
Coordination Models and Languages. X, 323 pages. 2004.

Vol. 2948: G.L. Mullen, A. Poli, H. Stichtenoth (Eds.),
Finite Fields and Applications. VIII, 263 pages. 2004.

Vol. 2947: F. Bao, R. Deng, J. Zhou (Eds.), Public Key
Cryptography — PKC 2004. XI, 455 pages. 2004.

Vol. 2946: R. Focardi, R. Gorrieri (Eds.), Foundations of
Security Analysis and Design II. VII, 267 pages. 2004.

Vol. 2943: J. Chen, J. Reif (Eds.), DNA Computing. X,
225 pages. 2004.

Vol. 2941: M. Wirsing, A. Knapp, S. Balsamo (Eds.), Rad-
ical Innovations of Software and Systems Engineering in
the Future. X, 359 pages. 2004.

Vol. 2940: C. Lucena, A. Garcia, A. Romanovsky, J. Cas-
tro, P.S. Alencar (Eds.), Software Engineering for Multi-
Agent Systems II. XII, 279 pages. 2004.

Vol. 2939: T. Kalker, 1.J. Cox, Y.M. Ro (Eds.), Digital
Watermarking. XII, 602 pages. 2004.

Table of Contents

Invited Talks

Putting Change at the Center of the Software Process 1
Oscar Nierstrasz

Interface Specification: A Balancing Actc.ccoiiiiiiin.... 5
Hans Jonkers

Generation and Adaptation of Component-Based Systems

An Open Component Model and Its SupportinJava 7
Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quema,
and Jean-Bernard Stefani

Software Architectural Support for Disconnected Operation
in Highly Distributed Environments oiiuion.... 23
Marija Mikic-Rakic and Nenad Medvidovic

Using Smart Connectors to Resolve Partial Matching Problems
in COTS Component Acquisitioncoiiiiiinninnennnennnnn. 40
Hyun Gi Min, Si Won Choi, and Soo Dong Kim

Correctness of Component-Based Adaptation 48
Sandeep S. Kulkarni and Karun N. Biyani

Strategies for a Component-Based Self-adaptability Model
in Peer-to-Peer Architecturesttt 59
Sascha Alda and Armin B. Cremers

Tools and Building Framework

Classifying Software Component Interoperability Errors
to Support Component Adaptiono, 68
Steffen Becker, Sven Overhage, and Ralf H. Reussner

Correct Components Assembly

for a Product Data Management Cooperative System................... 84
Massimo Tivoli, Paola Inverardi, Valentina Presutti,
Alessandro Forghieri, and Maurizio Sebastianis

The Release Matrix for Component-Based Software Systems............. 100
Louis J.M. Taborda

X Table of Contents

Viewpoints for Specifying Component-Based Systems................... 114
Gerald Kotonya and John Hutchinson

CMEH: Container Managed Exception Handling
for Increased Assembly Robustnesso ... 122
Kevin Simons and Judith Stafford

A Framework for Constructing Adaptive Component-Based Applications:
Concepts and Experiences.coiuiiiiniininiii .. 130
Humberto Cervantes and Richard S. Hall

Testing Framework Componentscoiiiiiiiiinnnnennnn... 138
Benjamin Tyler and Neelam Soundarajan

Components for Real-Time Embedded Systems

Industrial Requirements on Component Technologies
for Embedded Systemsc.oiiniiiiiiiiii i i e 146
Anders Maéller, Joakim Froberg, and Mikael Nolin

Prediction of Run-Time Resource Consumption
in Multi-task Component-Based Software Systems 162
Johan Muskens and Michel Chaudron

Design Accompanying Analysis of Component-Based Embedded Software . 178
Walter Maydl

Introducing a Component Technology
for Safety Critical Embedded Real-Time Systems 194
Kristian Sandstrom, Johan Fredriksson, and Mikael Akerholm

A Hierarchical Framework for Component-Based Real-Time Systems 209
Giuseppe Lipari, Paolo Gai, Michael Trimarchi, Giacomo Guidi,
and Paolo Ancilotti

Extra-Funtional Properties of Components
and Component-Based Systems

Extra-Functional Contract Support in Components. 217
Olivier Defour, Jean-Marc Jézéquel, and Noél Plouzeau

CB-SPE Tool: Putting Component-Based Performance Engineering
into Practicettt e 233
Antonia Bertolino and Raffaela Mirandola

Component Technology and QoS Management 249
George T. Heineman, Joseph Loyall, and Richard Schantz

Table of Contents XI

Computational Quality of Service for Scientific Components 264
Boyana Norris, Jaideep Ray, Rob Armstrong, Lois C. Mclnnes,
David E. Bernholdt, Wael R. Elwasif, Allen D. Malony,
and Sameer Shende

