Gustav Pomberger
‘Software
Engineering
and Modula-2

C.A.R. HOARE SERIES EDITOR

—_— L)
/ /d 2/

> 784 8761993

SOFTWARE ENGINEERING
AND MODULA-2

GusTAV POMBERGER

University of Ziirich

Prentice/Hall (4%

Englewood Cliffs, NJ London Mexico New Delhi Rio de Janeiro
Singapore Sydney Tokyo Toronto Wellington

FE

A

Library of Congress Cataloging in Publication Data

Pomberger, Gustav, 1949 —
Software engineering and modula-2.

Bibliography: p.
Includes index.
1. Modula-2 (Computer program language) 2. Computer software — Development.
I. Title. II. Tide: Software engineering and Modula two.
QA76.73.M63P6613 1986 005.13’3 85-28168
ISBN 0-13-821794-7
ISBN 0-13-821737-8 (Pbk)

British Library Cataloguing in Publication Data

Pomberger, Gustav
Software engineering and Modula-2.
1. Programming (Electronic computers)
2. Computer engineering
1. Tide II. Softwaretechnik und Modula-2,
English
005.12 QA76.6

ISBN 0-13-821794-7
ISBN 0-13-821737-8 (Pbk)

© 1984 Carl Hanser Verlag Miinchen Wien
The original edition of this work was published in German by Carl Hanser Verlag under
the title Softwaretechnik und Modula-2. .

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording or otherwise, without the prior permission of Prentice-Hall
International (UK) Ltd. For permission within the United States of America contact
Prentice Hall Inc., Englewood Cliffs, NJ 07632.

Prentice-Hall Inc., Englewood Cliffs, New Jersey
Prentice-Hall International (UK) Ltd, London
Prentice-Hall of Australia Pty Ltd, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana S.A., Mexico
Prentice-Hall of India Private Ltd, New Delhi
Prentice-Hall of Japan Inc., Tokyo

Prentice-Hall of Southeast Asia Pte Ltd, Singapore
Editora Prentice-Hall do Brasil Ltda, Rio de Janeiro
Whitehall Books Ltd, Wellington, New Zealand

Printed and bound in Great Britain for

Prentice-Hall International (UK) Ltd,

66 Wood Lane End, Hemel Hempstead, Hertfordshire, HP2 4RG
by A. Wheaton & Co. Ltd, Exeter.

1 2 3 4 5 90 89 88 87 86

ISBN 0-13-821794-7
ISBN 0-13-821.737-8 PBK

Foreword

"Software engineering” is a concept that was coined towards the end of the
60’s. The intention is to imply that the technique of creating complex,
programmed systems is subject to laws similar to those for the manufacture of
machines (engines). In both cases a critical requirements analysis and a careful
choice of solution methodology is necessary. On the other hand fundamental
differences must not be ignored. The most obvious is certainly that the products
of the software engineer, as opposed to those of the mechanical engineer, are
immaterial, as we say, "soft." They are represented as programs, as formal texts
which are first brought to life by the computer.

The fact that texts--especially with the aid of a computer--are easily
changeable, has the advantage that any shortcomings which may arise can be
eliminated (or hidden) quickly, and at the same time the disadvantage of seducing
the engineer to abuse this advantage. Experience demonstrates that it is precisely
here that a sound initial concept is essential for success, because numerous
after-the-fact adaptations rapidly lead to a system complexity which--and here is
another difference to mechanical engineering--is cheap to introduce, but which
later, in use, turns out to be expensive.

The merit of this book is that it handles the field of software engineering
comprehensively. First a modern foundation is laid for the technical tools, and
then they are applied. All phases of a project are carefully discussed, and not just
programming; requirements analysis, specification of the requirements, design of
a solution, documentation, and finally testing and maintenance receive their
deserved attention. In conclusion, a chapter is dedicated to project management,
whereby its scope in comparison with that of the technical aspect is, happily, kept
within bounds. Thus clear priorities are set, and the trend of placing the blame on
management for failures due to a lack of technical competence has been checked.

