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INTRODUCTION

In the last few years an ever increasing interest has been shown by economists
and mathematicians in deepening’ and multiplying the many links already existing
between their areas of research. Economists are looking for more advanced mathema-
tical techniques to be applied to the analysis of formal models of greater complexi-
ty; mathematicians have found in problems from economics the stimulus to start new
directions of study and to explore different trends within their theories.

The principal aim of the CIME Session on '"Mathematical Economics" held at
Villa La Querceta in Montecatini Terme, Italy, from June 25 to July 3 1986, has
been the one of offering scholars from the two fields an opportunity of meeting and
working together.

The common base of discussion was provided by four survey courses - whose
texts are contained in the present volume - which were given by I. Ekeland "Some
Variational Methods Arising from Mathematical Economics', A. Mas-Colell "Differen-
tiability Techniques in the Theory of General Economic Equilibrium", J. Scheinkman
"Dynamic General Equilibrium Models" and S. Zamir "Topics in Non Cooperative Game
Theory".

Even if Ekeland's and Zamir's lectures were more 'mathematically oriented",
whereas Mas-Colell and Scheinkman put a greater emphasis on the economical con-
tents, in every class, the focus of the discussion was placed over the connections
naturally arising between problems from the two sciences.

It's our feeling that the Session was very successful in reaching its intended
objectives, and we wish to express our gratitude to the four speakers, for the
extremely high quality of the lectures delivered and the stimulating atmosphere
they were able to create in Montecatini, and to all the participants, who supported
the meeting with their interest and their lively discussions.

Our final thanks go to the CIME Scientific Committee for the invitation to

organize the courses and to the CIME staff for its very effective job.

Antonio Ambrosetti
Franco Gori
Roberto Lucchetti
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SOME VARIATIONAL PROBLEMS ARISING FROM

MATHEMATICAL ECONOMICS.

Ivar EKELAND, CEREMADE, Paris.

I. Ramsey problems.

Many intertemporal problems in mathematical economics can be written as

infinite-horizon optimization problems

Sup J e_(St u(t,x,x) dt
o
P (x(t),x(t)) € At a.e.

x(0) = X and X € L{oc
Here & > 0 1is the discount rate and u(t,*,*) the utility function, so
that the integral to be maximized is the aggregated utility over time of the
path x : [0,x) +R" . One usually thinks of x(t) as the capital stock at
time t , so that i(t) is the rate of (dis-) investment. The set At CR™ xR"
embodies the various constraints (production technology, availability of

resources) which the system has to satisfy.

This model contains seemingly more complicated ones. For instance,-if one

introduces the consumption c(t) , so that the criterion becomes

00

=0t
J e 8 u(t,c) dt
o
and the constraints

(x(t),x(t),c(t)) € B, a.e.,

one would simply define A = {(x,y) | (x,y,c) € B, for some ¢} , and maximize
u(t,*) over all ¢ such that (x,y,c) € Bt . Assuming the maximum is attained

at a single point E(t,x,y) , and setting



u(t,a,y) = u(t,c(t,x,y))

brings the problem into the standard form (P) .

The first model of this kind is due to Ramsey towards the end of the last
century. In the years of plenty - the sixties - very many variants of this basic
model appeared, emphasizing various aspects of the theory of economic growth. We
refer to the books by Intriligator [In] and by Arrow and Kurz [AK] for an in-
troduction to this kind of literature. Unfortunately, none of the mathematical
problems raised by the Ramsey problem (P) were adequately treated, or even
realized at the time. A notable exception is the special issue of JET [1976] ,

which gives the state of the art until that time.

The main problems connected with (P) are the following

(1) When does (P) have a solution ? In other words, what conditions on

u and At are needed for an optimal path x to exist ?

(2) What are the necessary conditions for optimality ? In other words,
does x satisfy some version of the Euler-Lagrange equation in (0,®) , and

what boundary condition must ;(t) satisfy when t - « ?

(3) What is the behaviour of ;(t) when t - o ? Does it converge to

some equilibrium state x(®) , or can it oscillate more or less wildly ?

I don't know how to answer these questions in the full generality of
problem (P). I will therefore, as the need arises, restrict myself to simpler
models where I know the answer, and leave the general case to others. As a
first - and considerable - simplification, let us assume that the problem is

autonomous, i.e. t does not appear explicitely. It becomes
-8
Sup J e t u(x,x) dt
o
P) (x,x) € A

x(0) = X



I.1 Existence.

We assume the following :

(H1) u :IR2n +R U {—} is upper semi-continuous and

A CIR2I1 is closed.

(H2) ¥ x ER" 5 y > u(x,y) is concave
¥ x ER" s Ax = {y | (x,y) € A} is convex.

J¢ :[0,°) >R, with ‘p(t)t_l—>+°Q when t - o |

(H3)
such that u(x,y) < -¢(yl) for all (x,y) € A .

THM. Assume (Hl),(H2),(H3). Then (P) has at least one solution.
Proof. We refer to the books [ET, [ C ] or [ G ] for a proof in the general

case. The proof in [EVd contains a mistake.

Let us just sketch the proof in the case where the criterion and the

constraints split

u(x,y) = ul(x) + u2(y) and A= A] X A2

Then u, is concave, uz(y) <-g¢(yl) , and U is bounded from above.

Take a maximizing sequence :
® -5t .
Jo e [ul(xn)+u2(xn) ] dt -+ Sup

Then there is some large constant C such that :

00

c < J: e, ) dt < - L ez he®t ae .

Since [0,®) endowed with e-étdt has finite measure, we may apply the

Dunford-Pettis criterion for weak compactness in L , and we conclude that



the sequence in has a weakly convergent subsequence in Ll(O,OO ;e_étdt) .

Denote this subsequence by X again, and its limit by vy :

X >y in Ll(O,w; e—dtdt)

Set

bl
~
(ma
~
]

C
X, * J y(s) ds
o

so that y = %f , and xn(t) > x(t) uniformly on compact subsets of [ 0,»)

Using Fatou's lemma, we have

00

lim sup J e_atul(xn(t)) dt < J e_étu](;(t)) dt
n > w o o

{oe]
The map y > J e_étuz(y(t)) dt 1is concave and upper semicontinuous.
o

By the Hahn-Banach theorem, it must also be weakly u.s.c. and therefore

o dx o -
lim sup J e Gtuz[ifgq dt < J e 6tu2{g§} dt
o

n > ©

Adding up, we get

[0 e_(St {ul(;) + uz[g%J] dt = Sup

All we have to check now is that X is admissible, that is, =x(t) € A,

and %% (t) € A, for almost every t . This follows easily from the facts that

xn(t) +> x(t) pointwise and A1 is closed

dxn dx 1, -
4t T O weakly in L (e

6td
t

t) and A2 is convex closed.
]

Note that the result holds also in the general (nonautonomous) case, as
the proofs show. Note also that convexity is required with respect to the last

variable x only.



I.2 Euler-Lagrange.

The derivation of necessary conditions for optimality, including some
version of the Euler-Lagrange equations, requires an a priori estimates : it
dx . .
I 1S uniformly
bounded on compact intervals of [0,©) , before anything further can be said.

must first be shown that x is locally Lipschitz, that is,

This delicate point is sadly missing from the literature of the sixties and
seventies, although Tonelli had delved on it in his classical treatise [T ] of
1921-23 . Cesari resurrected it in his recent book [ < ], and it was taken up
again by Ball and Mizel [BHY], [BHM?], and later by Clarke and Vinter
[evi], [ev2].

THM. Assume u(x,y) 1is continuous and satisfies (H3). Let the slice

Ax = {y [ (x,y) € A} be closed and star-shaped with respect to the brigin,
for every x . Then, if x solves (P), for any T there will be some K> 0
such that

dx

O<t<T=’«E(t)“<K . L]

Proof. Pick T >0 . To simplify notations, write x instead of x .
Note first that x is uniformly bounded on [O0,T ] . Indeed, setting
inf ¢(t) = -c , we have :

t=0

T 00
J [o(lily+e Je St < j lo(Ily+e Je Stac
[o] (o]

< - Jm u(x,i)e_étdt + c/8
o
< 3 (emubx,0)

Since w(t)t_] > 4+ , it follows that x € Ll(O,T) , so that x(t) stays in

a bounded subset, say :

VAN
(ad
N
=

Ix(e)l < A for O



For any M > 0 large enough, we can define a change of time variable

s = og(t) by the conditions

lx(e)l if t€L

M

I = 1 if t €& LM

{t | Ix()l >M and 0<t <T}

o
]

Define xM(s) = X o o_l(s)

Let us first check that the path x is admissible, that is

M
(xM(s),iM(s)) € A for almost every s . If t & LM , we have (xM(s),iM(s)) =

= (x(t),x(t)) €EA . If tE€ Ly » we have, with s = o(t)
(5 (8) 13, (8)) = (x(8) , X(©IX(®I™H

which belongs to A , since Ax(t) is star-shaped with respect to the origin.

Since Xy is admissible, we must have

00

JO u(XM,iM)e_GS ds < Jo u(:n{,).()e_(St

dt

We may assume that u is non-positive (otherwise replace u(x,y) by

u(x,y)-c ). Set s = g(t) , so that s =t ; we have :

0 < o(t)-t < f (Ix(e)I-1) dt
LM

Writing s = o(t) in the preceding inequality, we get

0

it > J u(xy 0 o(t) , %, 0 0(t)) e"80(t)
(o]

St

[ u(x,i)e_ do(t)
o

00

> J (0 a(t) , %y 00(0) o Sk j—‘t’dc
(o]



Replacing Xy o 0 and iM o 0 by their value, we get

8t 4e > f u [x, x] Ixle 8 ae
L Il

J u(x,i)e_
L

Hence :

X] 151) e < o

X -

f [¢(||;||> +u [x,
Set Max {|u(x,y)| lxl <A and Iyl <1} = B . The preceding inequality
reads :
j [o(Ixl) - BIXI] ¢ ®F 4¢ < o
LM

which is wrong as soon as ¢("i")"iﬂ—l =B . This happens on L, when M is

large enough. u

Note that, by the preceding proof, if u(x,y) does not depend on x ,

then “%% (t)" <K on [O0,o) , that is, x 1is Lipschitz on the whole of R, .
More generally, if u depends on x and y , but Ix(t)l 1is bounded (by A )

on [0,+®) , then so is I%% (t)" (by K).

If u(x,y) 1is Cl , this a priori bound will enable us to differentiate

under the integral, and the Euler-Lagrange equations will follow.

THM. Assume u(x,y) is C] and satisfies (H3). Assume A 1is convex and

A 0 = AXJB 0 . Let x be an optimal path, and y an admissible path

such that, for some T >0 , we have y(t) = ;(t) if t2T, and H%%" <K
for t <T . Then

T - - -
du (= dx = Ju [= dx| [dx _ dx -3t
e fo [‘a? [x’a—t] G 5y [X’d_t] [EE E]] e de <0

Proof. We just write :

' - dx| -6t ’ = - dx dx dx -3t
< —_— - + - —_— e i
0 u [x, 1 ]e dt u[x h(x-x) , 1 h[d d ]]e dt

divide by h and let h » 0 . "



We shall discuss the interpretation of (E) in the particular case when
. n .
there are only state constraints : A=A, xR , with A convex and

1
Int A # @ .

If E(to) belongs to the interior of A then so does x(t) for

] ’
|t—to| <n , and (E) gives the familiar Euler-Lagrange equations

d (du (7 dx) -8t) _ du (o dx) -6t
dc oy (*’dt) © ox ¥ dt) ©

In the general case, the allowable variations y = x-x must satisfy

y(t) € T(;(t),A) (tangent cone to A at x(t) ) for every t . We then have

T
l
for every Lipschitz function y such that u(t) € T(x(t),A) , y(0) =0 and
dx ¢ (@ du [— dx

du (- dx
T L , so do == |x ’EEJ and 5;—[x ’HEJ R
and the inequality holds in fact for all y such that iy e L

du (o dx)  Bu ;o dx) dy| -6t 4
ox [x, dtJy "oy [x ’dt] Ef‘ € de < 0

y(t) =0 for t =T . Since

ox
1
€
t It » y(t)
€ T(x,t),A) , y(0) =0 and y(t) =0 for t =T . Integrate by parts

)

t - -
_ J du (;’ dx] e-és ds + §E.[;’ dx] e—ﬁt‘ dy it < o0
o

x dt oy dt dt
Set
t - -
_ du [= dx| -Gs du [- dx| -6t ©

f(t) = {O o [x, EE} e ds + 5;-(x ’dt] e € L

t o 1 T
Au(t) = J u(s)ds € C , with u €L (0,T) and J u(s)ds=0

o o
C = {vec®fo,T]) | v(t) € T(x(t),A) ¥ t}

Then C 1is a cone with non-empty interior in e . Letting C’L be its
polar cone, which is a subset of U , the set of all Radon measures on
[t st +n |

C'L = {u eu | f vdu<0 ¥%vE€ C}



we have the standard formula from convex analysis
- i *
(ale 1t = &

* =
So fE€A Cl . This means that there is some u € CL and some constant
2n
£EER such that :

£(t) - ¢ = udo,t 1) - Supp u

This relation is equivalent to the following (use the theory of desinte-
gration of measures) : there is a measurable vector-valued function
v : [0,0) >r" , with v(t) € N(;(t),A) (the normal cone to A at x(t) ),

and a scalar-valued non-negative Radon measure p on [0,®) , such that

£ -6
£(t) - E = f v(s) e °T dp(s)

o

In other words :
6t df _ 4 (3u (7 dx)) _ g du (o dx) du [z dx
ST dc |3y ¥’ dc 3y X dt x (X0 dc

v(t) dp

where the right-hand side is to be understood as a measure.

I.3 Transversality condition at infinity.

A very original approach to this problem is due to Ph, Michel [M ].
Here, I will favour the Ekeland-Scheinkman approach [ES], which has a broader

scope.
THM. Assume that

(1) u(x,y) is Cl , concave in y , and satisfies (H3).

(2) A 1is convex and AX ¢ = 0€ Ax .

Let x be a solution of problem (P), and let x be another admissible

path such that