A Framework for Reliability Assessment of Software Components 272
Rakesh Shukla, Paul Strooper, and David Carrington

Measurements and Prediction Models
for Component Assemblies

Performance Prediction for Component Compositions. 280
Evgeni Eskenazi, Alexandre Fioukov, and Dieter Hammer

TESTEJB - A Measurement Framework for EJBs...................... 294
Marcus Meyerhifer and Christoph Neumann

Model-Based Transaction Service Configuration
for Component-Based Development, 302
Sten Loecher

Author IndexXt it e e et e 311

Putting Change at the Center
of the Software Process*

Oscar Nierstrasz

Software Composition Group, University of Bern
www.iam.unibe.ch/~scg

Introduction

For over thirty years now, software components have been perceived as being
essential stepping stones towards flexible and maintainable software systems.
But where do the components come from? Once we have the components, how
do we put them together? And when we are missing components, how should
we synthesize them?

Lehman and Belady established in a classic study that a number of “Laws”
of Software Evolution apply to successful software projects [10]. Of these, the
two most insightful are perhaps:

— Continuing change: A program that is used in a real-world environment must
change, or become progressively less useful in that environment.

—~ Increasing complezity: As a program evolves, it becomes more complex, and
extra resources are needed to preserve and simplify its structure.

In this light we can observe that many recent trends in software engineering
can actually be seen as obstacles to progress, since they offer metaphors that do
not help address these issues [11]. “Software Engineering” itself can be seen as
a dangerous metaphor that draws too strong an analogy between engineering of
hardware and software. Similarly “software maintenance” is clearly a lie when
we consider that real maintenance tasks are actually continuous development.

We know that successful software systems are doomed to change. But our
programming languages and tools continue to focus on developing static, un-
changing models of software. We propose that change should be at the center
of our software process. To that end, we are exploring programming language
mechanisms to support both fine-grained composition and coarse-grained exten-
sibility, and we are developing tools and techniques to analyse and facilitate
change in complex systems. In this talk we review problems and limitations
with object-oriented and component-based development approaches, and we ex-
plore both technological and methodological ways in which change can be better
accommodated.

* Extended summary of an invited talk at CBSE 2004 — International Symposium on
Component-Based Software Engineering — Edinburgh, Scotland, May 24-25, 2004.

I. Crnkovic et al. (Eds.): CBSE 2004, LNCS 3054, pp. 1-4, 2004.
© Springer-Verlag Berlin Heidelberg 2004

2 Oscar Nierstrasz

Language Support for Composition

What programming languages provide specific mechanisms that either take into
account or support the fact that programs change over time? It is notable that
mainstream programming languages largely emphasize the construction of static
software structures, and disregard the fact that these structures are likely to
change. We have been experimenting with various programming languages and
language extensions that address certain aspects of change.

Piccola is a small language for composing applications from software compo-
nents [1, 13]. Whereas we have many programming languages that are well-suited
for building components, few focus on how components are put together. Piccola
provides a notion of first-class namespaces that turns out to be immensely useful
for expressing, packaging and controlling the ways in which software components
are composed [12].

Traits are a fine-grained mechanism for decomposing classes into sets of re-
lated methods [15]. Traits overcome a number of difficulties with single and mul-
tiple inheritance, while avoiding the fragility inherent in mixins by sidestepping
traditional linearization algorithms for composing features. Traits have proven
to be extremely useful in refactoring complex class libaries [6].

Classbozes offer a minimal module system for controlling class extensions
[4]. Class extensions support unanticipated change to third-party classes where
subclassing is not an option. In classboxes, as in traits and Piccola, we note
that the notion of first-class namespaces is an important means to manage and
control change. We conjecture that programming languages that better support
change will place more emphasis on such mechanisms.

Mining Components

Support for change is clearly not just a language issue. We also need good tools
to analyze and manage code.

We have been developing a reengineering platform called Moose that serves
as a code repository and a basis for analyzing software systems [7]. In this context
we have developed a series of tools to aid in the understanding and restructuring
of complex software systems.

CodeCrawler is a software visualization tool based on the notion of polymetric
views — simple graphical visualizations of of direct software metrics [8]. One of
the most striking applications of polymetrics views is in analyzing the evolution
of a software system [9]: an evolution matriz quickly reveals which parts of a
system are stable or undergoing change. We are further exploring the use of
historical data to predict change in software systems [14].

We are also exploring ways to mine recurring structures from software sys-
tems. ConAn is a tool that applies formal concept analysis to detect recurring
“concepts” in models of software. We have applied this approach to detect im-
plicit contracts in class hierarchies [3] and to detect recurring “software patterns”
[2]. We are now exploring ways to assess and improve the quality of the module
structure of applications with respect to various reengineering operations.

Putting Change at the Center of the Software Process 3
Where Are We? Where Do We Go?

To conclude, we would do well to note that change is inevitable in software. As
a consequence software components, being the stable part of software systems,
can offer at most half of any equation that would help to improve software
productivity.

There is a need for both languages and tools that offer better support to help
us cope with and even exploit change.

Nevertheless, we should beware that any new techniques or methods carry
some danger with them. Not only do metaphors sometimes blind us, but, as
Berry points out [5], any technique that addresses a key difficulty in software
development typically entails some painful steps that we will seek to avoid. To
achieve any benefit, we must first overcome this pain.

Acknowledgments

We gratefully acknowledge the financial support of the Swiss National Science
Foundation for the project “Tools and Techniques for Decomposing and Com-
posing Software” (SNF Project No. 2000-067855.02, Oct. 2002 - Sept. 2004).

References

1. Franz Achermann, Markus Lumpe, Jean-Guy Schneider, and Oscar Nierstrasz.
Piccola — a small composition language. In Howard Bowman and John Derrick,
editors, Formal Methods for Distributed Processing — A Survey of Object-Oriented
Approaches, pages 403-426. Cambridge University Press, 2001.

2. Gabriela Arévalo, Frank Buchli, and Oscar Nierstrasz. Software pattern detection
using formal concept analysis. Submitted for publication, March 2004.

3. Gabriela Arévalo, Stéphane Ducasse, and Oscar Nierstrasz. X-Ray views: Under-
standing the internals of classes. In Proceedings of ASE 2003, pages 267-270. IEEE
Computer Society, October 2003. short paper.

4. Alexandre Bergel, Stéphane Ducasse, and Roel Wuyts. Classboxes: A minimal
module model supporting local rebinding. In Proceedings of JMLC 2003 (Joint
Modular Languages Conference), volume 2789 of LNCS, pages 122-131. Springer-
Verlag, 2003. Best award paper.

5. Daniel Berry. The inevitable pain of software development: Why there is no silver
bullet. In Proceedings Radical Innovations of Software and Systems Engineering
in the Future, Venice, Italy, October 2002. preprint.

6. Andrew P. Black, Nathanael Scharli, and Stéphane Ducasse. Applying traits to
the Smalltalk collection hierarchy. In Proceedings OOPSLA ’08, ACM SIGPLAN
Notices, volume 38, pages 47-64, October 2003.

7. Stéphane Ducasse, Michele Lanza, and Sander Tichelaar. Moose: an extensible
language-independent environment for reengineering object-oriented systems. In
Proceedings of the Second International Symposium on Constructing Software En-
gineering Tools (CoSET 2000), June 2000.

10.

11.

12.

13.

14.

15.

Oscar Nierstrasz

Michele Lanza. Program visualization support for highly iterative development
environments. In Proceedings of VisSoft 2003 (International Workshop on Visu-
alizing Software for Understanding and Analysis), page To appear. IEEE Press,
2003.

Michele Lanza and Stéphane Ducasse. Understanding software evolution using a
combination of software visualization and software metrics. In Proceedings of LMO
2002 (Langages et Modéles & Objets, pages 135-149, 2002.

Manny M. Lehman and Les Belady. Program Evolution — Processes of Software
Change. London Academic Press, 1985.

Oscar Nierstrasz. Software evolution as the key to productivity. In Proceedings
Radical Innovations of Software and Systems Engineering in the Future, Venice,
Italy, October 2002. preprint.

Oscar Nierstrasz and Franz Achermann. Separating concerns with first-class
namespaces. In Tzilla Elrad, Siobdn Clarke, Mehmet Aksit, and Robert Filman,
editors, Aspect-Oriented Software Development. Addison-Wesley, 2004. To appear.
Oscar Nierstrasz, Franz Achermann, and Stefan Kneubiihl. A guide to JPiccola.
Technical Report IAM-03-003, Institut fiir Informatik, Universitat Bern, Switzer-
land, June 2003.

Daniel Ratiu, Stéphane Ducasse, Tudor Girba, and Radu Marinescu. Using history
information to improve design flaws detection. In Proceedings of the Conference
on Software Maintenance and Reengineering (CSMR 2004), 2004.

Nathanael Scharli, Stéphane Ducasse, Oscar Nierstrasz, and Andrew Black. Traits:
Composable units of behavior. In Proceedings ECOOP 2003, volume 2743 of LNCS,
pages 248-274. Springer Verlag, July 2003.

