


INTRODUCTION
TO ALGOL

Technischen Hochschule

R. BAUMANN ’ Mathematisches Institut der
Miinchen, Germany

M. FELICIANO ‘ Mathematics Division
Oak Ridge National Laboratory

F. L. BAUER ) Mathematisches Institut der

Technischen Hochschule
K. SAMELSON Miinchen, Germany

PRENTICE-HALL, INC.
ENGLEWOOD CLIFFS, N.J.



© 1964 by
Prentice-Hall, Inc.
Englewood Cliffs, N.J.

All rights reserved.

No part of this book

may be reproduced in any form,

by mimeograph or any other means,
without permission in writing

from the publisher.

Library of Congress Catalog Card No. €4-10740
Printed in the United States of America

47782 C

Revised and extended version of the ALGOL Manual of the ALCOR Group
Original Title: ALGOL Manual der ALCOR Gruppe
Elektronische Rechenanlagen 3 (1961) No. 5, 206-212
3 (1961) No. 6, 259-265
4 (1962) No. 2, 71-86
Oldenbourg, Miinchen, 1962



INTRODUCTION
TO ALGOL



Prentice-Hall
Series in Automatic Computation

George Forsythe, editor

BAUMANN, FELICIANO, BAUER, SAMELSON, Introduction to Algol
DESMONDE, Computers and Their Uses

TRAUB, Iterative Methods for the Solution of Equations
VARGA, Matrix Iterative Analysis

PRENTICE-HALL INTERNATIONAL, INC., London
PRENTICE-HALL OF AUSTRALIA, PTY., LTD., Svdney
PRENTICE-HALL OF CANADA, LTD., Toronto
PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi
PRENTICE-HALL OF JAPAN, INC., Tokyo
PRENTICE-HALL DE MEXICO, S.A., Mexico City



PREFACE

ALGOL has found interest throwghout the& computing community. The
defining report® was not intended to be a primer, however, since its aim
of strict syntactic and semantic description did not allow this. This book is
intended to give a needed introduction to ALGOL, which should enable the
nonspecialist, for whose benefit ALGOL was primarily conceived, to write
clear and readable ALGOL programs from which a reasonable translator
will produce efficient machine codes.

Emphasis is on the normal use of the language rather than on artificial
examples exploiting tricky possibilities; ALGOL has these as does any other
language. The treatment of constructions which appear to have limited
practical importance has been minimized. The use of certain features which
would either conceal the form of a program or lead to machine code of
doubtful efficiency has been ignored. It may be said that this voluntary
restriction still leaves an extremely powerful language, acceptable to anyone
who wishes to use ALGOL as a tool and not just for ALGOL’s sake. A
potential user will not find it difficult to learn this “normal use” of ALGOL.
For didactic reasons we have not always kept to the syntactical formalities
of the ALGOL report. Punctuation marks required in the text have been
suppressed wherever they could be wrongly interpreted as ALGOL symbols.
It would be impossible to cover the scope of applications and difficulties by
means of selected examples; however, a small set of exercises has been
included in order to point out common programming mistakes and important
features of the language. An attempt was made to have Parts I and II
correspond to the forthcoming IFIP Subset ALGOL 60.

1 J. Backus, et al. Report on the algorithmic language ALGOL 60, Num. Math. 2,
106-36 (1960), Comm. Assoc. Comp. Mach. 3, 299-314 (1960).
J. Backus, et al. Revised Report on the Algorithmic Language ALGOL 60, Num.
Math. 4, 420-53 (1963), Comm. Assoc. Comp. Mach. 6, 1-17 (1963).
v



vi PREFACE

The ALCOR group,? a cooperative association primarily interested in the
construction of ALGOL compilers and on common hardware representations,
found it desirable to provide the users with a common manual thus promoting
program exchangeability. The manual arose from courses and lectures and
grew during practical experience using and compiling ALGOL. This book
results from revisions and extensions of that effort. In preparing it the
authors are greatly indebted to H. H. Bottenbruch, W. Gautschi, A. A. Grau,
A. S. Householder, M. Paul, H. Rutishauser, H. R. Schwarz, J. Stoer.
K. H. Wiehle, and Chr. Witzgall.

The defining report of full ALGOL 60 is included as an appendix. The
corrections and amendments recommended in April 1962 in Rome, Italy are
incorporated in this revised version, which is an officially approved [FIP
(International Federation for Information Processing) document.

