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Foreword

ETAPS 2006 was the ninth instance of the European Joint Conferences on The-
ory and Practice of Software. ETAPS is an annual federated conference that
was established in 1998 by combining a number of existing and new confer-
ences. This year it comprised five conferences (CC, ESOP, FASE, FOSSACS,
TACAS), 18 satellite workshops (ACCAT, AVIS, CMCS, COCV, DCC, EAAIL
FESCA, FRCSS, GT-VMT, LDTA, MBT, QAPL, SC, SLAP, SPIN, TERM-
GRAPH, WITS and WRLA), two tutorials, and seven invited lectures (not in-
cluding those that were specific to the satellite events). We received over 550
submissions to the five conferences this year, giving an overall acceptance rate
of 23%, with acceptance rates below 30% for each conference. Congratulations
to all the authors who made it to the final programme! I hope that most of the
other authors still found a way of participating in this exciting event and I hope
you will continue submitting.

The events that comprise ETAPS address various aspects of the system de-
velopment process, including specification, design, implementation, analysis and
improvement. The languages, methodologies and tools which support these ac-
tivities are all well within its scope. Different blends of theory and practice
are represented, with an inclination towards theory with a practical motivation
on the one hand and soundly based practice on the other. Many of the issues
involved in software design apply to systems in general, including hardware sys-
tems, and the emphasis on software is not intended to be exclusive.

ETAPS is a loose confederation in which each event retains its own iden-
tity, with a separate programme committee and proceedings. Its format is open-
ended, allowing it to grow and evolve as time goes by. Contributed talks and
system demonstrations are in synchronised parallel sessions, with invited lectures
in plenary sessions. Two of the invited lectures are reserved for “unifying” talks
on topics of interest to the whole range of ETAPS attendees. The aim of cram-
ming all this activity into a single one-week meeting is to create a strong magnet
for academic and industrial researchers working on topics within its scope, giving
them the opportunity to learn about research in related areas, and thereby to
foster new and existing links between work in areas that were formerly addressed
in separate meetings.

ETAPS 2006 was organized by the Vienna University of Technology, in co-
operation with

- European Association for Theoretical Computer Science (EATCS);

- European Association for Programming Languages and Systems (EAPLS);

- European Association of Software Science and Technology (EASST);

- Institute for Computer Languages, Vienna,

- Austrian Computing Society;

- The Biirgermeister der Bundeshauptstadt Wien;



VI Foreword

- Vienna Convention Bureau,
- Intel.

The organizing team comprised:

Chair: Jens Knoop

Local Arrangements: Anton Ertl
Publicity: Joost-Pieter Katoen
Satellite Events: Andreas Krall
Industrial Liaison: Eva Kiihn

Liaison with City of Vienna: Ulrich Neumerkel
Tutorials Chair, Website: Franz Puntigam
Website: Fabian Schmied

Local Organization, Workshops Proceedings: Markus Schordan

Overall planning for ETAPS conferences is the responsibility of its Steering
Committee, whose current membership is:

Perdita Stevens (Edinburgh, Chair), Luca Aceto (Aalborg and Reykjavik),
Rastislav Bodik (Berkeley), Maura Cerioli (Genova), Matt Dwyer (Nebraska),
Hartmut Ehrig (Berlin), José Fiadeiro (Leicester), Marie-Claude Gaudel (Paris),
Roberto Gorrieri (Bologna), Reiko Heckel (Leicester), Michael Huth (London),
Joost-Pieter Katoen (Aachen), Paul Klint (Amsterdam), Jens Knoop (Vienna),
Shriram Krishnamurthi (Brown), Kim Larsen (Aalborg), Tiziana Margaria (G6-
ttingen), Ugo Montanari (Pisa), Rocco de Nicola (Florence), Hanne Riis Nielson
(Copenhagen), Jens Palsberg (UCLA), Mooly Sagiv (Tel-Aviv), Joao Saraiva
(Minho), Don Sannella (Edinburgh), Vladimiro Sassone (Southampton), Helmut
Seidl (Munich), Peter Sestoft (Copenhagen), Andreas Zeller (Saarbriicken).

I would like to express my sincere gratitude to all of these people and or-
ganizations, the programme committee chairs and PC members of the ETAPS
conferences, the organizers of the satellite events, the speakers themselves, the
many reviewers, and Springer-Verlag for agreeing to publish the ETAPS pro-
ceedings. Finally, I would like to thank the organizing chair of ETAPS 2006,
Jens Knoop, for arranging for us to have ETAPS in the most beautiful city of
Vienna.

Edinburgh, January 2006 Perdita Stevens
ETAPS Steering Committee Chair



Preface

The Program Committee is pleased to present the proceedings of the 15th In-
ternational Conference on Compiler Construction (CC 2006) which was held on
March 30 and 31 in Vienna, Austria, as part of the Joint European Conference
on Theory and Practice of Software (ETAPS 2006). '

Traditionally, CC had been a forum for research on compiler construction.
Starting last year, CC has expanded its remit to include a broader spectrum
of programming tools, from analysis tools to compilers to virtual machines to
debuggers. The submissions we received again reflected the new scope of the
conference.

The Program Committee received 71 submissions. From these, 17 research
papers and 3 tool demonstrations were selected, giving an overall acceptance
rate of 28%.

The Program Committee included 16 members representing 9 countries on 3
continents. Each member reviewed roughly 16 papers and each paper received
at least three reviews. In all, 45 external reviewers participated in the review
process. Committee members were allowed to submit papers; these would be
screened by four reviewers. The Program Committee met on December 5 in
London for a one-day meeting. All but three of the members attended the
meeting.

Many people contributed to the success of this conference. First of all, we
would like to thank the authors for all the care they put into their submis-
sions. Our gratitude also goes to the Program Committee members and external
reviewers for their substantive and insightful reviews. Intel generously funded
parts of the Program Committee meeting. Special thanks go to Jay McCarthy
for maintaining the Continue Conference Server.

CC 2006 was made possible by the ETAPS Steering Committee, in particular
by the hard work of Jens Knoop in the role of ETAPS 2006 Organizing Commit-
tee Chair, and by that of Anton Ertl in taking care of the local arrangements. We
would also like to thank Reinhard Wilhelm and Ras Bodik, recent CC chairs, for
on-going helpful discussions about CC’s future direction. Finally, we are grateful
to George Necula for accepting the invitation to give a keynote talk.

January 2006 Alan Mycroft and Andreas Zeller
CC 2006 Program Chairs
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Using Dependent Types to Port Type Systems
to Low-Level Languages

George Necula

University of California, Berkeley, USA

A major difficulty when trying to apply high-level type systems to low-level lan-
guages is that we must reason about relationships between values. For example,
in a low-level implementation of object-oriented dynamic dispatch we must en-
sure that the “self” argument passed to the method is the same object from
whose virtual table we fetched the pointer to the method. Similarly, in low-level
code using arrays we must relate the array address with the variables that store
the bounds. We show for several examples that the high-level type system must
be extended with dependent types in order to reason about low-level code. The
novel feature in this use of dependent types is that they can be used in presence
of pointers and mutation.

We discuss three case studies. First, we show a variant of bytecode verification
that operates on the assembly language output of a native code compiler. Second,
we show how to express and check at the assembly level the invariants enforced by
CCured, a source-level instrumentation tool that guarantees type safety in legacy
C programs. Finally, we show that dependent types are a natural specification
mechanism for enforcing common safe programming practices in C programs.
We have used this mechanism to efficiently enforce memory safety for several
Linux device drivers.
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Abstract. Interprocedural dataflow analysis has a large number of uses
for software optimization, maintenance, testing, and verification. For
software built with reusable components, the traditional approaches for
whole-program analysis cannot be used directly. This paper considers
component-level analysis of a main component which is built on top of a
pre-existing library component. We propose an approach for computing
summary information for the library and for using it to analyze the main
component. The approach defines a general theoretical framework for
dataflow analysis of programs built with large extensible library compo-
nents, using pre-computed summary functions for library-local execution
paths. Our experimental results indicate that the cost of component-level
analysis could be substantially lower than the cost of the correspond-
ing whole-program analysis, without any loss of precision. These results
present a promising step towards practical analysis techniques for large-
scale software systems built with reusable components.

1 Introduction

Interprocedural dataflow analysis is a widely-used form of static program anal-
ysis. Dataflow analysis techniques play an important role in tools for perfor-
mance optimization, program understanding and maintenance, software testing,
and verification of program properties. Unfortunately, the use of interprocedural
dataflow analysis in real-world software tools is hindered by several serious chal-
lenges. One of the central problems is the underlying analysis model implicit in
most of the work in this area. The key feature of this model is the assumption
of a whole-program analysis for a homogeneous program. Interprocedural whole-
program analysis takes as input an entire program and produces information
about the behavior of that program. This classical dataflow analysis model [28)
assumes that the source code for the whole program is available for analysis.

Modern software presents serious challenges for this traditional model. For
example, systems often contain reusable components. Whole-program analysis
assumes that it is appropriate to analyze the source code of the entire program
as a single unit. However, for software built with reusable components,

— Some program components may be available only in binary form, without
source code, which makes whole-program analysis impossible.

A. Mycroft and A. Zeller (Eds.): CC 2006, LNCS 3923, pp. 2-16, 2006.
© Springer-Verlag Berlin Heidelberg 2006



Interprocedural Dataflow Analysis in the Presence of Large Libraries 3

— It is necessary to re-analyze a component every time this component is used
as part of a new system. For example, a library may be used in many appli-
cations, and whole-program analysis requires re-analysis of this library from
scratch in the context of each such application.

— Code changes in one component typically require complete re-analysis of the
entire application.

— The cost of whole-program analysis is often dominated by the analysis of
the underlying large library components (e.g., standard libraries, middle-
ware, frameworks, etc.). To achieve practical cost, analysis designers are
often forced to use semantic approximations that reduce the precision and
usefulness of the analysis solution.

These issues limit the usefulness of many existing analyses. In some cases the
analyses cannot be used at all. Even if they are possible, the analyses have to
be relatively approximate in order to scale for large-scale software with hun-
dreds of thousands (or even millions) lines of code. Such approximations lead to
under-optimized code in optimizing compilers, spurious dependencies in program
understanding tools, false warnings in verification tools, and infeasible coverage
requirements in testing tools.

Component-Level Dataflow Analysis. In this paper we consider a model of in-
terprocedural dataflow analysis which we refer to as component-level analysis
(CLA). A component-level analysis processes the source code of a single program
component, given some information about the environment of this component.
The general CLA model is discussed in [20] (without any formalisms, proofs,
or experiments.) Here, we focus on one particular scenario for CLA: analysis of
a main component Main which is built on top of a library component Lib. In
this scenario, the source code of Lib is pre-analyzed independently of any library
clients. This pre-analysis produces summary information for Lib. This informa-
tion is used subsequently for component-level analysis of the source code of any
main component built on top of Lib.

This form of CLA has significant real-world relevance. In particular, there are
large standard libraries that are associated with languages such as C++, Java,
and C#. A library could be considered as component Lib, while a program writ-
ten on top of it is component Main. CLA allows (1) analysis of Main without
the source code of Lib, by using the summary information, (2) reduction in the
cost of analyzing Main, because the source code of Lib has already been ana-
lyzed, (3) reuse of the summary information across multiple main components,
in order to avoid repeated re-analysis of Lib, and (4) reduced work to handle
code changes, since changes in Main do not require re-analysis of Lib.

Contributions. The main goal of our work is to define general theoretical ma-
chinery for designing component-level analyses of Main. We achieve this goal by
generalizing the “functional approach” to whole-program analysis due to Sharir
and Pnueli [28]. The key technical issue that this generalization needs to address
is the lack of complete call graph information when performing pre-analysis of a
library. An example of this problem is the presence of callbacks from the library
to the main component. The contributions of our work are:



