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PREFACE

This volume contains the papers presented at the Fourth International Workshop on
Database Machines. The papers cover a wide spectrum of topics including descrip-
tions of database machine implementations. analysis of algorithms and database
machine components. architectures for knowledge management, recovery and con-
currency control issues. and solutions to the 1/0 bottleneck problem. As at the pre-
vious workshops in Florence. San Diego. and Munich. a diverse collection of coun-
tries. universities. research labs. and database machine vendors were represented by
the authors and conference attendees. Our thanks go to the authors for writing
excellent papers and for their efforts in meeting deadlines. to the VLDB Endow-
ment for its cooperation. and to MCC for all its support. Finally. as usual. it is
our secretaries that really deserve the credit for making the workshop a success.
We wish to thank Cerise Blair of MCC for taking care of all the arrangements for
the workshop and Sheryl Pomraning of the University of Wisconsin for her help in-
preparing this proceedings.

Haran Boral March 1985
David J. DeWitt
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Associative Processing in Standard and Deductive Databases

K. Hahne, P. Pilgram, D. Schuett, H. Schweppe, G. Wolf
Corporate Laboratories for Information Technology
Siemens AG, Munich, West Germany

Abstract

Progress in computer technology, microprocessors and storage chip
design in particular, has had a major impact on computer architecture.
Until now, research in database machine architecture focussed on
search accelerators attached to slow background storage devices, and
on multiprocessor configurations exploiting the parallelism inherent
in database tasks.

The use of a quasi-associative device of large capacity, the Hybrid
Associative Store (HAS), in standard and non-standard database
applications including the inference subsystem of a deductive database
management system is discussed. The HAS has been under development at
the research laboratories of Siemens AG since 1983.



1. Introduction

Progress in computer technology, microprocessors and storage chip
design in particular, has had a major impact on computer architecture.
Until now, research in database machine architecture focussed on
search accelerators attached to slow background storage devices, and
on multiprocessor configurations exploiting the parallelism inherent
in database tasks.

System performance has remained an important issue even in new
applications like text, image and speech processing, and in the
enhancement of databases by deduction facilities. Technological
progress, VLSI in particular, opens up new solutions in all these
areas.

"Logic on the chip" is one of the most promising directions:
processing power can be integrated into memory chips, thus permitting
high-performance implementations of parallel and of associative
algorithms. In spite of their associative characteristics, achieved
by tightiy coupling (simple) processors and memory, such devices are
obviously different from, though much more cost effective than, proper
associative memory. We will call the former device quasi-associative.

In this paper we are going to discuss the use of devices supporting
quasi-associative processing in standard and non-standard DB
applications,

We base our discussions on the Hybrid Associative Store (HAS),
a quasi-associative device still built with off-memory processors.
It has been wunder development at the research Llaboratories of
Siemens AG since 1983 CWolf851.

Finally, we discuss the application of HAS in the inference subsystem
of a deductive database management system.

2. The Hybrid Associative Store (HAS), Principle of Operation.

This chapter will focus on the HAS philosophy, mentioning hardware
details only in passing. - Fig. 2.1 shows the general layout of a
computer system with HAS.
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Fig. 2.1: computer system with HAS



HAS is a combination - a "hybrid" - of:

= A very large memory, the ‘"Basement Store", organised as a
2-dimensional array with 64 columns and some Large number of
lines (e.g. 256000). Each HAS memory cell s of single-byte
size. Text strings are wusually written "top to bottom" into
memory .

= 64 processor elements (PE), i.e. simple computing units. All PEs
run synchronously and, at any single moment, they refer all to

the same line of memory (called a "byte slice"). Due to this
synchronous operation, HAS can perform certain byte array
operations (e.g. certain searches) at an extremely high
throughput. Every PE is directly linked to its respective memory
column; an entire line of memory can thus be dealt with in one
blow. In detail, every PE consists of an ALU-and-test unit
(together with two registers A and B), a masking register M, and

a bank of registers C; all are in some way connected to the
memory bus (fig. 2.2). The ensemble of the PEs is called the
"Associative Surface". ’

= A central control unit; it initiates each and every action in the
PEs (i.e. it sends a succession of commands to the PEs). It can
also access computation results of the PEs, and its further
proceeding can be influenced by such findings. = The control
unit contains among others a microprogram control wunit and an
address unit for the Basement Store.

HAS requires a host computer for its operation. The host computer
looks after 1input and output, loads data into HAS, retrieves results
back from it, and issues computation requests to it. Typically, HAS

would be attached directly to the host bus: the HAS store would
function as the host's main memory, or at least part of it, and the
HAS control unit would behave Like a DMA I/0 device (with command and
status registers, and with a provision for mutual interrupts).

| (addr)

—0 3300
1
1
]
]
I
1
U

Fig. 2.2: one vertical slice of HAS

HAS is clearly a SIMD machine (array processor), and is as such ideal
for the uniform processing of large volumes of data. A certain degree
of flexibility is obtained by means of the masking register M.



The HAS concept can be summarised:

= The HAS hardware divides up into two main components, the
Basement Store and the Associative Surface. Due to the modular
design, the Basement Store can always be upgraded to the latest
type of memory chips. Moreover, these chips can be bought
off-the-shelf, thus greatly reducing its cost of manufacture.

- The Basement Store consists of dynamic RAM chips, idi.e. the
present standard technology. The Associative Surface, on the
other hand, is built in a high performance technology (version 1:
ECL, wversion 2: VLSI with pipelined command execution) which
matches the speeds of Basement and Surface: the Surface can go
through an entire cycle of computation while the Basement goes
through one memory cycle. The memory chips are thus used at
their maximum read/write rate.

The Associative Surface is the most decisive part of HAS: most of the
processing takes place here, and most of the innovative ideas are also
to be found here. Fig. 2.2 shows a highly simplified diagram of a
single PE with its integration into HAS. On the left we see the
control unit; it supervises all parts of HAS. The Basement Store BS
(more precisely: its column relating to "this'" PE) is shown at the
bottom. Essentially, all data flow from BS to the ALU, dits result
flows on into a ¢ register from where it can return into BS:

BS -> ALU =-> ¢ =-> Bs

The ALU-and-test unit can also perform the wusual tests (equality,
less, greater, overflow etc) . The masking register M serves to
inhibit the changing of any register.

The PEs are tailored for some particular algorithms (byte array
operations, especially search and sorting), while many other
algorithms may harmonise rather poorly with HAS. Searching a given
string out of 64 candidate strings is probably the most "natural" HAS
operation.

In the control unit, a microprogram determines the order in which to
carry out the wvarious actions (placing values in registers, setting
switches, triggering computations) . HAS is thus able to perform, upon
one host instruction, even the most complex algorithms. An entire

search command, for example, could be one such instruction. One
should differentiate between instructions which can be concluded in a
single Basement memory cycle, and those requiring more time. Among

the former are:

= search for the occurrence of a given character,
= comparing the entire byte slice with a given character.

Instructions of the latter kind are necessary as soon as we need to
handle more than 64 bytes. Such applications would be:

- comparing arbitrary strings,

= searching sets of strings,

- minimum, maximum, sorting, similarity,
- weighed search,

- join operation.

In cases where sorting is of prime importance, a significant speed-up
can be achieved by a simple hardware extension (see CWolf851).



3. Standard Database Applications

The SIMD architecture makes HAS a powerful tool for set operations in
database applications. In particular, operations known from the
relational model such as selection, projection, and join can be
performed efficiently through the parallelism offered by the 64 PEs.

3.1 Basic Database Operations

Let us assume that all relations to be processed have already been
Loaded into HAS. Each relation consists of one or more segments,
a segment being a section of store one tuple deep and 64 bytes wide
(see also fig. 3.1).

We introduce a simplified subset of HAS instructions with the
intention of demonstrating how basic database operations can be
processed on HAS. The six instructions are not claimed to describe
HAS exhaustively and precisely.

(G D] Uniform Load b(i) into A
loads one byte from address i into the A registers of all PEs.

(2) Vector load slL(j) into B
loads one byte slice from BS Line i into the corresponding
registers B of the PEs. In contrast to (1), all B-registers
contain in general different values after Loading.

(3) Vector load A into B
loads, in each PE, the contents of register A into register B.

(4) Vector test for equality A and B
compares the contents of registers A and B of each PE. In case
of equality, the corresponding result dis set to one. The
instruction delivers a vector as result.

(5) Vector store test result into C(k)
stores the result vector of a preceding idinstruction (4) into
address k of the C register bank of the PE.

(6) Rotate A by one
Transfers the contents of each A register to the A register of
its cyclic neighbour PE. In reality, this transfer is not
achieved directly but via a bus connecting all PEs.

We shall now demonstrate, in terms of these six instructions, how the
selection, projection, and join ‘operation on a segment can be
accelerated by the use of the parallelism offered by HAS.

The selection operation on a segment in HAS can be processed in the
following way:

for i =0 to (length-1)

uniform Lload b(i+i0) into A

vector Lload sl(i+j0) into B

vector test for equality A and B

vector store test result in C(i+k0)
od



We assume that the search argument and the segment have been Lloaded
into Parameter Store (addresses i0 to i0+length-1) and Basement Store
(addresses jO to jO+length-1) respectively (fig. 3.1). Here, the
uniform Lload instruction Lloads byte b(i+i0) of the search argument
into all A registers. The vector load instruction moves the bytes of
byte slice sl(i+j0) from BS to the corresponding B registers. After a
test for equality has been performed 1in parallel for all PEs,
the result vector is stored into address i+k0 of the C register bank.
By "vertically" ANDing all (n=length) result vectors, the tuples equal
to the search argument can be located.

. tuple 0 | tuple 1 tuple 63
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Fig. 3.1: layout of search argument and segment

The projection operation consists, in the first step, in cutting off
domains. The second step, i.e. detecting duplicates among the tuples
of the cut segment, can be accomplished by HAS in the foltowing way:

for i =0 to (length-1)
do
vector Lload sl(i+i0) into A
vector Lload A into B
for j =0 to 31
do
rotate A by one
vector test for equality A and B
vector store test result in CC((j+k0)*(i+1))
od
od

The same byte slice sl(i+i0) is Lloaded into both PE registers.
The byte slice residing in the A registers is rotated. After each
step of rotation a test for equality is performed, and the result is
stored 1in the C register bank. The stored results of the comparisons
can be used to finally identify and eliminate all duplicates.

A join operation on 2 segments of different relations can be performed
by HAS in the following way:



for i =0 to (length-=1)

vector load sl(i+i0) into A
vector load sl(i+j0) into B
for j =0 to 63
do
vector test for equality A and B
vector store test result in C((j+k0)*(i+1))
rotate A by one
od
od

The byte slices slL(i+i0) and sl(j+j0) from the first and second
relation are respectively Lloaded 1into the registers A and B. Byte
slice sl(i+i0) is stepwise rotated in registers A; after each step of
rotation, a test for equality is performed. The result is kept in the
C register bank for later evaluation.

3.2 Operations on the Application Level

As in most database machine concepts, the overall performance of HAS
depends strongly on the load profile of the particular application.

Although a Basement Store capacity of some 16 Mbytes is envisaged for
HAS, many applications require a much larger working set. This gives
rise to the problem of fast mass data transfer between primary and
secondary store, a problem not unknown from, but nevertheless unsolved
in, typical database machine architectures (various solutions are
discussed 1in [BoDe831]). Taking 1into consideration data rates of
available mass stores, no device exists at present which can cope with
the HAS data rate of about 80 Mbytes/sec. For the time being, we
focus on applications which require only Little external loading.

The parallelism provided by the SIMD architecture of HAS is well
suited to support low-level set operations. Since strong synchronism
is established between processor elements of the Associative Surface,
only little communication s necessary during these operations.
Parallelism on higher Levels, however, cannot be easily achieved with
this type of architecture.

Nowadays, many applications require on a low Level single-record
operations, thus prohibiting parallelism. It is not clear how often
this results merely from the original database design where a
discourse world was modelled for a database management system without
set operations. A redesign of the original application by means of a
conceptual model may in those cases lead to a structure more suitable
for this type of database machine architecture.

3.3 Performance Consideratjons

The internal search speed attainable with HAS is only Llimited by the
cycle time of memory chips. Nowadays, even memory chips of Large
capacity have cycle times of 500 ns or less. Since whole byte slices
of 64 bytes are accessed and processed in parallel, search data rates
of 128 Mbytes can be achieved.



4. Associative Processing in Deductive Databases

4.1 Deductive Databases and Prolog

Databases can be augmented by deduction rules serving to infer
information not explicitly stored 4in the database. Although such
"deductive databases" (DDB) can in principle be implemented 1in any
Language, we will in this section study a Prolog-like implementation.
Our discussion will thus deal not only with DDBs but with the
efficient implementation of the internal database of Prolog and logic
programs in general.

We do not intend to explore the problems entailed in dinterfacing a
Prolog system to a database residing on background store. This
problem, though important, will be investigated separately. We will
concentrate on the non-evaluational approach fChan78], and assume that
all relevant data have been brought from the disk-based database into
the Prolog runtime environment beforehand. Since the standard
depth-first execution strategy tends to be very inefficient, parallel
execution of logic programs is being explored intensely by others
CUmTa831.

Associative devices Llike HAS are ideally suited for synchronous
operations on sets of data with regular structures. AND-parallelism in
the evaluation of subgoals, on the other hand, requires independently
running operations, which would be hard to implement on HAS;
multiprocessor architectures are better suited for this purpose.

However, two important performance issues of Prolog implementations
are amenable to associjative processing (e.g. by a coprocessor of a DB
machine): unification and OR-parallel execution of facts (i.e. a wunit
clause, a clause without body) . Both problems are strongly
interrelated. Unsuccessful wunification of facts poses a major
performance problem as has been shown in a measurement study of a
Prolog system T[Bull841. The ratio of successful to unsuccessful
unifications was reported to be roughly 1:6 in a DB-oriented program.
We therefore concentrate subsequently on the enhancement of
unification.

4.2 Implementation of Facts and Rules using the HAS

Due to the flexible loading mechanism of the HAS Basement Store, rules
and facts can easily be stored either horizontally or vertically
(fig. 4.1).

We assume functor and variable names as well as constants to be
encoded into fixed length format. First, we will only deal with facts.

If facts are stored horizontally they occupy one or more 6bh-byte
memory slices. Suppose, the clause

PIX,Y) :- @(z,X), R(Z,Y). (%)

is to be evaluated and X has already been bound to the constant a.
Let @ and R be facts. Many unsuccessful unifications are usually
attempted on Q. Their number cannot be decreased by using HAS, but the
execution time will be vastly reduced: for example, if we take a fact
Q(<const>, <const>) and call it £



f := Q(<const>, <const>)
number of bytes required to represent f in HAS
= entier( (j+63)/64 )

k

only k memory cycles are needed to match Q(Z,a) against f.
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Fig. 4.1: rules/facts stored a) horizontally or
b) vertically in HAS

Furthermore, the set of all solutions for Q(Z,a) is generated in one
blow, in contrast to the standard depth- fwrst evaluation of Prolog.
Unification of the above type is obviously only a special case:
it corresponds directly to the selection operation of DB processing.
It is implemented as an associative (horizontal) search, us1ng the
masking facility of HAS for the variable parts of the "query Coming
back to (%), we need to determine now those Y- values which correspond
to one of the Z-values obtained in the previous step. However, this
requires merely to join <{b : Q(b,a)} with the facts given by R. The
join operation has already been d1scussed in chapter 3.

If we store the facts vertically in the HAS memory, 64 facts can be
unified with a goal statement in parallel. The goal is compared
character by character with the clauses. Variable parts of the goal
are masked, and replaced by constants, if the match succeeds.
It should be remembered that we deal with a simple form of unification
where a constant / —constant check is carried out. This method
(fig. 4.2) is very similar to searching among conventional relations.
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Fig. 4.2: parallel matching in HAS

ALl solutions to Q¢(...,X,...) are generated (OR-parallelism) just as
in the <case of the horizontally arranged clauses. Performance is
primarily determined by the memory cycle time. Supposing each fact
was stored in 200 bytes, and a 500 microsec RAM was used, it would
take 1 msec to unify 640 facts (plus the time to read the wvariable
bindings).

The situation gets more complicated when dealing with rules instead of
simple facts. Rule bodies may be <conjunctions of any number of
predicates. If the defining <clauses for @ have such bodies,
synchronous reduction of a subgoal @ will work only as long as the
bodies are conjunctions of the same predicates, e.g.:

QCa,X)
(X, a)

1= PUX,a;b)

S= PUX,Y,a)

However, an associative device like HAS can be of advantage if the
clauses are Laid out in HAS memory in a special way. Let us symbolise
each instance of a predicate in the set of rules and facts by an index
<i,j> wWwhere i is the clause identifier and j is the position within
clause i (<i,0> thus being the head of clause i). Facts and <clauses
(with any number of subgoals) can be uniformly represented in HAS
memory through sequences of such an index put together with functor
and arguments. The following example illustrates the method:

Prolog Program (including "database"):

Line (In Prolog, atomic constants are
1 DC(h). denoted by lower case letters.)
2 Mm,e).
3 M(m,w) .
4 MCh,X) = M(X,w).
5 S(X,Y) := D(X), M(X,Y).
6 s(h,g).

| |
0 1 2 (depth Level)



