Alan Mycroft
Andreas Zeller (Eds.)

Compiler
Construction

15th International Conference, CC 2006

Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2006
Vienna, Austria, March 2006, Proceedings

LNCS 3923

@ Springer

Alan Mycroft Andreas Zeller (Eds.)

Compiler
Construction

15th International Conference, CC 2006
Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2006

Vienna, Austria, March 30-31, 2006
Proceedings

|
@ Springer

Volume Editors

Alan Mycroft

Cambridge University
Cambridge, UK

E-mail: am@cl.cam.ac.uk

Andreas Zeller

Saarland University
Saarbriicken, Germany
E-mail: zeller@cs.uni-sb.de

Library of Congress Control Number: 200692208 1

CR Subject Classification (1998): D.3.4, D.3.1, F4.2, D.2.6, F.3, [.2.2
LNCS Sublibrary: SL 1 — Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-33050-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-33050-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11688839 06/3142 543210

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg '

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

New York University, NY, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3923

Foreword

ETAPS 2006 was the ninth instance of the European Joint Conferences on The-
ory and Practice of Software. ETAPS is an annual federated conference that
was established in 1998 by combining a number of existing and new confer-
ences. This year it comprised five conferences (CC, ESOP, FASE, FOSSACS,
TACAS), 18 satellite workshops (ACCAT, AVIS, CMCS, COCV, DCC, EAAIL
FESCA, FRCSS, GT-VMT, LDTA, MBT, QAPL, SC, SLAP, SPIN, TERM-
GRAPH, WITS and WRLA), two tutorials, and seven invited lectures (not in-
cluding those that were specific to the satellite events). We received over 550
submissions to the five conferences this year, giving an overall acceptance rate
of 23%, with acceptance rates below 30% for each conference. Congratulations
to all the authors who made it to the final programme! I hope that most of the
other authors still found a way of participating in this exciting event and I hope
you will continue submitting.

The events that comprise ETAPS address various aspects of the system de-
velopment process, including specification, design, implementation, analysis and
improvement. The languages, methodologies and tools which support these ac-
tivities are all well within its scope. Different blends of theory and practice
are represented, with an inclination towards theory with a practical motivation
on the one hand and soundly based practice on the other. Many of the issues
involved in software design apply to systems in general, including hardware sys-
tems, and the emphasis on software is not intended to be exclusive.

ETAPS is a loose confederation in which each event retains its own iden-
tity, with a separate programme committee and proceedings. Its format is open-
ended, allowing it to grow and evolve as time goes by. Contributed talks and
system demonstrations are in synchronised parallel sessions, with invited lectures
in plenary sessions. Two of the invited lectures are reserved for “unifying” talks
on topics of interest to the whole range of ETAPS attendees. The aim of cram-
ming all this activity into a single one-week meeting is to create a strong magnet
for academic and industrial researchers working on topics within its scope, giving
them the opportunity to learn about research in related areas, and thereby to
foster new and existing links between work in areas that were formerly addressed
in separate meetings.

ETAPS 2006 was organized by the Vienna University of Technology, in co-
operation with

- European Association for Theoretical Computer Science (EATCS);

- European Association for Programming Languages and Systems (EAPLS);

- European Association of Software Science and Technology (EASST);

- Institute for Computer Languages, Vienna,

- Austrian Computing Society;

- The Biirgermeister der Bundeshauptstadt Wien;

VI Foreword

- Vienna Convention Bureau,
- Intel.

The organizing team comprised:

Chair: Jens Knoop

Local Arrangements: Anton Ertl
Publicity: Joost-Pieter Katoen
Satellite Events: Andreas Krall
Industrial Liaison: Eva Kiihn

Liaison with City of Vienna: Ulrich Neumerkel
Tutorials Chair, Website: Franz Puntigam
Website: Fabian Schmied

Local Organization, Workshops Proceedings: Markus Schordan

Overall planning for ETAPS conferences is the responsibility of its Steering
Committee, whose current membership is:

Perdita Stevens (Edinburgh, Chair), Luca Aceto (Aalborg and Reykjavik),
Rastislav Bodik (Berkeley), Maura Cerioli (Genova), Matt Dwyer (Nebraska),
Hartmut Ehrig (Berlin), José Fiadeiro (Leicester), Marie-Claude Gaudel (Paris),
Roberto Gorrieri (Bologna), Reiko Heckel (Leicester), Michael Huth (London),
Joost-Pieter Katoen (Aachen), Paul Klint (Amsterdam), Jens Knoop (Vienna),
Shriram Krishnamurthi (Brown), Kim Larsen (Aalborg), Tiziana Margaria (G6-
ttingen), Ugo Montanari (Pisa), Rocco de Nicola (Florence), Hanne Riis Nielson
(Copenhagen), Jens Palsberg (UCLA), Mooly Sagiv (Tel-Aviv), Joao Saraiva
(Minho), Don Sannella (Edinburgh), Vladimiro Sassone (Southampton), Helmut
Seidl (Munich), Peter Sestoft (Copenhagen), Andreas Zeller (Saarbriicken).

I would like to express my sincere gratitude to all of these people and or-
ganizations, the programme committee chairs and PC members of the ETAPS
conferences, the organizers of the satellite events, the speakers themselves, the
many reviewers, and Springer-Verlag for agreeing to publish the ETAPS pro-
ceedings. Finally, I would like to thank the organizing chair of ETAPS 2006,
Jens Knoop, for arranging for us to have ETAPS in the most beautiful city of
Vienna.

Edinburgh, January 2006 Perdita Stevens
ETAPS Steering Committee Chair

Preface

The Program Committee is pleased to present the proceedings of the 15th In-
ternational Conference on Compiler Construction (CC 2006) which was held on
March 30 and 31 in Vienna, Austria, as part of the Joint European Conference
on Theory and Practice of Software (ETAPS 2006). '

Traditionally, CC had been a forum for research on compiler construction.
Starting last year, CC has expanded its remit to include a broader spectrum
of programming tools, from analysis tools to compilers to virtual machines to
debuggers. The submissions we received again reflected the new scope of the
conference.

The Program Committee received 71 submissions. From these, 17 research
papers and 3 tool demonstrations were selected, giving an overall acceptance
rate of 28%.

The Program Committee included 16 members representing 9 countries on 3
continents. Each member reviewed roughly 16 papers and each paper received
at least three reviews. In all, 45 external reviewers participated in the review
process. Committee members were allowed to submit papers; these would be
screened by four reviewers. The Program Committee met on December 5 in
London for a one-day meeting. All but three of the members attended the
meeting.

Many people contributed to the success of this conference. First of all, we
would like to thank the authors for all the care they put into their submis-
sions. Our gratitude also goes to the Program Committee members and external
reviewers for their substantive and insightful reviews. Intel generously funded
parts of the Program Committee meeting. Special thanks go to Jay McCarthy
for maintaining the Continue Conference Server.

CC 2006 was made possible by the ETAPS Steering Committee, in particular
by the hard work of Jens Knoop in the role of ETAPS 2006 Organizing Commit-
tee Chair, and by that of Anton Ertl in taking care of the local arrangements. We
would also like to thank Reinhard Wilhelm and Ras Bodik, recent CC chairs, for
on-going helpful discussions about CC’s future direction. Finally, we are grateful
to George Necula for accepting the invitation to give a keynote talk.

January 2006 Alan Mycroft and Andreas Zeller
CC 2006 Program Chairs

Conference Organization

Program Chairs

Alan Mycroft
Andreas Zeller

University of Cambridge, UK
Saarland University, Germany

Program Committee

Radhia Cousot
Koen De Bosschere
Arie van Deursen
Michael Ernst
Sergei Gorlatch
Chris Hankin

Jens Knoop
Shriram Krishnamurthi
K. Rustan M. Leino
Oege de Moor

Greg Morrisett
Morten Rhiger
Barbara Ryder
Frank Tip

Des Watson
Kwangkeun Yi

CNRS, France

Ghent University, Belgium

CWI, Netherlands

Massachusetts Institute of Technology, USA
University of Miinster, Germany
Imperial College, UK

TU Vienna, Austria

Brown University, Rhode Island, USA
Microsoft Research, Washington, USA
Oxford University, UK

Harvard University, Massachusetts, USA
Roskilde University, Denmark

Rutgers University, New Jersey, USA
IBM Research, New York, USA
University of Sussex, UK

