MICF%’DPD\/\/EF? SERIES

TECHNIQUES
ASIC

John P. Grillo/J. D. Robertson

RSB

ver 75 programs to teach you how to write good structured BASIC.
l F
r

MICROPOWER SERIES

TECHNIQUES

OF BASIC
- for the
IBM Personal Computer

John P. Grillo/J. D. Robertson

Bentley College
Waltham, Massachusetts

|

Consulting Editor:
Edouard J. Desautels
University of Wisconsin-Madison

Cover photo by Bob Coyle

Copyright © 1983 by Wm. C. Brown Publishers. All rights reserved.
Library of Congress Catalog Card Number: 83-71136

ISBN 0—697-08276—8
2—08276—01

No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the
prior written permission of the publisher.

Printed in the United States of America

Material on pages 73, 74, 84, 88, 89, 96, 97, 98, 99, and 101 from John P. Grillo
and J. D. Robertson, Introduction to Graphics for the IBM Personal
Computer © 1983 by Wm. C. Brown Publishers. All rights reserved.

Reprinted by permission.

Third Printing, 1983

2-08276-03

To Paul and Evans

Introduction

BASIC has come a long way since its first days at Dartmouth College in
1964, when because of its simplicity it helped students to learn about
the computer. It has evolved in two stages. The first stage occurred in
the early 1970s when minicomputers became standard fixtures in many
small business, scientific, and educational environments. At that time
BASIC became more than a curiosity. Because of its expanded features,
particularly file management, it began to appear as the application
language of choice for the popular minis.

The second stage of BASIC’s evolution is occurring right now. The
popularization of the microcomputer in the early 1980s has resulted in
BASIC being the de facto standard as a high-level language for these
new devices. Remember that minis were used primarily in small
businesses, scientific labs, and schools. The micros have come into the
home, and BASIC has come with them. Suddenly the phrase ‘‘computer
power to the people’” means something tangible to millions of
individuals. The decade of the 1980s will end with a substantial fraction
of the public actively involved in developing programs for their personal
use, and most of these programs will be written in BASIC.

All this is fine, as long as this tool is used for its intended
purpose, that being to entertain, to educate, to calculate, and to manage
files. However, many purchasers of microcomputers will bring it home,
play a few games of Blackjack, Chess, or Star Trek, and perhaps
maintain a recipe file. This is not enough. These devices are more
powerful than the million-dollar computers of the 1960s, and to use
them for such trivial tasks is only to waste their true potential. It’s as if
you were to buy a TV set and leave it tuned to a single channel.
Microcomputer power should be explored and exploited to its fullest,
and one way you can do so is to use it for more than the repetitive
execution of one or a few programs. Program it yourself.

As educators we have exposed many students to the joys of
computer programming, and we are continually surprised at the variety
of people who exhibit a talent for this science, or art, or craft. No
general rule seems to apply; programming talent seems to appear in a
large and unpredictable segment of the population. The microcomputer
revolution will add greatly to the growing numbers who know how to
write programs. A few of these people will become excellent
programmers. Our aim with this book is to increase the ranks of better
programmers by exposing them to some techniques for solving problems
that are commonly found in a wide variety of applications.

When you write a program, remember that you must consider
three different points of view.

1. The programmer is the originator of the program, its creator. In
many situations, you will find no existing program that even

ix

remotely begins to solve your problem. This is when your skill
as a programmer is tested to its fullest. You are most of all a
problem solver at this stage, and your major task is to decide
on the method of solution, or algorithm, for your problem.

2. The reader of your program is very possibly also its author, but
may also be someone else who wishes to adapt it to his or her
own application. A program’s reader must understand the
fundamentals of the language about as well as the programmer,
but is rarely involved in its original creation. The remarks in a
program are intended for its reader. During your program’s
development, you are also its reader, and you can use the
remarks effectively to remind you of the program’s logic or to
help modularize it for easier alteration.

3. The user of your program is the intended target for its
application. Usually, that person is naive about computers and
programs. The program, its advanced techniques, and its wealth
of remarks are lost to the user. But you, the programmer, must
always keep the user in mind. Here’s one of the few general
rules that has no exceptions: All well-written programs are easy
to run.