MUNICH
OAK RIDGE

2 At present, members of the ALCOR group are:

Institut fiir Angewandte Mathematik der Eidensssischen Technischen Hochschule,
Ziirich

Rechenzentrum der Technischen Hochschule Miinchen

Institut fiir Angewandte Mathematik der Universitit Mainz

Institut fiir Praktische Mathematik der Technischen Hochschule Darmstadt

Siemens & Halske AG, Miinchen

Institut fiir Angewandte Mathematik der Universitdit Bonn

IBM-Forschungsgruppe Wien

Oak Ridge National Laboratory, Oak Ridge, Tennessee

Telefunken GmbH, Backnang

Zuse KG., Bad Hersfeld

Dr. Neher Laboratory of the Netherlands Postal and Telecommunications Services,
Leidschendam

Standard Electric Lorenz AG, Informatikwerk, Stuttgart

IBM-Deutschland, Sindelfingen

University of 1llinois, Digital Computer Laboratory, Urbana, Ill.

Eurocomp G.m.b.H., Minden

Remington Rand G.m.b.H., Frankfurt/Main

Control Data G.m.b.H., Frankfurt/Main

Purdue University, Department of Computer Sciences, Lafayette, Indiana

University of Western Ontario, Department of Computer Sciences, London, Canada

University of Maryland, Computer Science Center, College Park, Maryland

Rechenzentrum der Christian Albrecht Universitit Kiel

Kommission fiir Elektronisches Rechnen der Bayerischen Akademie der Wissenschaft,
Miinchen

Mathematisches Institut der Technischen Hochschule Miinchen

University of Michigan, Computing Center, Ann Arbor, Michigan



INTRODUCTION
TO ALGOL



CONTENTS

INTRODUCTION, 1

1. Mode of operation and capability of digital computers, 1.
2. Programming, 2.

3. Coding, 3.

4. Introductory examples, 3.

I ALGORITHMIC LANGUAGE ALGOL—
ELEMENTARY PART, 7

1 BASIC SYMBOLS
OF THE LANGUAGE, 9

I.1. The basic symbols, 9.

1.2. Numbers, 10.

1.3. Identifiers, 10.

1.4, Nonarithmetic symbols, 11.

2 ARITHMETIC
EXPRESSIONS, 12

2.1. Numerical expressions, 12.

2.2. Simple variables, 13.

2.3. Assignment of numerical values through expressions, 14.
2.4. Standard functions, 17.

2.5. Output, 18.

vii



viii TABLE OF CONTENTS

3 CONSTRUCTION
OF THE PROGRAM, 19

3.1. Simple statements, 19.
3.2. Compound statements, 19.
3.3. The program, 20.

3.4. Comments, 20.

3.5. Example, 21.

4 LOOPS, 22

4.1. Repetition, 22.

4.2. Subscripted variables, 24.
4.3. Iteration, 26.

4.4, Examples, 26.

