I1Brady

EDITORS OF

35 JUUHNAL

W(‘

TOOLBOOK

LY
OF
XYY
3938
¥PRY

PROGRAMMING

Bl iR Kay
SR EE %0
USSR IS AT 0E N
IR oG o oS BN
IS i 8

8753923

Dr. Dobb's
~ Toolbook of
68000 Programming

The Editors of
Dr. Dobb’s Journal of Software Tools

d 7/
P

N

AR

E8763923

A Brady Book
Published by Prentice-Hall Press
New York, New York 10023

Dr. Dobb's Toolbook of 6_8»0?»![Prog'ramming

oy s

Copyright © 1986 by M & T Publishing, Inc.
All rights reserved

including the right of reproduction in whole or in part in any form.

L3

..A Brady Book

. Published by Prentice Hall Press

A Division of Simon & Schuster, Inc.
Gulf + Western Plaza

New York, NY 10023

PRENTICE HALL PRESS is a trademark of Simon & Schuster, Inc.
Manufactured in the United States of America

12345678910

Library of Congress Cataloging-in Publication Data
Dr. Dobb's toolbook of 68000 programming.

"A Brady Book."

1. Motorola 68000 (Microprocessor)—Programming.
1. Dr. Dobb's journal of software tools for the professional
programmer. II. Title: Doctor Dobb's toolbook of 68000
programming.
QA76.8.M67D72 1986 005.265 86-25308
ISBN 0-13-216649-6 (case)
ISBN 0-13-216557-0 (paperback)

Special volume discounts are available by contacting the
Special Sales Department, Englewood Cliffs, NJ 07632.

For information about foreign rights,
contact M & T Publishing, 501 Galveston Drive, Redwood City, CA 94063.

Educational Computer Board, Tutor, MACSbug, 68000, 6800, 6500, 68008,
68010, 68020, 68881, 68851 and 68452 are trademarks of Motorola, Inc.
8080 and 8086 are trademarks of Intel Corp. Macintosh, Mac Plus and RMaker
are trademarks of Apple Computer, Inc. Unix is a trademark of AT&T Bell Lab-
oratories. CP/M is a trademark of Digital Research, Inc.

Software Availability

All the software listings in this book are available on disk in the
following formats: Amiga, Atari 520ST, CP/M 8-inch, Macintosh, MS-DOS
and Osborne.

In addition, the 68000 Cross-Assembler (Chapter 10) can be putchased as
an executable program along with source code and documentation. Systems
required to operate the assembler are one or more disk drives and either CP/M-
80, CP/M 2.2 with 64K of memory or MS-DOS with 128K of memory.

Order Listings Disk or Assembler Disk by sending a check, or credit card
number and expiration date, for $25.00 (each) to:

68000 Disk

c/o Dr. Dobb’s Journal of Software Tools
501 Galveston Dr.

Redwood City, CA 94063

415/366-3600

Please remember to specify disk format. California residents must add ap-
propriate sales tax.

Limits of Liability and
Disclaimer of Warranty

The author(s) and publisher of this book have used their best efforts in
preparing the book and the programs contained in it. These efforts include the
development, research and testing of the theories and programs to determine
their effectiveness. The author(s) and publisher make no warranty of any kind,
expressed or implied, with regard to these programs or the documentation con-
tained in this book. The author(s) and publisher shall not be liable in any
event for incidental or consequential damages in connection with, or arising
out of, the furnishing, performance or use of these programs.

Dr. Dobb’s Journal of Software Tools

Publisher Laird Foshay
Editor-in-Chief Michael Swaine

General Manager,
M & T Books Ellen Ablow
Technical Editor Nicholas Turner
Book Editor Lisanne Abraham

Design Michael Hollister
Joe Sikoryak

Production Frank Pollifrone

Illustrations Al McCahon

8753923
Table of Contents

Introduction 1

I. INTRODUCTION TO THE 68000 FAMILY

1. MC68000 Family History, Design and Philosophy 5
Daniel Appleman

2. The 68000 Instruction Set 21
Daniel Appleman

3. The 68000 Family ' N\ 37
Daniel Appleman - 5{\-\

f ; -

II. DEVELOPMENT TOOLS FOR THE‘R@&F,@MILY

L., e

4. Bringing Up the 68000: A First Step ,’,/ 53
Alan D. Wilcox T

5. Motorola's Tutor Firmware 65
Alan D. Wilcox

6. Tiny BASIC 73
Gordon Brandly

7. Comfort: A Faster Forth 107
Alexander Burger and Ronald Greene

8. A Forth Native-Code Cross-Compiler 123
Raymond Buvel

9. A 68000 Forth Assembler 159
Michael A. Perry

10. A 68000 Cross-Assembler 175

Brian Anderson

III. USEFUL 68000 ROUTINES AND TECHNIQUES
11. 68000 Coding Conventions 285
Jan Steinman

12. A Simple Multitasking Kernel for Real-Time Applications 303
Nicholas Turner

13.

14.

15.

16.

17.

18.

19.

A Commercial Multitasking Kernel
Steve Passe

A Pseudo Random-Number Generator
Michael P. McLaughlin

Generating Nonuniform Distributions of Random Numbers
Chris Crawford

The Worm Memory Test
Jan Steinman

Improved Integer Square Root Routine
Jim Cathey

A Mandelbrot Program for the Macintosh
Howard Katz

Improved Binary Search Routine
Michael P. McLaughlin

About the Authors

321

335

337

341

351

357

389

391

Introduction

any people in the microprocessor industry think that the assembly
Mlanguage programming community is divided into two groups: the
sixers and the eighters. The "sixers" are people who like the CPU chips that
start with the number 6—the 6500, 6800 and the 68000 families. The
"eighters" like the chips starting with 8—the 8080, 8086, 8088, Z-80, 80286
and 80386. The sixers support instruction sets that are very general, with lots
of addressing modes available and a lot of identical CPU registers that each
support all of the addressing modes. Typical sixer machines use memory-
mapped 1/O and support a large, flat memory space. Conversely, the eighters
seem to like CPUs with a few very specialized registers and a lot of powerful
special-purpose instructions. Typical eighter machines use special instruc-
tions for I/O and support a segmented memory architecture.

There seems to be a deep-seated philosophical difference between the two
groups, and great wars of words have taken place between the various factions
of the sixers and the eighters. The pages of Dr. Dobb’s Journal of Software
Tools (DDJ) have long been a battleground for those wars. In this book,
which contains articles originally printed in DDJ, along with some new
material, we present information of interest to one of the most active factions
in the Great Microprocessor Debates: the sixer folks who are fans of
Motorola's 68000 family.

I'm an unabashed sixer from way back. I cut my microprocessor teeth on
the 6502, and spent three years at Atari programming video games on the
6507 in the VCS game machine. When Motorola first introduced the 68000, 1
was delighted. Here at last was a machine with a huge address space, nice
clean memory-mapped I/O, a lot of general-purpose registers, and an instruc-
tion set that applied equally (well, almost) to all the registers. What's more,
the future seemed to promise more powerful chips in the same family with
nearly identical instruction sets. A sixer's dream!

Since then my love for the 68000 family has grown steadily. Apple's Lisa
and then the Macintosh started what was to become a whole wave of 68000
machines. Now we have the Amiga (what a glorious computer!), the Atari ST
and a whole plethora of systems based on the VME bus, one of the most
sensible and well-supported bus standards I've ever seen. The 68020, the latest
chip in the family, has proven to be a real powerhouse. Combined with the
68881 floating-point coprocessor and the 68851 memory management unit, a
68020 system can easily outperform many of today's minicomputers and
most of the mainframes of the 1970s.

Nicholas Turner
Technical Editor

I

Introduction to
the 68000 Family

HoNREE, T SE#PDRIG U 0] : www. ertongbook. com

1

MC68000 Family
History, Design
and Philosophy

Daniel Appleman

In this introduction to the MC68000 family of
microprocessor and support chips, Daniel Appleman
describes its history, summarizes the features of the
processors and examines the important differences between
the 68000 family and the Intel family of processors.

Motorola's 68000 family, once little more than descriptive literature, has
matured into a full selection of microprocessors and support chips. The
original MC68000 has been followed by the 68008, 68010 and 68020, not to
mention dozens of support and peripheral chips. Although these
microprocessors differ in speed, memory addressing range and other details,
they are based on common operating principles. These principles emerged in
the late 1970s, with Motorola's introduction of the original 68000
MICTOprocessor.

Gaining an understanding of the philosophy behind the 68000 family can
shorten the learning time required to become an expert 68000 programmer.
Whether or not you have had 68000 experience, the background provided in
this chapter will help you understand the applications and examples in the rest
of the book.

Of Space, Speed and Support

In 1979 the personal computer revolution was just beginning. Businesses
were discovering that minicomputers could make some of their operations
more efficient, but computer-aided design and large business applications were
still confined to mainframes.

In the world of small computers, the 8-bit microprocessor was king.
Because they were well-suited for single-user, small- and moderate-size
applications, 8-bit processors were the most common processors in home
computers. Their limitations—64-kilobyte address space, poor support for
high-level languages and poor multiuser support—were largely irrelevant in

6 DR. DOBB'S TOOLBOOK OF 68000 PROGRAMMING

the home market. Although these machines were initially successful in
certain business applications, several factors soon sped them on their way to
obsolescence in the business world.

The most obvious factor was the rapid advance of technology. Integrated
circuit (IC) manufacturers were approaching VLSI (very large scale
integration) technology—the ability to reliably place more than 100,000
transistors in a single IC. By itself, this ability would probably not have
assured the development of 16-bit microprocessors. The big push came
because semiconductor manufacturers identified a large potential market for
the 16-bit chip—namely, the same businesses and laboratories that were
using minicomputers and mainframes. The 8-bit processors could not
compete with minicomputers in those areas; not only did the 8-bit machines
suffer from the limitations already mentioned, but they were also too slow.

A 16-bit processor is not simply twice as fast as an 8-bit machine.
Determining which computer would be faster in a certain application, a
process called benchmarking, requires a fairly complex examination of cycle
times, types of instructions and the actual program in question. For the
purpose of demonstration, consider the example of adding one 16-bit word to
another in memory. Say there are 4 bytes of memory called A, B, C and D.
We'd like to add the 2-byte integer in A and B to the 2-byte integer stored in
C and D and put the result in C and D.

On an 8-bit microprocessor like the 6800, the code to accomplish the task
would look something like this:

ldaa D ;Move D to Accumulator

adda B ;Add B to Acc

staa D ;Store Acc to D

ldaa A ;Move A to Acc

adca C ;Add C (with carry from D+B)
staa C ;Store Ace to C

This code fragment would take 4+4+5+4+4+5=26 clock cycles to execute,
which is the same as 13 microseconds if we assume a 2 megahertz (MHz)
clock.

On a 68000 chip, the code would look like this:

mov.w A,doO ;Move A and B to register dO
add.w do; ¢ ;Add to C and D and store result

This requires 12+16=28 clock cycles, which means 3.5 microseconds if we
assume an 8 MHz clock. The newer 68000 processors run at an even faster
12.5 MHz, which would allow the above operation to take place in 2.24
microseconds.

Differences in execution speed become even more profound when
comparing more complex operations, such as 32-bit addition, multiplication
and division. Although 8-bit machines will be around for years in low-end

MC68000 FAMILY HISTORY, DESIGN AND PHILOSOPHY 7

computing and many device-control applications, the 16-bit processor is
taking over for high-end applications.

Unfortunately, increased speed is not the only consideration in designing a
16-bit microprocessor; the same applications that form the market for 16-bit
chips also demand minicomputer-like features and architecture. Fortunately,
the chip designers kept this fact in mind, and the results can be seen in most
high-end microprocessors. The implementations vary from company to
company, but the goals are largely the same for all. The ideal 16-bit
microcomputer:

» offers a clear upgrade path to 32-bit processors and advanced super-
minicomputer architectures;

» provides good support for high-level languages and advanced multitasking
operating systems;

» easily interfaces with a wide variety of peripheral chips and supports
multiprocessor applications.

A Clear Upgrade Path

In the late 1970s, prospective manufacturers of advanced microprocessors
sent marketing representatives to virtually any company that expressed
interest in these products. Computer design engineers had to choose from
among the various upcoming microprocessors without the benefit of having
used them. And the technical considerations were not the only problems
—engineers also had to consider the long-term future of each microprocessor.
Would the company be around in five or ten years? Would it provide the
advanced development tools needed to work with these devices? Would there
be multiple sources for the product? Would future chips in the family be
compatible with the current chip?

The last question was perhaps the most important of all. If a new
microprocessor in a family was not hardware-compatible with the original,
each new device—as well as its peripherals—would have to be redesigned to
be incorporated into a system. (It is therefore no surprise that Motorola and
Intel, the two main chip contenders, each specified its own system bus stan-
dards. The VME bus, specified by several manufacturers, including Motorola,
supports the 68000 family; the Multibus II from Intel is closely tied to the
8086 family.)

Another issue raised during the design of the new processors asked to what
degree the new 16-bit devices should be compatible with the existing 8-bit
devices. Because several years would pass before there was a large family of
16-bit peripherals, all of the 16-bit processor manufacturers designed
machines that supported 8-bit peripheral chips.

In designing the new 16-bit devices, Motorola and Intel took entirely
different approaches to software compatibility with the 8-bit world. Intel
attempted to expand the existing 8080 family (registers on the 8086 can be
accessed either as 16-bit registers or as dual 8-bit registers), hoping that the
ease of converting 8-bit software to the 8086 would win many new
microcomputer designs. Motorola took a calculated risk. Since the new

8 DR. DOBB'S TOOLBOOK OF 68000 PROGRAMMING

applications for the 16-bit devices were likely to be in markets that were not
currently supported on 8-bit machines, the company decided to develop a
software instruction set from scratch.

The results of those decisions have been mixed—the market seems to have
split into two clearly divided factions. While a vast array of software has been
written for the very successful IBM PC and the PC-compatible "clones” (the
premier 8086 chipset machines), there have been very few truly new designs
using ‘the Intel chipset. At the same time, many new machines that use the
68000 chipset have emerged. Apple's Macintosh, the Commodore Amiga, the
Atari ST, the Sun Microsystems and Apollo work stations and many others
fall into this category. The supporters of the 68000 family tend to be quite
fanatical. Why? Typically, the response from a programmer refers to the
clean, uniform design of the chips in the family and to the ease of
programming. Because the 68000 was designed from scratch, no compromises
were necessary to ensure downward compatibility. At the same time, the
family was designed with upward compatibility in mind, so that the family's
later, more powerful chips would not be crippled by the necessary compati-
bility with earlier models.

Supporting High-Level Languages and
Advanced Operating Systems

While hardware technology was advancing to the point at which 16-bit
computers could be implemented on a single chip, software technology was
also making strides. Newer languages such as C and Pascal were gaining in
popularity for general programming, and specialized languages—APL, Lisp,
Prolog and Forth, for example—were becoming more common. Most 8-bit
machines, however, could only be programmed in machine language, BASIC
and, occasionally, Forth and Pascal. The 8-bit 6500 series processors had only
256 bytes in their stack, hardly enough memory to support the sophisticated
parameter-passing and local-variable capability provided by most high-level
languages.

Why did high-level languages become so popular? As software develop-
ment costs became significantly greater than hardware costs due to the in-
creased sophistication of the applications demanded by the marketplace, any
tools that enabled a programmer to be more efficient (generate more code in a
shorter time) were quickly embraced by the computer industry and most
programmers. Assembly language programming was relegated to extremely
size- or speed-critical applications. Most major applications were written in
the newer languages or in combinations of high- and low-level languages.
With the advent of C, even operating systems could be written efficiently in a
high-level language (Unix is the primary example).

The increasingly sophisticated applications required increasingly
sophisticated operating systems to support them. New word processing
programs demanded fast updates and the ability to handle enormous
documents. Advanced databases, which had previously been restricted to large
mainframes, were being rewritten for small computers. These applications

SR

vam b &Pt Sy e g

MC68000 FAMILY HISTORY, DESIGN AND PHILOSOPHY 9

demanded more memory and more speed than most 8-bit machines could
provide. Furthermore, 8-bit machines are almost exclusively single-tasking
systems meant for one user; sophisticated operating systems must support
multiple users and multiple tasks.

Multiuser systems themselves introduce another demand that 8-bit
machines can't handle: protection schemes. Imagine a system being used by
two people—the first is running a crucial accounting application .nd the
second is debugging a machine language program. In the course of this
debugging, the second user accidentally runs the microprocessor's HALT in-
struction. In an unprotected system, the first user will probably lose all of his
or her work. None of the major 8-bit processors implements a security
scheme that protects against accidental or intentional operations that can stop
the system or scramble data.

The new machines, however, support large address spaces and virtual
memory schemes, and have instruction sets designed to run high-level
languages, complex applications and operating systems efficiently. (See
Chapter 2.)

Interfacing With Peripherals and
Supporting Multiprocessors

Most microcomputer systems in the late 1970s were based on the original
work by John Von Neumann. In the Von Neumann architecture, a central
processing unit (CPU) was connected to peripheral chips and memory by way
of a main computer bus. (See Figure 1.1.)

Input/
Memor P
GPY d Output

S Computer Bus 5

FIGURE 1.1 The Von Neumann architecture.

10 DR. DOBB'S TOOLBOOK OF 68000 PROGRAMMING

The processing speed possible with such a system is limited by the
amount of data that can be transferred over the main computer bus (this
limitation is often referred to as the "Von Neumann bottleneck"). A simple
technique for improving system performance is to make the peripheral device
intelligent by adding a microprocessor. This improvement allows some of the
I/O processing to take place in the peripheral device or chip, thus freeing the
main processor (and the bus) from this task. Another technique is to have a
direct memory access (DMA) device take over the bus from the main CPU
and transfer data at a much higher rate than was possible with the CPU alone.
Both of these techniques are quite common on 8-bit systems.

A more sophisticated technique which is becoming more common is
multiprocessing. At the simplest level, two or more CPUs share a bus with a
bus arbitration mechanism. In more sophisticated schemes, each CPU has a
local bus and local resources which can then tie in together to one or more
main system buses. (See Figure 1.2.) Because multiple CPUs execute
simultaneously, more work gets done in the same amount of time and the
effective processing speed is greater.

Features of the 68000 Family

The original 68000 processor family provided by Motorola had four main
members (others have since been added for specialized applications). As Table
1.1 shows, the 68000, 68008 and 68010 are almost the same chip.

The 68008 is identical to the 68000 except for the size of the data bus and
address bus. It was designed for applications in which the system could use
the power of a 16-bit machine, but could not justify the expense of the 16-bit
support hardware. The 68010 is an improved version of the 68000 that
supports virtual memory. From a programming point of view, the two chips
are almost identical. The 68020, on the other hand, incorporates major
improvements in both the hardware and the instruction set. And it maintains
full compatibility with the other chips and will run their object code directly.
Figure 1.3 shows the major structural differences among the processors
within the family.

The 68000 doesn't look like a 16-bit processor. True, it has a 16-bit data
bus and a 16-bit arithmetic logic unit (ALU), but all of the registers are 32
bits wide. This increased register size is one of the most important ways in

68000 68008 68010 68020
Registers 17 17 20 23
ALU Width 16 16 16 32
Address Bus 24 bits 20 bits 24 bits 32 bits
Address Space 16 Mb 1 Mb 16 Mb 4 gigabytes
Data Bus 16 bits 8 bits 16 bits 8/16/32 bits
Data Registers 32 bits 32 bits 32 bits 32 bits

TABLE 1.1 The 68000 family.