The programs, program segments, and examples contained within
this book have been tested on an IBM Personal Computer system with
two minifloppy disk drives. The listings were produced on a Brother
HR-1 letter-quality printer. We have purposely oriented this book
toward the IBM Personal Computer for the following reasons:

1. The IBM Personal Computer (hereafter referred to as the IBM
PC), is one of the many microcomputers that use Microsoft
BASIC, which is fast becoming a standard of comparison for
both performance and variety of extensions.

2. As of this writing, the IBM PC is beyond its early reputation as
the new kid on the block. It is the machine that many people
have been waiting for. It has become a major force in the
industry, with only the Apples and the TRS-80s as serious
competition.

3. The IBM PC can have a color display monitor, so its BASIC
has a variety of commands to manage that aspect of output.
However, many owners have elected to purchase IBM’s
monochrome display unit. For this reason and also to keep this
book to a manageable size, we do not discuss the color,
joystick, sound, and light pen instructions that IBM’s version of
Microsoft BASIC provides.

4. The IBM PC has a wide range of available peripheral
equipment. In addition, its popularity has prompted many
peripheral manufacturers other than IBM to produce competing
hardware, including hard disks with capacities on the order of
20 million characters.

This book is not intended for the rank beginner. It starts right off
with the IF—THEN—ELSE two-way branch construct, and fairly flies
through its somewhat advanced topics. The assumption we have made is
that you already know what we refer to as primitive BASIC; that is,
you have made yourself familiar enough with the language that you can
write simple programs. You should know about counters, accumulators,
loops, simple string and numeric variables, expression evaluation, and
simple algorithms. If you feel uncomfortable at this point about your
level of background knowledge in BASIC, you should strongly consider
purchasing the book User’s Guide with Applications for the IBM
Personal Computer, a companion book in this series offered by Wm. C.
Brown.

What this book does, which few if any other books do, is to show
you the power and flexibility of this computer language by example. We
have written many programs between these two covers, programs that
demonstrate the bells and whistles of Microsoft BASIC. Some of these
programs are trivial giveaways. Some are large and powerful, the kind
for which you would be expected to pay dearly through a software
house. We feel that the wisest companion investment with this book is
the diskette that contains its programs. Somehow, one doesn’t seem
complete without the other.

We hope you will try out all of the features that are discussed in
this book. Your reward will be a deep understanding of both a fine
computer programming language and some excellent programming
techniques.

Contents

Introduction

Decisions and Branching

IF—THEN—ELSE 1
Logical Operators 4
ON—GOTO and ON—GOSUB 6

Statements and Functions

Multiple Statements on a Line 9
RND Function 10

RANDOMIZE 13

DIM and Subscripted Variables 16
String Functions 25

User-Defined Functions 29

Input and Output

Cued INPUT 31
LPRINT 32

PRINT USING 32
INP and OUT 42
PEEK and POKE 42
Special Features 43

Variables

Long Variable Names 45

Variable Types 46

Implicit Conversion 49

DEFINT, DEFSNG, DEFDBL, DEFSTR
Hexadecimal and Octal Constants 53
VARPTR 353

Graphics

Line Printer Graphics 55
Character Graphics 73
Coordinate Graphics 88
Screen Store Graphics 96

X

31

45

51

55

6 1/0 and Strings 111

DEFUSR and USRn 111
POS, INSTR, and MID$ 113
INKEYS$ 115

LINE INPUT 118

MIDS$ Statement 120

TIMES and DATE$ 121

7 Sequential-Access File Processing 125

Commands for Program Files 125
Commands for Data Files 129

8 Direct-Access File Processing 145

FIELD 146

GET 149

LOF 149

LSET and RSET 150

PUT 151

MKIS$, MKS$, and MKD$ 151
CVI, CVS, and CVD 153
Direct-Access File Creation 154
Direct-Access File Processing 156

9 Conversational Programming 161

User Prompts and Menus 161

ERR, ERL, ON ERROR GOTO, and RESUME 165
Anticipating User Responses 167

Check Digit Calculations 168

Praise and Chastisement 171

Informing the User During Processing 173

10 Structured Programming 175

Program Planning 176
Phrase Flowcharts 177

ANSI Flowcharts 177
Programming Structures 180
GOTO-less Programming 182
Top-down Programming 184

11 Documentation 187

Internal Documentation 187
External Documentation 191

12 File Manipulation Techniques 195

Building 195

Accessing 201

Modifying 205

Deleting 205

Sorting 205

Sorting Algorithms 207

Direct-Access File Statistics Program 211

13 Inventory System Application 221

Appendixes
A ASCII Codes and Character Set for the IBM PC 245
B Instructions and Reserved Words 247
C IBM PC Memory Map 252
D Disk-Operating System Commands 253
E Error Codes 254

Index 255

vii

Decisions and Branching

IF—THEN—ELSE

The IF—THEN and the GOTO are certainly simple to learn and
understand, but as a person improves in programming techniques, the
limitations of these statements become a real burden. This is where the
extensions to the language are particularly rewarding. They are very easy
to learn and use, and they make any program easier to read.

Primitive BASIC is limited to having only a line number following the
THEN, for example:

308 IF X=A THEN Bz@

This restriction leads to awkward programs full of GOTOs that
force the reader to jump around from one line of code to another. This
process of bypassing some lines and tracing the program in various
sequences tends to frustrate both the programmer and the reader. As an
example of this poor, and all too common type of programming, look
at the program below.

10 'filename: "LARGEST1"

20 ' purpose: to find largest of 3 numbers (poorly structured)
30 ' author: jdr & jpg 12/82 (car)

40 '

50 DATA 1,2,3,1,3,2,22,11,33,22,33,11,35,15,25, 35, 25,15,0,0,0
60 'read three values from data block

70 READ A,B,C

80 IF A*B¥C=0 THEN 10000

90 'check to see if A is largest

100 IF B > A THEN 140

110 IF C > A THEN 180

120 L=A

130 GOTO 200

140 'check to see if B is largest

150 IF C > B THEN 180

160 L=B

170 GOTO 200

180 'here we know that C is largest

190 L=C

200 'print the value of L; it is the largest
210 PRINT L; "IS THE LARGEST OF"; A; B; C
220 GOTO 70

10000 END

3 IS THE LARGEST OF 1 2
3 IS THE LARGEST OF 1 3
33 IS THE LARGEST OF 22 11 33
33 IS THE LARGEST OF 22 33 11
35 IS THE LARGEST OF 35 15 25
35 IS THE LARGEST OF 35 25 15

3
2

Note: The PRINT command is used here and throughout the book to
display output on the screen. To have the output appear on the printer,
you should change the PRINT commands to LPRINT.

The program LARGEST!] is difficult to compose, to trace, and to
debug. Extended BASIC lets the programmer instruct the computer to
do something after finding out that the condition is true, instead of just
branching somewhere else. Look at this rewrite of the same program.

2 / Chapter 1 Decisions and Branching

10 'filename: "LARGEST2"

20 ' purpose: to find largest of 3 numbers (better)

30 ' author: jdr & jpg 12/82 (car)

40 '

50 DATA 1,2,3,1,3,2,22,11,33,22,33,11,35,15,25,35,25,15,0,0,0
60 'read three values from data block

70 READ A,B,C

80 IF A¥B*C=0 THEN 10000

90 ' store the largest in L, then print L

100 IF A>B THEN IF A>C THEN L=A

110 IF B>A THEN IF B>C THEN L=B

120 IF C>A THEN IF C>B THEN L=C

130 PRINT L; "IS THE LARGEST OF"; A; B; C
140 GOTO 70

10000 END

Notice that the decisions in this program have no branches. Each IF
statement checks the truth of a pair of conditions, and the value of L is
set when both conditions within the same statement are true.

But extended BASIC has even more. The THEN clause may be
followed by another clause, called the ELSE clause. The resulting
compound statement allows the programmer to specify one statement to
be executed if the condition is true, and another statement if the
condition is false. For example, study the two program segments below.

5@ "1f discriminant D of guadratic sguation 1% nOn-—nagative,

4@ *then compute and print the rocts: ctherwise print the

78 'message, "NO REAL ROOTS®

8@ D=P*P-—-4%Ax(~ calculate the discriminant

90 DZ=zZ%*A 7 calculate deniminator of quadratic equation

1@@ IF Dx=0 THEN PRINT "Foots="j§{-B+BOR(D))/DZs {-B~BQR{D)/DZ
ELSE PRINT "Mo real roaots"

20@ °let user =top or proceed, but accept onluy YES or NO answer
210 PRINT "Do you want toc go on {(answer YES or NO)";
22@ INPUT A%
2308 IF A$="NO" THEN STOP
ELSE IF A%<:>"YES" THEN Z1@

Chapter 1 Decisions and Branching / 3

Logical Operators This feature allows more English-looking conditional statements by the

1@
2@
3@
4@

10
20
30
40
50
60
70
80
90

use of OR, AND, and NOT operators.

*if A is less than B and ie less than C,
“then print A as the smallest.

IF A<R AND A<C THEN PRINT Aj; "1S SMALLEST®
IF A$="YES" OR A%="3SURE" OR A$="0OK" THEN 58@

3
ML

Program LARGEST3 shows how much more readable these logical
operators are in a program, as opposed to nested IFs or an abundance
of GOTO:s.

'filename: "LARGEST3"
' purpose: to find largest of 3 numbers (best)
author: jdr & jpg 12/82 (car)

1
|l

DATA 1,2,3,1,3,2,22,11,33,22,33,11,35,15,25,35,25,15,0,0,0
'read three values from data block
READ A,B,C
IF A¥*B*C=0 THEN 10000
'find and print the largest all in one shot

100 'note that the program occupies more space in memory,

110 ' but its operation is very clear

120 IF A>B AND A>C THEN PRINT A; "IS THE LARGEST OF";A;B;C
130 IF B>A AND B>C THEN PRINT B; "IS THE LARGEST OF";A;B;C
140 IF C>A AND C>B THEN PRINT C; "IS THE LARGEST OF";A;B;C
150 GOTO 70

10000 END

i@

3 IS THE LARGEST OF 1 2
3 IS THE LARGEST OF 1 3
33 IS THE LARGEST OF 22 11 33
33 IS THE LARGEST OF 22 33 11
35 IS THE LARGEST OF 35 15 25
35 IS THE LARGEST OF 35 25 15

3
2

The logical operators AND, OR, and NOT can be used for
Boolean logic operations. Study this statement:

* set A tc TRUE (-1) 1f both conditions are true,
otherwise to FALSE (@)

20 A=i{X=Y) AND (J:@)

4 / Chapter 1 Decisions and Branching

The parentheses around each of the conditions is necessary to isolate the
conditions from the assignment of the answer to A.

1@ ’set the flag V to TRUE if A is not less than B
2@ V=NOT(A<R)

This statement sets V to true (— 1) if the statement is true; that is, the
value of A is not less than B. Notice that the statement

1@ V={(Ax=R)

does the same thing, and it is perhaps clearer.

There are some applications for using purely logical operators.
Remember that in these cases the values in question are stored by the
computer as either true (— 1) or false (0). Such applications lead to
statements like these:

12 'set P to -1 if X 15 @ and vice versa

2@ P=NOT(X)

38 IF J THEN PRINT "TRUE"

4@ IF NOT{(A AND R) THEN PRINT "NEITHER I& TRUE"

5@ IF (A OR P) THEN PRINT "EITHER ONE OR BOTH IS TRUE"

A third possible application of logical operators is in bit
manipulation or bit comparison. This could be used in a program to
identify the positions of the 1-bits in any variable, in effect representing
it in binary form. The program BITS exemplifies the problem,
converting the variable X that the user entered to its binary
representation. The test value T starts at the value 16384, which is two
to the fourteenth power. Each time through the loop in lines 100-150, T
is reduced by a factor of two, in effect shifting the single one-bit to the
right one position.

10 'filename: "BITS"

20 ' purpose: display last 15 bits of integer X

30 : author: jdr & jpg 12/82 (car)

40

50 'set T to be the first (largest) power of 2

60 T=16384

70 PRINT "WHAT INTEGER DO YOU WISH CONVERTED (0=STOP)";
80 INPUT X

90 IF X=0 THEN 10000 ELSE PRINT X, "IN BINARY IS ";
100 FOR I=1 TO 15

110 ' isolate the single bit from X
120 B=T AND X
130 IF B>0 THEN PRINT "1 ": ELSE PRINT "0 ";

Chapter 1 Decisions and Branching / §

140
150
160
170

T=T/2
NEXT I
PRINT

GOTO

60

10000 END

WHAT INTEGER DO YOU WISH CONVERTED (0=STOP)? 1

1

IN BINARY IS 000000000000001

WHAT INTEGER DO YOU WISH CONVERTED (O0=STOP)? 15

15

IN BINARY IS 000000000001 111

WHAT INTEGER DO YOU WISH CONVERTED (0=STOP)? 3456

3456 IN BINARY IS 000110110000000
WHAT INTEGER DO YOU WISH CONVERTED (O0=STOP)? 32767
32767 INBINARY IS 111111111111111

WHAT INTEGER DO YOU WISH CONVERTED (0=STOP)? O

Some of the effects of binary operations using the logical
operators can be quite misleading. You should study the explanations of
these operations in the BASIC Manual. We include the examples below
more for completeness than for clarification. We suggest that you use
these operations only if you feel comfortable with binary representation
of values in the computer.

Instruction Output
1@ PRINT @ AND @ @
2@ PRINT @ AND 1 a
3@ PRINT 1 AND @ @
4@ PRINT 1 AND 1 i
5@ PRINT @ @GR @ 2
&@ PRINT @ OR 1§ 1
7@ PRINT t OR @ 1
8@ PRINT 1 OR 1 1
2@ PRINT NOT @ ~i
1@ PRINT MOT -1 @

ON—GOTO and
ON—GOSUB

These closely related branching statements allow a great deal of
flexibility when a program needs to perform a multiple-way branch.
They both use a variable after the ON, and a series of line numbers
after the GOTO or GOSUB. The integer value of the variable is
calculated, and a branch is taken to the first statement if the variable is
1, the second if 2, the third if 3, and so on. On the IBM PC, as on
most other computers, if the integer value of the variable does not
correspond to the position of a given line number, the statement
following the ON—GOTO or ON—GOSUB is executed.

6 / Chapter 1 Decisions and Branching

5@ ON X GOTO 8@,

Example:

3ee, 75@, 1@, Ba, 700

68 *fall through if X<@ or X:é

50
51
52
53
54
55
6@

50
52
54
56
58

62
62

IF
IF
IF
IF
IF
IF

The computer obtains the integer portion of X, which must be between

0 and 255.

If the integer
portion of X is

<0
0

B WD -

5

6
7-255
> =256

then the computer branches
to this line number

ERROR MESSAGE

60 (the next line—no branch)

80

300

750

10 (notice that the line numbers do not need to be
in order)

80 (notice that the same line can be reached with-
different values of X)

900

60 (the next line—no branch)

ERROR MESSAGE

You could write the equivalent of line 50 above without use of an
ON—GOTO like this:

INT(X)=1 THEN
INT(X)=2 THEN
INT(X)=3 THEN
INT(X)=4 THEN
INT(X)=5 THEN
INT(X)=6 THEN

ON

IF
IF
IF
IF
IF
IF

8@
322
750
i@
ae
[0

If the word GOTO was replaced by GOSUB, the multiway branch

would become:

X GOSUER B@, 300, 750, 108, 82, 9B
*fall through if X<0 or X6

which is equivalent to:

INT¢(X)=1 THEN
INT(X)=2 THEN
INT{X)=3 THEN
INT(X)=4 THEN
INT(X)>=5 THEN
INT(X)=6 THEN

GOBUR 8@ : GOTO &2
GOSUR 30@: GOTO 62
GOSUR 75@: GOTO A2
GOSUR 10 : GOTO &7
GOSUR 8@ : GOTO &2
GOSUR 0@

Chapter 1 Decisions and Branching / 7