Seoul National University, Korea

Additional Reviewers

Martin Alt

Gerco Ballintijn
Anne Benoit

Jim Benham
Kristof Beyls
Magiel Bruntink
Dries Buytaert
Dominique Chanet
Ophelia Chesley
Jamieson M. Cobleigh
Bas Cornelissen

Erik D’Hollander Martin Griebl
Bruno De Bus Christoph Herrmann
John Dias Oleg Kiselyov

Julian Dolby Taeke Kooiker

Jan Diinnweber Christoph Kessler
Bruno Dufour Andreas Krall

Rob Economopoulos Jens Krinke

Anton Ertl Yossi Lev

Chen Fu Jonas Maebe

Robert Fuhrer Guillaume Marceau

Andy Georges Thomas J. Marlowe

X Conference Organization

Jay McCarthy Xiaoxia Ren Ludo Van Put
Ali Mesbah Oliver Riithing Mandana Vaziri
Nick Mitchell Markus Schordan Weilei Zhang

Francois Pottier Jeffrey Siskind Lenore Zuck

Lecture Notes in Computer Science

For information about Vols. 1-3806

please contact your bookseller or Springer

Vol. 3923: A. Mycroft, A. Zeller (Eds.), Compiler Con-
struction. XIII, 277 pages. 2006.

Vol. 3903: K. Chen, R. Deng, X. Lai, J. Zhou (Eds.), Infor-
mation Security Practice and Experience. XIV, 392 pages.
2006.

Vol. 3901: P.M. Hill (Ed.), Logic Based Program Synthesis
and Transformation. X, 179 pages. 2006.

Vol. 3899: S. Frintrop, VOCUS: A Visual Attention System
for Object Detection and Goal-Directed Search. XIV, 216
pages. 2006. (Sublibrary LNAI).

Vol. 3895: O. Goldreich, A.L. Rosenberg, A.L. Selman
(Eds.), Essays in Theoretical Computer Science. XII, 399
pages. 2006.

Vol. 3894: W. Grass, B. Sick, K. Waldschmidt (Eds.), Ar-
chitecture of Computing Systems - ARCS 2006. XII, 496
pages. 2006.

Vol. 3890: S.G. Thompson, R. Ghanea-Hercock (Eds.),
Defence Applications of Multi-Agent Systems. XII, 141
pages. 2006. (Sublibrary LNAI).

Vol. 3889:J. Rosca, D. Erdogmus, J.C. Principe, S. Haykin
(Eds.), Independent Component Analysis and Blind Sig-
nal Separation. XXI, 980 pages. 2006.

Vol. 3888: D. Draheim, G. Weber (Eds.), Trends in Enter-
prise Application Architecture. IX, 145 pages. 2006.

Vol. 3887: J. Correa, A. Hevia, M. Kiwi (Eds.), LATIN
2006: Theoretical Informatics. XVI, 814 pages. 2006.

Vol. 3886: E.G. Bremer, J. Hakenberg, E.-H.(S.) Han,
D. Berrar, W. Dubitzky (Eds.), Knowledge Discovery in
Life Science Literature. XIV, 147 pages. 2006. (Sublibrary
LNBI).

Vol. 3885: V. Torra, Y. Narukawa, A. Valls, J. Domingo-
Ferrer (Eds.), Modeling Decisions for Artificial Intelli-
gence. XII, 374 pages. 2006. (Sublibrary LNAI).

Vol. 3884: B. Durand, W. Thomas (Eds.), STACS 2006.
X1V, 714 pages. 2006.

Vol. 3881: S. Gibet, N. Courty, J.-F. Kamp (Eds.), Gesture
in Human-Computer Interaction and Simulation. XIII,
344 pages. 2006. (Sublibrary LNAI).

Vol. 3880: A. Rashid, M. Aksit (Eds.), Transactions on
Aspect-Oriented Software Development I. IX, 335 pages.
2006.

Vol. 3879: T. Erlebach, G. Persinao (Eds.), Approximation
and Online Algorithms. X, 349 pages. 2006.

Vol. 3878: A. Gelbukh (Ed.), Computational Linguistics
and Intelligent Text Processing. XVII, 589 pages. 2006.
Vol. 3877: M. Detyniecki, J.M. Jose, A. Niirnberger, C. J.
‘. van Rijsbergen (Eds.), Adaptive Multimedia Retrieval:
User, Context, and Feedback. XI, 279 pages. 2006.

Vol. 3876: S. Halevi, T. Rabin (Eds.), Theory of Cryptog-
raphy. XI, 617 pages. 2006.

Vol. 3875: S. Ur, E. Bin, Y. Wolfsthal (Eds.), Haifa Verifi-
cation Conference. X, 265 pages. 2006.

Vol. 3874: R. Missaoui, J. Schmidt (Eds.), Formal Concept
Analysis. X, 309 pages. 2006. (Sublibrary LNAI).

Vol. 3873: L. Maicher, J. Park (Eds.), Charting the Topic
Maps Research and Applications Landscape. VIII, 281
pages. 2006. (Sublibrary LNAT).

Vol. 3872: H. Bunke, A. L. Spitz (Eds.), Document Anal-
ysis Systems VII. XIII, 630 pages. 2006.

Vol. 3870: S. Spaccapietra, P. Atzeni, W.W. Chu, T.
Catarci, K.P. Sycara (Eds.), Journal on Data Semantics
V. XIII, 237 pages. 2006.

Vol. 3869: S. Renals, S. Bengio (Eds.), Machine Learning
for Multimodal Interaction. XIII, 490 pages. 2006.

Vol. 3868: K. Romer, H. Karl, F. Mattern (Eds.), Wireless
Sensor Networks. XI, 342 pages. 2006.

Vol. 3866: T. Dimitrakos, F. Martinelli, P.Y.A. Ryan, S.
Schneider (Eds.), Formal Aspects in Security and Trust.
X, 259 pages. 2006.

Vol. 3865: W. Shen, K.-M. Chao, Z. Lin, J.-P.A. Barthés
(Eds.), Computer Supported Cooperative Work in Design
I1. XII, 359 pages. 2006.

Vol. 3863: M. Kohlhase (Ed.), Mathematical Knowledge
Management. XI, 405 pages. 2006. (Sublibrary LNAI).
Vol. 3862: R.H. Bordini, M. Dastani, J. Dix, A.E.F.
Seghrouchni (Eds.), Programming Multi-Agent Systems.
X1V, 267 pages. 2006. (Sublibrary LNAI).

Vol. 3861: J. Dix, S.J. Hegner (Eds.), Foundations of In-
formation and Knowledge Systems. X, 331 pages. 2006.

Vol. 3860: D. Pointcheval (Ed.), Topics in Cryptology —
CT-RSA 2006. XI, 365 pages. 2006.

Vol. 3858: A. Valdes, D. Zamboni (Eds.), Recent Advances
in Intrusion Detection. X, 351 pages. 2006.

Vol. 3857: M.P.C. Fossorier, H. Imai, S. Lin, A. Poli
(Eds.), Applied Algebra, Algebraic Algorithms and Error-
Correcting Codes. XI, 350 pages. 2006.

Vol. 3855: E. A. Emerson, K.S. Namjoshi (Eds.), Verifi-
cation, Model Checking, and Abstract Interpretation. XI,
443 pages. 2005.

Vol. 3854: 1. Stavrakakis, M. Smirnov (Eds.), Autonomic
Communication. XIII, 303 pages. 2006.

Vol. 3853: A.J. Ijspeert, T. Masuzawa, S. Kusumoto (Eds.),

Biologically Inspired Approaches to Advanced Informa-
tion Technology. XIV, 388 pages. 2006.

Vol. 3852: P.J. Narayanan, S.K. Nayar, H.-Y. Shum (Eds.),
Computer Vision—ACCV 2006, Part II. XXXI, 977 pages.
2006.

Vol. 3851: P.J. Narayanan, S.K. Nayar, H.-Y. Shum (Eds.),
Computer Vision - ACCV 2006, Part I. XXXI, 973 pages.
2006.

Vol. 3850: R. Freund, G. Piun, G. Rozenberg, A. Salomaa
(Eds.), Membrane Computing. IX. 371 pages. 2006.

Vol. 3849: 1. Bloch, A. Petrosino, A.G.B. Tettamanzi
(Eds.), Fuzzy Logic and Applications. XIV, 438 pages.
2006. (Sublibrary LNAI).