The book thus distinguishes itself fundamentally from the usual introductions
to programming. In spite of this, an important chapter is dedicated to the
technique of programming, the pillar of all software engineering. I am pleased
that the author based it on the language Modula-2, which was developed
especially for projects of the nature treated herein, and which represents a natural
evolution of the language Pascal, which, in the meantime, has itself become
globally accepted. This book is a welcome guide to its competent application.

N. Wirth

SEM-A%

Preface

This book is intended for everyone who plans, designs and implements
software. The writer has occupied himself for years with the production of
software, at first in industry, and in the past years, in teaching and research at the
university level. This book is a result of the experience collected in the process.

The term “software crisis,” applicable even today, indicates that software is
often incorrect, that immense difficulties appear in mastering complexity in the
production of software, and that programs are often only understood by their own
authors. One question also often discussed in this connection is that of the
generality and acceptability of a programming language. Most of the
programming languages in practical use today are conceptually outdated by the
present standards of software engineering, and lend themselves little or not at all
to the support of the new concepts in software engineering (such as data
capsuling).

This book is intended to guide the reader to a new area, which is in no way
supported by a secure basis of facts, but which, rather, is still in the beginning
stages. It represents an attempt to depict personal and outside experiences in the
field of software engineering systematically. It describes the phases of a software
project (software life cycle), the problems which occur and how they are solved by
formal, workable methods of software engineering. Because the choice of
programming language is of great importance to the implementation, efficiency,
quality and portability of software, a major part of the book is dedicated to the
description of a modern programming language which corresponds to today’s
technological level. For this the writer, after serious consideration, has chosen the
programming language Modula-2, developed by N. Wirth. Modula-2 is a simple,
widely machine independent language and, because of its descendency from
Pascal, easily learned by many programmers. The volume of the language is
modest in comparison to other new programming languages (as, for example,
Ada). The language lends itself, therefore, also to implementation on
microcomputers and supports many of the software engineering concepts known
today. In addition, Modula-2 lends itself, in the view of the writer, equally well to
systems and applications programming.

The author is primarily interested in handling the fundamental principles and
methods of software engineering in detail and in depth. From this the reader
should be left in a position to apply these techniques on his own. To this end each
section contains carefully commented examples. Detailed descriptions of methods
which were developed for extremely specialized tasks of software engineering are
intentionally omitted. These methods are discussed briefly, and the reader is
referred to the appropriate literature. The author has also taken pains to ease
access to advanced literature for the more intensively interested reader, by
referencing it in many places, especially where it was important to keep the book
within bounds.

xii Preface

It is expected of the reader that he have an elementary knowledge of
algorithms, data structures and programming languages. He should be acquainted
with the fundamentals of mathematics and logic, and above all have an interest in

the subject.

March 1984, Linz G. Pomberger

Acknowledgments

For me it is an honor and a pleasure, at this time, to express my thanks for the
help rendered and the many suggestions received.

I am most especially indebted to Prof Peter Rechenberg, my teacher and
mentor. During the past years he has exerted a great influence on my thinking.
Much of what I have recorded in this book is particularly influenced by his work.
Whenever a question arose during the writing of this book, it was my habit to
note in the margin of the manuscript, "Ask Rechenberg." Prof. Rechenberg was
always supportive in word and deed. His priceless suggestions place me in his
debt.

I wish to express my special gratitude also to Prof. Niklaus Wirth from Ziirich.
His work on algorithms and data structures, systematic programming, compiler
construction and, above all, the definition of the programming languages Pascal
and Modula-2 are of great importance for software engineering and have strongly
influenced much of my work. I also owe to Prof Wirth the possibility of a three
month research stay at the ETH in Ziirich. In this time it was possible for me to
complete my understanding of the language Modula-2 and to discourse with him,
the inventor of the language.

Still further I wish to express my thanks to the many other people who
helpfully stood by my side during the long task. It is impossible for me to list each
by name. However, I am most especially obligated to thank:

Giinther Blascheck for the continuous exchange of thoughts, which, for me, were a
great source of inspiration, and for his inspection of the manuscript,

Peter Mossenbock for helpful discussions, and because he read the entire
manuscript and accorded me invaluable advice,

Prof. Jorg Miihlbacher, to whom I owe the contact to the publisher,

Mrs. Ingrid Kirchmaier for her excellent typing and because she was always at my
side in good spirits,

the students who attended my software work sessions, and who provided the
stimulating environment for my work through many discussions,

the original publisher, Carl-Hanser-Verlag , for their understanding and patience
concerning the late delivery of the manuscript.

SOFTWARE ENGINEERING
AND MODULA-2

8761993

Table of Contents

Foreword
Preface
Acknowledgments

1. Introduction to the Problem
1.1 The Development of Software Engineering
1.2 The Concept of Software Engineering
1.3 The Programming Language Modula-2

2. Quality Standards for Software Products
21 Software Quality Features
22 The Importance of Quality Features in Software Production

2.3 The Interactions betweeg,quhtylFea;(es and their Effect on
Cost and Time Parametérs

(.
3. The Choice of the Prog!rin *
31 The Relevance of the Prografr
3.2 Logical Criteria for the Cho ‘ogramming Language
3.3 Pragmatic Criteria for the Choice of Programming Language

4. Modula-2
4.1 Lexical Symbols
4.2 Programs
4.3 Declarations
4.3.1 Declaration of Data Types
4.3.1.1 Standard Data Types
4.3.1.2 Declaration of Type Names
4.3.1.3 Unstructured Data Types
4.3.1.4 Structured Data Types
4.3.2 Constant Declarations
4.3.3 Variable Declarations
434 Procedure Declarations
4.3.4.1 The Declaration of a Procedure
4.3.4.2 Locality and Scope of Visibility of Identifiers
4.3.4.3 Data Exchange
44 Expressions
441 Operands
442 Operators

W N

11

12

14
14
15
18

21
22
24
25
25
25
26
27
29
34
35
36
36
37
38
39
39
40

vi Contents

4.5 Rules of Compatibility

45.1 Type Compatibility

4.5.2 Expression Compatibility

4.5.3 Assignment Compatibility
4.6 Statements

4.6.1 The Assignment Statement

4.6.2 The Procedure Call

4.6.3 The IF Statement

4.6.4 The CASE Statement

4.6.5 The WHILE Statement

46.6 The REPEAT Statement

4.6.7 The FOR Statement

4.6.8 The LOOP and EXIT Statements

4.6.9 The WITH Statement

4.6.10 The RETURN Statement
4.7 Modules

47.1 Local Modules

472 Compilation Units and Separate Compilation
4.8 Low Level Facilities of the Language
49 Processes
4.10 Standard Procedures

5. The Software Life Cycle

5.1 Requirements Analysis

5.1.1 System Delimitation
5.12 System Analysis

5.1.3 System Description
5.1.4 Analysis Techniques
5.2 Requirements Definition (System Specification)
521 Content and Scope of the Requirements Definition
5.2.2 Feasibility Studies
5.2.3 Specification Aids and Methods of Representation
5.2.3.1 Elementary Aids
5.2.3.2 Special Aids
5.3 Design
5.3.1 Design Techniques
5.3.2 The Method of Stepwise Refinement
5.3.3 Structuring of Flow Control
5.34 Guidelines for Module Construction
5.3.5 Attributed Grammars as Tools for Modularization

43
43
4

45
45
46
46
47
48
48
49
49
50
50
50
33
55
58
59

62

65
67
68
68

70
71
71
73
74
74
76
85
86
89

54

5.5

5.6

5.3.6 Modularization and the Choice of Data and
Program Control Structures

5.3.6.1 Data and Program Control Structures
5.3.6.2 Data Capsules

5.3.6.3 Abstract Data Structure and Abstract Data Type

5.3.7 Design Notation
5.3.8 Verification
Implementation
5.4.1 The Choice of the Implementation Language
54.2 Programming Style
5.4.2.1 The Choice of Names
5.4.2.2 Data Control and Flow Structures
5.4.2.3 Program Format
5.4.2.4 Comments
54.3 Test Preparation
5.44 Portability Considerations
Test and Installation
5.5.1 Test Methods
5.5.1.1 Static Testing
5.5.1.2 Dynamic Testing
5.5.1.3 Black Box and White Box Testing
5.5.1.4 Topdown and Bottomup Testing
5.5.2 Test Planning and Testing
5.5.2.1 Test Planning

5.5.2.2 Preparation of Test Objects for the
Localization of Errors

5.5.2.3 The Choice of Test Cases and Test Data
5.5.2.4 Organization of the Test Environment
5.5.2.5 Test Bvaluation and Error Localization

5.5.2.6 Typical Errors
5.5.3 Test Documentation

554 Acceptance Test and Installation
Documentation and Maintenance
5.6.1 The Documentation of Software Products
5.6.1.1 User Documentation
5.6.1.2 System Documentation
5.6.1.3 Project Documentation
5.6.2 The Maintenance of Software Products

vii

95
95
99

110
113

116
124
124
125
125
126
128
130
132
134
135
135
138
139
140
142
143
144

144
145
146
147

148
149

149
150
150
151
153
157
158

viii Contents

6. The Realization of Software Engineering Concepts

in Modula-2 163

6.1 Stepwise Refinement 163

6.2 Structured Programming 165

6.3 Modular Programming and Interface Technique 166

6.4 Team Software Development and Separate Compilation 170

6.5 The Implementation of Data Capsules 171

6.6 The Implementation of Abstract Data Types 172

6.7 The Value of Strong Type Checking 175

7. Software Engineering Tools ' 176
7.1 Simple Tools 176
7.1.1 Tools for File Administration 176

7.1.2 Simple Analysis Tools and Documentation Tools 177

7.2 Tools Related to Specific Project Phases 178
7.2.1 Tools for Requirements Analysis and Specification 178

7.2.2 Design Tools 179

7.2.3 Tools for the Implementation Phase 180

7.24 Test Tools 181

7.2.5 Tools for Documentation and Maintenance 185

7.3 Project Management Tools 186

74 Questions about the Implementation of Software Tools 186

8. Project Management 190
8.1 The Aim of Project Management 191
8.1.1 Planning 191

8.1.2 Organization 192

8.1.3 Technical Supervision 192

8.14 Economic Supervision 193

8.2 Difficulties in Managing Software Projects 193

8.3 Cost Estimates 194

8.4 Project Organization 200
8.4.1 Hierarchical Organization Model 200

8.4.2 The Chief Programmer Team 202
Appendix 1: Report on the Programming Language Modula-2 206
Appendix 2: Revisions and Amendments to Modula-2 238
Appendix 3: The Syntax of Modula-2 241
Bibliography 244

Index 254

1. Introduction to the Problem

1.1 The Development of Software Engineering

The first computing machines were primarily used in the field of pure and
applied science. The task of the programmer was not so much to discover complex
algorithms as to formulate already known algorithms in a programming language
in order to execute them on a computer. To this end no special knowledge was
required except the command of a programming language. The programmer was
ordinarily also the user. The programs were only occasionally used, and the tasks
were seldom respecified. The only difficulties were to guarantee correctness and
efficiency. The problems to be solved were comparatively simple, relative to those
of today, and the programs were therefore relatively small. As a result the number
of programming errors was small, and first became a major problem only when
program systems came to be used in the solution of complex scientific and
commercial applications. After this, whole teams of programmers worked on the
production of program systems which were to be employed by various users. The
specification of the problem and the demands placed on the system changed often
during the design phase, and also long after the program system had been in use.
Besides correctness and efficiency, the mastering of complexity through the
decomposition of a problem into problem pieces, the specification of interfaces,
security and reliability, flexibility, documentation, maintenance and project
organization became major problems in the production of large program systems.
This led to difficulties in the design and production of software to such an extent
that in 1965 the term "software crisis" was coined. There is no comparison to this
in the development of hardware. This is not to say that hardware is error-free, but
in practice the reasons for difficulties which occur in large computer systems can
usually be found in software errors.

Dijkstra (1972a) described this situation as follows:

"To put it quite bluntly: as long as there were no machines, programming
was no problem at all; when we had a few weak computers, programming
became a mild problem, and now we have gigantic computers, programming
has become an equally gigantic problem. In this sense the electronic industry
has not solved a single problem, it has only created them--it has created the
problem of using its products.”

The possibilities which were created by new computer generations vastly
exceeded the programming techniques which had been developed up to that time.
But the growing economical importance of software production (see Boehm 1973),
and the enormous expansion of the data processing industry, which forced the
development of numerous large program systems, pressed the demand for an
improved programming technology more and more into the focus of research in the
field of computer science.

The attempts at researching acceptable programming technology resulted in
two software engineering conferences organized by NATO, in Garmisch in 1968
(Naur and Randell, 1969) and in Rome in 1969 (Buxton and Randell,1969). It was
indicated at these two conferences that programs are industrial products, and that

2 1. Introduction to the Problem

there was therefore the requirement for: Renunciation of the "art” of tric}cy,
egotistical programming by the individual and adoption of planned, co-operative
team programming (see also Kimmet al., 1979).

Since then an attempt has been made to analyse software production
scientifically, considering it as a coherent process, and above all to place the
questions of specification, methodical program design, requirements on a
programming language, project organization, quality control, documentation and
the automation of software production at the center of research interests.

1.2 The Concept of Software Engineering

What lies behind the term "software engineering"? Is this just an alternative
phrase for programming, or is it a new technology? The term software engineering
is obviously intended as provocation and indicates that the economical production
of programs is an engineering discipline. There is to date, however, no generally
acceptable, fixed definition of the concept.

Boehm (1979) defines software engineering as follows:

"The practical application of scientific knowledge in the design and
construction of computer programs and the associated documentation
required to develop, operate, and maintain them."

In Dennis (1975) we find the definition:

"Software Engineering is the application of principles, skills and art to
the design and construction of programs and systems of programs."

D.L. Parnas (1974) writes:

"

- . - Software engineering is programming under at least one of the
following two conditions:

(1) More than one person is involved in the construction and/or use of
the program and
(2) more than one version of the program will be produced."”

Finally, F.L. Bauer (1975) writes:

[The aim of software engineering is:] "To obtain economically software
that is reliable and works efficiently on real machines."

The definitions given above show that the production of large programs
involves new problems of a different nature to those of the production of small
programs, and exhibits many similarities with the production of other technical
products. The main problems here are:

+ the mastering of complexity,

*+ the decomposition of a problem into pieces, which are then solved by various
groups,

* project organization,

+ the specification of interfaces between pieces,

1.3 The Programming Language Modula-2 3

+ efficiency,
s the documentation and maintenance of the systems,
+ portability and adaptability.

Common sense alone is not sufficient for solving all of these problems. It is
necessary to examine the entire complex scientifically in order to create the
prerequisites for the development of methods and tools which support software
development and production. Therefore, it is expected of good software engineering
that it provide methods, tools, norms and aids which make it possible to handle
technical problems (such as specification, design, construction, testing, efficiency,
documentation and maintenance) and organizational problems (such as project
organization and interface specification) which occur in the production of software,
and, in the process, to produce and apply software economically.

Based on this, software engineering can be defined as follows:

"Software engineering is the practical application of scientific understanding
to the economical production and use of reliable and efficient software."

1.3 The Programming Language Modula-2

The development of computing machines was accompanied by the
development and implementation of programming languages, in conjunction with
compilers for these languages. Rechenberg (1983) writes in relation to this: "There
already exist many hundreds of programming languages, and new ones are
constantly being invented. The (computer) public takes absolutely no notice of
most of these and they lead an insignificant life in the surroundings of their
inventors." This is not surprising, if one considers which conditions must be
satisfied for the general acceptance of a programming language (see Goos, 1982):

+ The language must satisfy a factual need, because otherwise the effort spent
on re-schooling programmers cannot be justified.

+ The existence of the language and its compiler must be secured for long time
spans (20 years and more, but at least for the life of the program system).

+ Reliable compilers must exist for all important target machines, and
maintenance and development of these compilers must be secured. In
particular, the use of a language cannot be dependent on any given computer
manufacturer.

+ The implementation should be compatible with programming languages
already in use, so that frictionless transition and rational co-existence of the
languages is possible.

» The language should be easy to learn.

Until now, only Fortran, Cobol, PL/I, Basic and, increasingly, Pascal have been
able to meet these primarily economic demands. Fortran and PL/I owe their
success to the fact that they were offered and supported by the leading hardware
producer, IBM. Cobol succeeded because the US Department of Defense, one of
the larger computer and software customers, stipulated its use. Pascal and Basic

4 1. Introduction to the Problem

are purely university products. Basic, although widespread, does not even begin to
satisfy present day requirements on a programming language. Pascal is the only
language which has become universally known on the basis only of its own
qualities.

However, in the meantime software technology has continued to develop, and
ever more stringent requirements have been placed on programming languages.
Because none of the conventional programming languages could meet these
requirements, new languages have been developed, the most important of which
are Ada (Ichbiah et al., 1979) and Modula-2 (Wirth, 1982).

Because this book handles the entire complex of software engineering, and
thus the problem of the implementation and choice of a programming language,
the author must consider which language he should recommend to the reader in
order to emphasize correct software engineering techniques. Since only Ada and
Modula-2 in some way meet the requirements of modern day software
engineering the choice lies between them.

Striking similarities are apparent in a comparison of these languages, although
they differ completely in volume, intended application and historical
development. In Modula-2, as in Ada, the specification and implementation
sections of programs are separated, both languages allow separate compilation
and the program structure "module” in Modula-2 corresponds almost exactly to
the "package"” of Ada. Modula-2 allows the formulation of parallel processes, as
does Ada, although at a lower level, but then again with more flexibility. The
handling of exceptions and generic programs is missing from Modula-2, but these
were purposely omitted in order to limit the size of the language.

In this connection Rechenberg (1983) writes: "The result of these similarities is
that one may use Modula-2 instead of Ada in the vast majority of applications.
The clarity of programming in Modula-2, the documentational value of Modula-2
programs and the extent to which the principles of modern software engineering
may be applied by Modula-2 programs is just as great as for the corresponding
Ada programs, if not in some respects even greater.” The small size of Modula-2
is just as appealing; the language definition is only 25 pages long, that of Ada a
few hundred. Modula-2 was also developed with an eye to its implementation on
microcomputers, and there already exist effective compilers (for example for the
workstation Lilith (Wirth, 1981) from N, Wirth, for Apple computers, Motorola
68000 processors and Intel 8080/8086 processors), which permit practical
examination. Not only were the high expectations placed on Modula-2
completely satisfied in an intensive practical test by the author, they were
surpassed. Modula-2 is easier to learn than was originally assumed.

Modula-2 was originally developed as a systems programming language for
tasks for which Pascal was not sufficient. The language is largely machine
independent and supports many software engineering concepts known today. This
new language is thus suited to systems as well as to applications programming.
The most important advantages which become apparent with the use of Modula-2,
and which fundamentally add to increased programmer productivity are:

+ The capability of separate compilation. This saves much unnecessary
compilation time during the test phase.

1.3 The Programming Language Modula-2 5

+ Complete type and interface checking, even if modules are compiled
separately. This exposes a number of programming errors at compxlatlon
time and thus shortens the test phase.

+ Modules, Wthh constitute a program structure encompassing procedures,
and which admit the implementation of data capsules. They not only increase
the documentational value of programs, but also guarantee that large
program systems be implemented faster than wusual, through the
minimization of error sources and the adaptability of modules independently
from each other.

« * The eapability of formulating parallel processes, which extends the range of
application markedly.

All these advantages, especially the simplicity of Modula-2 and the ability in
Modula-2 to utilize all known software engineering concepts have led the author
to present this language to those interested in software design.