5 THE CONDITIONAL
STATEMENT, 29

5.1. The conditional clause, 29.
5.2. The option, 30.

5.3. The alternative, 31.

5.4. Example, 32.

6 JUMPS, 34

6.1. Labels, 34.

6.2. The jump statement, 35.

6.3. Example, 35.

6.4. Another form of loop statement, 36.

II ALGORITHMIC LANGUAGE ALGOL—
FURTHER CONSTRUCTIONS, 39

7 BLOCK
STRUCTURE, 41

7.1. Nesting of blocks, 41.
7.2. Scope of validity of declarations, 43.



10

ITI
11

TABLE OF CONTENTS

7.3. Scope of validity of assigned values, 43.
7.4. Dynamic array declarations, 44.
7.5. Example, 45.

PROPOSITIONS
AND CONDITIONS, 47

8.1. Logical operations, 47.

8.2. Boolean variables, 50.

8.3. Formulation and use of conditions, 50.
8.4. Example, 52.

DESIGNATIONAL
EXPRESSIONS, 53

9.1. Definition of designational expressions, 53.
9.2. The switch declaration, 53.

9.3. The switch call, 54.

9.4. Nesting of switches, 54.

9.5. Another form of designational expression, 55.
9.6. Example, 56.

PROCEDURES, 57

10.1. The procedure declaration, 57.
10.2. The procedure call, 69.
10.3. Example, 72.

ALGORITHMIC LANGUAGE ALGOL—
ADVANCED CONCEPTS, 75

USES OF EXPRESSIONS
CALLED BY NAME, 77

11.1. Expressions as Arguments, 77.
11.2. Subscripted variables as results, 80.
11.3. Example, 80.

ix



X TABLE OF CONTENTS

1 2 PROCEDURES
CALLING THEMSELVES, 83
13 EXERCISES, 85

APPENDIX

REVISED REPORT ON
THE ALGORITHMIC LANGUAGE ALGOL 60, 97

INDEX, 139



INTRODUCTION

1. MODE OF OPERATION AND CAPABILITY OF DIGITAL COMPUTERS

The digital computer has astonishing capabilities as a tool for the experi-
mental scientist. It is immediately evident that the use of such a tool requires
thorough preparation. Accordingly, we shall first get briefly acquainted with
the scope of this preparatory work, after which we shall investigate the
methods of programming, that is, of setting up instructions for the machine.

The computer is no oracle. Without appropriate information it cannot
answer the question how good will the weather be on the next weekend. With
suitable preparation it is able to provide quantitative information which
enables meteorologists to predict the weather on the basis of meteorological
theories. The meteorologist bears the responsibility for it, and the prediction
is as good as the theory which served as basis for the computation.

Put another way: the machine can do nothing that the user in principle
could not also do; it can only do it faster. It gives no answers to vague
questions and can work only on a precise set of instructions. Much work,
however, is usually required to go from the original problem to be solved to
this set of instructions. This work begins with the mathematization of the
problem, that is, with the postulation of a mathematical model for the
phenomenon under consideration.

Normally, this mathematical model consists of a number of conditions
imposed on the variables which are used to describe essential parts of the
phenomenon. In the case of the weather we have atmospheric pressure,
temperature, humidity, wind velocity, etc. In general these conditions are not
amenable to direct computational treatment. Methods must be found which
permit calculation of values for the variables satisfying the conditions im-
posed on them. The development or selection of the method is the most
important part of handling the problem. This must be done with great care

since improper handling can yield completely misleading results.
I



2  INTRODUCTION SEC. 2

Generally only approximations are computed because the exact solutions
of the problem require numerically impractical passage to limits. Together
with the development of the procedure one must then give an account of the
goodness of the approximation. This usually clears the question whether the
approximation corresponds to an acceptable modification of the originally
conceived model.

An example of this is the use of difference methods to calculate the potential
and current distribution in a conducting metal plate. This corresponds to the
substitution of the plate by a grid of conducting wire. Sometimes the physicist
can easily determine whether this model is useful, whereas it is very hard to
establish strict mathematical limits to the error.

The preparation of the computational work starts once a method of
solution has been selected. In simple cases this work is completely trivial. If,
for instance, a formula given in a textbook or manual is to be evaluated, then
it is best to undertake the evaluation directly. When an assistant is to do the
work, he is given the book and the numbers needed for the computation. If
the problem is more complicated, one must write down what should be done.
The more there is to do, the more detailed the instructions, since less insight
into the problem can be expected from the assistant.

The computing machine is merely an assistant which has no insight into
what it is doing. Therefore, one must give it a set of instructions which clearly
describes the process to the smallest detail. The machine executes these
instructions word for word. In general it is not possible to predict what
happens when one gives the machine an instruction that is not part of its
limited repertoire. It may be that it stops working and points out that some-
thing is not in order. However, it may just as well continue working in a
nonsensical manner. Accordingly, preparing the working procedure (the
program) for a computing machine requires careful attention; in particular,
a precise disposition and handling of all possible special cases.

2. PROGRAMMING

It is clear that we must write down the set of instructions that we want to
give to the machine. However, we cannot use everyday language and expect
the machine to receive instructions in the form of a letter or dictation. Instead
we must adapt the language used to the capabilities of the machine.

Although the computing machine can be used in more general problems,
in what follows we shall emphasize computation—more precisely, arithmetic
computation. Arithmetic formulas which contain numbers, names denoting
yet unknown quantities, and functions (such as sin, cos, and In) have long
been used to describe computational rules. Such formulas form a core
embedded within a sequence of organizational statements which describe the
flow of the computational process. Thus, for example, the execution of parts



SEC. 4 INTRODUCTION 3

of the computation can be made to depend on certain conditions, or one can
prescribe the number of times a part is to be repeated. Indeed, the power of
the automatic computer comes from its ability to make precise decisions at
definite places during the course of the computation in accordance with
preassigned criteria.

Finally, the machine must receive specifications as to type and dimension
of the initial data entering into the computation (input data) and the numerical
values given as the result (output data). A complete set of instructions and
rules written in such a manner that it uniquely defines the course of a
computation from beginning to end, we will call a program.

The preparation of the program entails more than due consideration to the
arithmetic and organizational capabilities of the machine. The simple-minded
intelligence of the computer requires that the language used be formed
according to stringent rules. The present manual explains the standardized
formal language ALGOL (algorithmic /anguage) which arose out of an inter-
national effort. ALGOL programs are largely independent of the properties
of individual machines and are conveniently readable to a wide circle of
interested people. To an ever increasing extent algorithms and programs are
being written and published in ALGOL.

3. CODING

In addition to what has already been said the program must be written in
such a way that the machine can receive it. The input data as well as the
program must be reduced to the specific code for input medium of the
particular machine. To do this one uses off-line equipment—for example,
punching mechanisms, printers, and hand punches. The machine receives the
code through input equipment such as paper tape and card readers.

4. INTRODUCTORY EXAMPLES

We consider two simple examples which show certain fundamental aspects
of the use of automatic computers.

ExaMPLE 1

Let us consider the system of linear equations in two unknowns
2x+3y=35
3x + 5y = 4.
Using Cramer’s rule we obtain the following solution:

) L _55-43 _ 2h 3.5 3
=53 - 53 ¥ = 53— 33



4  INTRODUCTION SEC. 4

We shall, therefore, give instructions to the machine to compute the expres-
sions on the right side of (1) and to assign these numerical values to the
variables x and y. In order to simplify the code we use the slanted slash for
the division sign. For the purpose of clarity we introduce the symbol “x”
for the multiplication sign; it must be used for each multiplication. Using
these conventions we now write

x=0Bx5—-4x3)/5x2-3x3);
y=2x4—-3x%x5/5x%x2~-3x3);

This program yields the right solution, but at the expense of superfluous
computation. We should not forget that the machine follows each instruction
to the letter and for this reason computes the expression

5x2-3x%x3
twice.
Therefore, we amend the program to read
d=5x%x2-3x3;
x=(05x5—-4x 3)d;
y=@2 x4 -3 x 5)/d;

This is a special program for obtaining the solution of a definite system of
equations. We get a program valid for the general case only if we admit
arbitrary coefficients,

ax + by=c
ax + byy = ¢,

The corresponding program will read
d=al x b2 — a2 x bl;

x = (cl x b2 — ¢2 x bl)/d;
y=(al x 2 — a2 x cl)/d;

However, this program does not take all contingencies into consideration.
We must provide for the case when d vanishes for the given values of al, a2,
b1, and b2.

d=al x b2 — a2 x bl;
ifd#0

x = (cl x b2 — ¢2 x bl)/d
mmt=wx&—ﬂxmm

otherwise continue the computation
in some special manner;

Here we encounter an essential part of the program that goes beyond mere
computation, namely, a condition (if d # 0) on which the further course of



SEC. 4 INTRODUCTION 5

computation depends, and specifications as to what must be done (then ...
otherwise ...) on the basis of this condition. Notice also that the equality
sign in the condition has a meaning different from that in other parts of the
program.

EXAMPLE 2
In order to find the square root of a positive number a

x=Va a>0
we can use Newton’s method. This reduces to the following iteration

i) g=13 ..,

n.

Xn+1 = %'(xn =+

Any positive number can be used as the initial value x;.

The set of instructions is the same for each step of the iteration. It is
manifest that it need only be written once. The result of each step serves as
initial value for the next step. We can write the following program.

y=xl;
2:  x=(+ay)2;
y=x

continue the computation at 2;

This program does not come to an end although it uses the iteration formula
correctly. We must tie into the ‘“continue” statement some condition,
perhaps one that would interrupt the computation when two successive values
agree to 10 significant figures. Here we introduce the notation abs(x) which
has the meaning of |x|.

x = x1;
2 == o
x=(y+ aly)2;

if abs(x — y) > (.5 x 1071°) x abs(x)

then continue computation at 2
otherwise end the computation;

We have already become acquainted with the conditional statement; here it
is connected with the continue statement which brings about the repetition of
a piece of program. Only in this way is it possible to describe completely the
flow of the computation without knowing the values of a and x1 on both of
which depend the number of required iterations.