Vol. 3848: J.-F. Boulicaut, L. De Raedt, H. Mannila (Eds.),
Constraint-Based Mining and Inductive Databases. X, 401
pages. 2006. (Sublibrary LNAI).

Vol. 3847: K.P. Jantke, A. Lunzer, N. Spyratos, Y. Tanaka
(Eds.), Federation over the Web. X, 215 pages. 2006. (Sub-
library LNATI).

Vol. 3846: H. J. van den Herik, Y. Bjornsson, N.S. Ne-

tanyahu (Eds.), Computers and Games. X1V, 333 pages.
2006.

Vol. 3845: J. Farré, 1. Litovsky, S. Schmitz (Eds.), Imple-
mentation and Application of Automata. XIII, 360 pages.
2006.

Vol. 3844:].-M. Bruel (Ed.), Satellite Events at the MoD-
ELS 2005 Conference. XIII, 360 pages. 2006.

Vol. 3843: P. Healy, N.S. Nikolov (Eds.), Graph Drawing.
XVII, 536 pages. 2006.

Vol. 3842: H.T. Shen, J. Li, M. Li, J. Ni, W. Wang (Eds.),
Advanced Web and Network Technologies, and Applica-
tions. XXVII, 1057 pages. 2006.

Vol. 3841: X. Zhou, J. Li, H.T. Shen, M. Kitsuregawa, Y.
Zhang (Eds.), Frontiers of WWW Research and Develop-
ment - APWeb 2006. XXIV, 1223 pages. 2006.

Vol. 3840: M. Li, B. Boehm, L.J. Osterweil (Eds.), Uni-
fying the Software Process Spectrum. XVI, 522 pages.
2006.

Vol. 3839: J.-C. Fillidtre, C. Paulin-Mohring, B. Werner

(Eds.), Types for Proofs and Programs. VIII, 275 pages.
2006.

Vol. 3838: A. Middeldorp, V. van Oostrom, F. van Raams-
donk, R. de Vrijer (Eds.), Processes, Terms and Cycles:
Steps on the Road to Infinity. XVIII, 639 pages. 2005.

Vol. 3837: K. Cho, P. Jacquet (Eds.), Technologies for
Advanced Heterogeneous Networks. IX, 307 pages. 2005.

Vol. 3836: J.-M. Pierson (Ed.), Data Management in Grids.
X, 143 pages. 2006.

Vol. 3835: G. Sutcliffe, A. Voronkov (Eds.), Logic for Pro-
gramming, Artificial Intelligence, and Reasoning. XIV,
744 pages. 2005. (Sublibrary LNAI).

Vol. 3834: D.G. Feitelson, E. Frachtenberg, L. Rudolph,
U. Schwiegelshohn (Eds.), Job Scheduling Strategies for
Parallel Processing. VIII, 283 pages. 2005.

Vol. 3833: K.-J. Li, C. Vangenot (Eds.), Web and Wireless
Geographical Information Systems. XI, 309 pages. 2005.

Vol. 3832: D. Zhang, A.K. Jain (Eds.), Advances in Bio-
metrics. XX, 796 pages. 2005.

Vol. 3831: J. Wiedermann, G. Tel, J. Pokorny, M.
Bielikov4, J. Stuller (Eds.), SOFSEM 2006: Theory and
Practice of Computer Science. XV, 576 pages. 2006.

Vol. 3830: D. Weyns, H. V.D. Parunak, F. Michel (Eds.),
Environments for Multi-Agent Systems IL. VIII, 291
pages. 2006. (Sublibrary LNAI).

Vol. 3829: P. Pettersson, W. Yi (Eds.), Formal Modeling
and Analysis of Timed Systems. IX, 305 pages. 2005.

Vol. 3828: X. Deng, Y. Ye (Eds.), Internet and Network
Economics. XVII, 1106 pages. 2005.

Vol. 3827: X. Deng, D.-Z. Du (Eds.), Algorithms and
Computation. XX, 1190 pages. 2005.

Vol. 3826: B. Benatallah, F. Casati, P. Traverso (Eds.),
Service-Oriented Computing - ICSOC 2005. XVIII, 597
pages. 2005.

Vol. 3824: L.T. Yang, M. Amamiya, Z. Liu, M. Guo, FJ.
Rammig (Eds.), Embedded and Ubiquitous Computing —
EUC 2005. XXIII, 1204 pages. 2005.

Vol. 3823: T. Enokido, L. Yan, B. Xiao, D. Kim, Y. Dai,
L.T. Yang (Eds.), Embedded and Ubiquitous Computing
— EUC 2005 Workshops. XXXII, 1317 pages. 2005.

Vol. 3822: D. Feng, D. Lin, M. Yung (Eds.), Information
Security and Cryptology. XII, 420 pages. 2005.

Vol. 3821: R. Ramanujam, S. Sen (Eds.), FSTTCS 2005:
Foundations of Software Technology and Theoretical
Computer Science. XIV, 566 pages. 2005.

Vol. 3820: L.T. Yang, X.-s. Zhou, W. Zhao, Z. Wu, Y. Zhu,
M. Lin (Eds.), Embedded Software and Systems. XX VIII,
779 pages. 2005.

Vol. 3819: P. Van Hentenryck (Ed.), Practical Aspects of
Declarative Languages. X, 231 pages. 2005.

Vol. 3818: S. Grumbach, L. Sui, V. Vianu (Eds.), Advances
in Computer Science — ASIAN 2005. XIII, 294 pages.
2005.

Vol. 3817: M. Faundez-Zanuy, L. Janer, A. Esposito, A.
Satue-Villar, J. Roure, V. Espinosa-Duro (Eds.), Nonlinear
Analyses and Algorithms for Speech Processing. XII, 380
pages. 2006. (Sublibrary LNAI).

Vol. 3816: G. Chakraborty (Ed.), Distributed Computing
and Internet Technology. XXI, 606 pages. 2005.

Vol. 3815: E.A. Fox, E.J. Neuhold, P. Premsmit, V. Wu-
wongse (Eds.), Digital Libraries: Implementing Strategies
and Sharing Experiences. XVII, 529 pages. 2005.

Vol. 3814: M. Maybury, O. Stock, W. Wahlster (Eds.), In-
telligent Technologies for Interactive Entertainment. XV,
342 pages. 2005. (Sublibrary LNAI).

Vol. 3813: R. Molva, G. Tsudik, D. Westhoff (Eds.), Se-
curity and Privacy in Ad-hoc and Sensor Networks. VIII,
219 pages. 2005.

Vol. 3812: C. Bussler, A. Haller (Eds.), Business Process
Management Workshops. XIII, 520 pages. 2006.

Vol. 3811: C. Bussler, M.-C. Shan (Eds.), Technologies
for E-Services. VIII, 127 pages. 2006.

Vol. 3810: Y.G. Desmedt, H. Wang, Y. Mu, Y. Li (Eds.),
Cryptology and Network Security. XI, 349 pages. 2005.

Vol. 3809: S. Zhang, R. Jarvis (Eds.), AT 2005: Advances
in Artificial Intelligence. XXVII, 1344 pages. 2005. (Sub-
library LNAI).

Vol. 3808: C. Bento, A. Cardoso, G. Dias (Eds.), Progress
in Artificial Intelligence. XVIII, 704 pages. 2005. (Subli-
brary LNAI).

Vol. 3807: M. Dean, Y. Guo, W. Jun, R. Kaschek, S. Kr-
ishnaswamy, Z. Pan, Q.Z. Sheng (Eds.), Web Information
Systems Engineering — WISE 2005 Workshops. XV, 275
pages. 2005.

Table of Contents

Invited Talk

Using Dependent Types to Port Type Systems to Low-Level Languages
George Neculaooou i

Program Analysis

Interprocedural Dataflow Analysis in the Presence of Large Libraries
Atanas Rountev, Scott Kagan, Thomas Marlowe

Efficient Flow-Sensitive Interprocedural Data-Flow Analysis in the
Presence of Pointers
Teck Bok Tok, Samuel Z. Guyer, Calvin Lin......................

Path-Based Reuse Distance Analysis)
Changpeng Fang, Steve Carr, Soner Onder, Zhenlin Wang

Context-Sensitive Points-to Analysis: Is It Worth It?
Ondrej Lhotdk, Laurie Hendren

Dynamic Analysis

Selective Runtime Memory Disambiguation in a Dynamic Binary
Translator
Bolei Guo, Youfeng Wu, Cheng Wang, Matthew J. Bridges,
Guilherme Ottoni, Neil Vachharajani, Jonathan Chang,
David I AUGUSE .. oo

Accurately Choosing Execution Runs for Software Fault Localization
Liang Guo, Abhik Roychoudhury, Tao Wang

Tool Demonstrations

Demonstration: On-Line Visualization and Analysis of Real-Time
Systems with TuningFork
David F. Bacon, Perry Cheng, Daniel Frampton, David Grove,
Matthias Hauswirth, V.T. Rajanco i,

XII Table of Contents

Data-Flow Analysis as Model Checking Within the JABC
Anna-Lena Lamprecht, Tiziana Margaria, Bernhard Steffen

The CGiS Compiler—A Tool Demonstration
Philipp Lucas, Nicolas Fritz, Reinhard Wilhelm

Optimization

Loop Transformations in the Ahead-of-Time Optimization of Java
Bytecode
Simon Hammond, David Lacey i,

Hybrid Optimizations: Which Optimization Algorithm to Use?
John Cavazos, J. FEliot B. Moss, Michael F.P. O’Boyle

A Fresh Look at PRE as a Maximum Flow Problem
Jingling Xue, Jens Knoop

Performance Characterization of the 64-bit x86 Architecture from
Compiler Optimizations’ Perspective
Jaek Ln, Youleng Wikiw: cns swsws vosms cwsms sms amvms oz 45 155 smip

Code Generation

Lightweight Lexical Closures for Legitimate Execution Stack Access
Masahiro Yasugi, Tasuku Hiraishi, Taiichi Yuasa

Polyhedral Code Generation in the Real World
Nicolas Vasilache, Cédric Bastoul, Albert Cohen

Iterative Collective Loop Fusion
T.J. Ashby, M.F.P. O’Boylecoiuiiiiiiiiiinianan.

Converting Intermediate Code to Assembly Code Using Declarative

Machine Descriptions
Jodo Dias, Norman RamsSey

Register Allocation

SARA: Combining Stack Allocation and Register Allocation
V. Krishna Nandivada, Jens Palsberg

Register Allocation for Programs in SSA-Form
Sebastian Hack, Daniel Grund, Gerhard Goos

Table of Contents

Enhanced Bitwidth-Aware Register Allocation
Ragkishore Barik, Vivek Sarkarl

AUthoOr TndeX . .ot

XIIT

Using Dependent Types to Port Type Systems
to Low-Level Languages

George Necula

University of California, Berkeley, USA

A major difficulty when trying to apply high-level type systems to low-level lan-
guages is that we must reason about relationships between values. For example,
in a low-level implementation of object-oriented dynamic dispatch we must en-
sure that the “self” argument passed to the method is the same object from
whose virtual table we fetched the pointer to the method. Similarly, in low-level
code using arrays we must relate the array address with the variables that store
the bounds. We show for several examples that the high-level type system must
be extended with dependent types in order to reason about low-level code. The
novel feature in this use of dependent types is that they can be used in presence
of pointers and mutation.

We discuss three case studies. First, we show a variant of bytecode verification
that operates on the assembly language output of a native code compiler. Second,
we show how to express and check at the assembly level the invariants enforced by
CCured, a source-level instrumentation tool that guarantees type safety in legacy
C programs. Finally, we show that dependent types are a natural specification
mechanism for enforcing common safe programming practices in C programs.
We have used this mechanism to efficiently enforce memory safety for several
Linux device drivers.

A. Mycroft and A. Zeller (Eds.): CC 2006, LNCS 3923, p. 1, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Interprocedural Dataflow Analysis in the
Presence of Large Libraries

Atanas Rountev!, Scott Kagan!, and Thomas Marlowe?

1 Ohio State University, Columbus, OH, USA
2 Seton Hall University, South Orange, NJ, USA

Abstract. Interprocedural dataflow analysis has a large number of uses
for software optimization, maintenance, testing, and verification. For
software built with reusable components, the traditional approaches for
whole-program analysis cannot be used directly. This paper considers
component-level analysis of a main component which is built on top of a
pre-existing library component. We propose an approach for computing
summary information for the library and for using it to analyze the main
component. The approach defines a general theoretical framework for
dataflow analysis of programs built with large extensible library compo-
nents, using pre-computed summary functions for library-local execution
paths. Our experimental results indicate that the cost of component-level
analysis could be substantially lower than the cost of the correspond-
ing whole-program analysis, without any loss of precision. These results
present a promising step towards practical analysis techniques for large-
scale software systems built with reusable components.

1 Introduction

Interprocedural dataflow analysis is a widely-used form of static program anal-
ysis. Dataflow analysis techniques play an important role in tools for perfor-
mance optimization, program understanding and maintenance, software testing,
and verification of program properties. Unfortunately, the use of interprocedural
dataflow analysis in real-world software tools is hindered by several serious chal-
lenges. One of the central problems is the underlying analysis model implicit in
most of the work in this area. The key feature of this model is the assumption
of a whole-program analysis for a homogeneous program. Interprocedural whole-
program analysis takes as input an entire program and produces information
about the behavior of that program. This classical dataflow analysis model [28)
assumes that the source code for the whole program is available for analysis.

Modern software presents serious challenges for this traditional model. For
example, systems often contain reusable components. Whole-program analysis
assumes that it is appropriate to analyze the source code of the entire program
as a single unit. However, for software built with reusable components,

— Some program components may be available only in binary form, without
source code, which makes whole-program analysis impossible.

A. Mycroft and A. Zeller (Eds.): CC 2006, LNCS 3923, pp. 2-16, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Interprocedural Dataflow Analysis in the Presence of Large Libraries 3

— It is necessary to re-analyze a component every time this component is used
as part of a new system. For example, a library may be used in many appli-
cations, and whole-program analysis requires re-analysis of this library from
scratch in the context of each such application.

— Code changes in one component typically require complete re-analysis of the
entire application.

— The cost of whole-program analysis is often dominated by the analysis of
the underlying large library components (e.g., standard libraries, middle-
ware, frameworks, etc.). To achieve practical cost, analysis designers are
often forced to use semantic approximations that reduce the precision and
usefulness of the analysis solution.

These issues limit the usefulness of many existing analyses. In some cases the
analyses cannot be used at all. Even if they are possible, the analyses have to
be relatively approximate in order to scale for large-scale software with hun-
dreds of thousands (or even millions) lines of code. Such approximations lead to
under-optimized code in optimizing compilers, spurious dependencies in program
understanding tools, false warnings in verification tools, and infeasible coverage
requirements in testing tools.

Component-Level Dataflow Analysis. In this paper we consider a model of in-
terprocedural dataflow analysis which we refer to as component-level analysis
(CLA). A component-level analysis processes the source code of a single program
component, given some information about the environment of this component.
The general CLA model is discussed in [20] (without any formalisms, proofs,
or experiments.) Here, we focus on one particular scenario for CLA: analysis of
a main component Main which is built on top of a library component Lib. In
this scenario, the source code of Lib is pre-analyzed independently of any library
clients. This pre-analysis produces summary information for Lib. This informa-
tion is used subsequently for component-level analysis of the source code of any
main component built on top of Lib.

This form of CLA has significant real-world relevance. In particular, there are
large standard libraries that are associated with languages such as C++, Java,
and C#. A library could be considered as component Lib, while a program writ-
ten on top of it is component Main. CLA allows (1) analysis of Main without
the source code of Lib, by using the summary information, (2) reduction in the
cost of analyzing Main, because the source code of Lib has already been ana-
lyzed, (3) reuse of the summary information across multiple main components,
in order to avoid repeated re-analysis of Lib, and (4) reduced work to handle
code changes, since changes in Main do not require re-analysis of Lib.

Contributions. The main goal of our work is to define general theoretical ma-
chinery for designing component-level analyses of Main. We achieve this goal by
generalizing the “functional approach” to whole-program analysis due to Sharir
and Pnueli [28]. The key technical issue that this generalization needs to address
is the lack of complete call graph information when performing pre-analysis of a
library. An example of this problem is the presence of callbacks from the library
to the main component. The contributions of our work are:

