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Preface

In this book, we introduce a new type of algebra, which we call evolution
algebras. These are algebras in which the multiplication tables are of a spe-
cial type. They are motivated by evolution laws of genetics. We view alleles
(or organelles or cells, etc,) as generators of algebras. Therefore we define the
multiplication of two “alleles” G; and GG; by G; - G; = 0 if ¢ # j. However,
G -Gy ois viewed as “self-reproduction,” so that G, -G; = ZJ pi;jGj, where the
summation is taken over all generators G;. Thus, reproduction in genetics is
represented by multiplication in algebra. It seems obvious that this type of
algebra is nonassociative, but commutative. When the p;;s form Markovian
transition probabilities, the properties of algebras are associated with prop-
erties of Markov chains. Markov chains allow us to develop an algebra the-
ory at deeper hierarchical levels than standard algebras. After we introduce
several new algebraic concepts, particularly algebraic persistency, algebraic
transiency, algebraic periodicity, and their relative versions, we establish hier-
archical structures for evolution algebras in Chapter 3. The analysis developed
in this book, particularly in Chapter 4, enables us to take a new perspective
on Markov process theory and to derive new algebraic properties for Markov
chains at the same time. We see that any Markov chain has a dynamical hi-
erarchy and a probabilistic flow that is moving with invariance through this
hierarchy. We also see that Markov chains can be classified by the skeleton-
shape classification of their evolution algebras. Remarkably, when applied to
non-Mendelian genetics, particularly organelle heredity, evolution algebras can
explain establishment of homoplasmy from heteroplasmic cell population and
the coexistence of mitochondrial triplasmy, and can also predict all possible
mechanisms to establish the homoplasmy of cell population. Actually, these
mechanisms are hypothetical mechanisms in current mitochondrial disease
research. By using evolution algebras, it is easy to identify different genetic
patterns from the complexity of the progenies of Phytophthora infectans that
cause the late blight of potatoes and tomatoes. Evolution algebras have many
connections with other fields of mathematics, such as graph theory, group
theory, knot theory, 3-manifolds, and Ihara-Selberg zeta functions. Evolution
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algebras provide a theoretical framework to unify many phenomena. Among
the further research topics related to evolution algebras and other fields, the
most significant topic perhaps is to develop a continuous evolution algebra
theory for continuous time dynamical systems.

The intended audience of this book includes graduate students and resea-
rchers with interest in theoretical biology, genetics, Markov processes, graph
theory, and nonassociative algebras and their applications.

Professor Jean-Michel Morel gave me a lot of support and encouragement,
which enabled me to take the step to publish my research results as a book.
Other editors and staff in LNM made efforts to find reviewers and edit my
book. Here, I wish to express my great thanks to them.

I thank Professor Michael T. Clegg for his stimulating problems in coal-
escent theory. From that point, I began to study genetics and stochastic
processes. I am greatly indebted to Professor Xiao-Song Lin, my Ph.D advisor,
for his valuable advice and long-time guidance. I am thankful to professors
Bai-Lian Larry Li, Michel L. Lapidus, and Barry Arnold for their valuable
suggestions. It gives me great pleasure to thank Professors Bun Wong, Yat
Sun Poon, Shizhong Xu, Keh-Shin Lii, Peter March, Dennis Pearl, Raymond
L. Orbach, Murray Bremner, Yuan Lou, and Yang Kuang for their encour-
agement. I also thank Professor C. William Birky Jr. for his explanation of
non-Mendelian genetics through e-mails. I acknowledge Professor Winfried
Just for his suggestions of writing style of the book and a formula in Chapter
3. I am grateful to my current mentor, Professor Avner Friedman, for his de-
tailed and cherished suggestions on the research in this book and my other
research directions. I thank three reviewers for their suggestions and construc-
tive comments.

Last, but not the least, I thank Dr. Shannon L. LaDeau for her help on
English of the book. I also thank my wife, Yanjun Sophia Li, for her support
and love. I acknowledge the support from the National Science Foundation
upon agreement No. 0112050.
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April, 2007



Contents

1 Imtroduction .......... ... ... ... ... 1
2 Motivations. . ... 9
2.1 Examples from Biology .. ... ... ... .. ... . . 9
2.1.1 Asexual propagation . ............ .. .. ... 9
2.1.2 Gametic algebras in asexual inheritance ... ........... 10
2.1.3 The Wright-Fisher model . .......................... 11
2.2 Examples from Physics........ .. .. ... oL 12
2.2.1 Particles moving in a discrete space.................. 12
2.2.2 Flows in a discrete space (networks) ................. 12
2.2.3 Feynman graphs .......... .. ... .. ... .. .. ... 13
2.3  Examples from Topology ....... ... .. ... i, 15
2.3.1 Motions of particles in a 3-manifold................ .. 15
2.3.2 Random walks on braids with negative probabilities ... 15
2.4 Examples from Probability Theory ........................ 16
2.4.1 Stochastic Pprocesses . .............o.ouauaeaeeain.. 16
3 Evolution Algebras ........ ... ... ... ... .. . 17
3.1 Definitions and Basic Properties........................... 17
3.1.1 Departure point .......... ... .. i 17
3.1.2 Existence of unity elements . .......... ... ... ....... 22
3.1.3 Basic definitions. .......... ... . ... L 23
3.1.4 Ideals of an evolution algebra . ...................... 24
3.1.5 Quotients of an evolution algebra.................... 25
3.1.6 Occurrence relations . ............ ... .............. 26
3.1.7 Several interesting identities .............. ... ... .... 27
3.2  Evolution Operators and Multiplication Algebras ............ 28
3.2.1 Evolution operators.............c.oiiuiiiiiniiiianan 29

3.2.2 Changes of generator sets (Transformations of natural
DaASeS) . 30

3.2.3 “Rigidness” of generator sets of an evolution algebra ... 31



Contents

3.2.4 The automorphism group of an evolution algebra ... ... 32
3.2.5 The multiplication algebra of an evolution algebra .. ... 33
3.2.6 The derived Lie algebra of an evolution algebra ....... 34
3.2.7 The centroid of an evolution algebra .............. ... 35
3.3 Nonassociative Banach Algebras........................... 36
3.3.1 Definition of a norm over an evolution algebra ........ 37
3.3.2  An evolution algebra as a Banach space .............. 38
3.4 Periodicity and Algebraic Persistency ...................... 39
3.4.1 Periodicity of a generator in an evolution algebra ...... 39
3.4.2  Algebraic persistency and algebraic transiency ........ 42
3.5 Hierarchy of an Evolution Algebra ......................... 43
3.5.1 Periodicity of a simple evolution algebra.............. 44
3.5.2  Semidirect-sum decomposition of an evolution algebra.. 45
3.5.3 Hierarchy of an evolution algebra .. .................. 46
3.5.4 Reducibility of an evolution algebra.................. 49
Evolution Algebras and Markov Chains.................... 53
4.1 A Markov Chain and Its Evolution Algebra . ................ 53
4.1.1 Markov chains (discrete time) . ............ ... ... ... 53
4.1.2  The evolution algebra determined by a Markov chain .. 54
4.1.3 The Chapman-Kolmogorov equation................. 56
4.1.4 Concepts related to evolution operators .............. 58
4.1.5 Basic algebraic properties of Markov chains .. ......... 58
4.2 Algebraic Persistency and Probabilistic Persistency .......... 60
4.2.1 Destination operator of evolution algebra Mx ......... 60
4.2.2  On the loss of coeflicients (probabilities).............. 64
4.2.3  On the conservation of coefficients (probabilities) ... ... 67
4.2.4  Certain interpretations .. ........................... 68
4.2.5 Algebraic periodicity and probabilistic periodicity .. ... 69
4.3  Spectrum Theory of Evolution Algebras .................... 69
4.3.1 Invariance of a probability low................ ... ... 69
4.3.2  Spectrum of a simple evolution algebra.......... .. ... 70
4.3.3  Spectrum of an evolution algebra at zeroth level .. ... .. 75
4.4 Hierarchies of General Markov Chains and Beyond........... 76
4.4.1 Hierarchy of a general Markov chain .............. ... 76
4.4.2 Structure at the Oth level in a hierarchy .............. 7T
4.4.3 1st structure of a hierarchy ......... ... .. ... ... .... 80
4.4.4  Fkth structure of a hierarchy ............ ... ... .. .... 81
4.4.5 Regular evolution algebras.......................... 83
4.4.6 Reduced structure of evolution algebra Mx ........... 86

4.4.7 Examples and applications .............. ... ....... 87



Contents XI

5 Evolution Algebras and Non-Mendelian Genetics .......... 91
5.1 History of General Genetic Algebras ....................... 91
5.2 Non-Mendelian Genetics and Its Algebraic Formulation ... ... 93
5.2.1 Some terms in population genetics .. ................. 93
5.2.2 Mendelian vs. non-Mendelian genetics. .. ............. 94
5.2.3 Algebraic formulation of non-Mendelian genetics . ... .. 95
5.3  Algebras of Organelle Population Genetics .................. 96
5.3.1 Heteroplasmy and homoplasmy .................. ... 96
5.3.2 Coexistence of triplasmy .. ............... . ... ..... 98
5.4  Algebraic Structures of Asexual Progenies of Phytophthora

INFESTANS oo 100
5.4.1 Basic biology of Phytophthora infestans .............. 101
5.4.2  Algebras of progenies of Phytophthora infestans ....... 102
6 Further Results and Research Topics ...................... 109
6.1 Beginning of Evolution Algebras and Graph Theory ......... 109
6.2 Further Research Topics....... ... ... ... ... 113
6.2.1 Evolution algebras and graph theory ................. 113
6.2.2 Evolution algebras and group theory, knot theory...... 114
6.2.3 Evolution algebras and Ihara-Selberg zeta function ....115
6.2.4 Continuous evolution algebras.................... ... 115
6.2.5 Algebraic statistical physics models and applications ... 115
6.2.6 Evolution algebras and 3-manifolds .................. 116

6.2.7 Evolution algebras and phylogenetic trees, coalescent
theory ..ot 116
6.3 Background Literature ......... ... ... .. ... 116
REFOreNEes o s.on vus sos 5w sms sy 5 3ws 565 45 0Wa LGRS LEs BFEAE GHE EwuE 5 119



1

Introduction

While I was studying stochastic processes and genetics, it occurred to me that
there exists an intrinsic and general mathematical structure behind the neu-
tral Wright-Fisher models in population genetics, the reproduction of bacteria
involved by bacteriophages, asexual reproduction or generally non-Mendelian
inheritance, and Markov chains. Therefore, we defined it as a type of new
algebra — the evolution algebra. Evolution algebras are nonassociative and
non-power-associative Banach algebras. Indeed, they are natural examples of
nonassociative complete normed algebras arising from science. It turns out
that these algebras have many unique properties, and also have connections
with other fields of mathematics, including graph theory (particularly, ran-
dom graphs and networks), group theory, Markov processes, dynamical sys-
tems, knot theory, 3—manifolds, and the study of the Riemann-zeta function
(or a version of it called the Thara-Selberg zeta function). One of the unusual
features of evolution algebras is that they possess an evolution operator. This
evolution operator reveals the dynamical information of evolution algebras.
However, what makes the theory of evolution algebras different from the clas-
sical theory of algebras is that in evolution algebras, we can have two different
types of generators: algebraically persistent generators and algebraically tran-
sient generators.

The basic notions of algebraic persistency and algebraic transiency, and
their relative versions, lead to a hierarchical structure on an evolution alge-
bra. Dynamically, this hierarchical structure displays the direction of the flow
induced by the evolution operator. Algebraically, this hierarchical structure
is given in the form of a sequence of semidirect-sum decompositions of a gen-
eral evolution algebra. Thus, this hierarchical structure demonstrates that an
evolution algebra is a mixed algebraic and dynamical subject. The algebraic
nature of this hierarchical structure allows us to have a rough skeleton-shape
classification of evolution algebras. At the same time, the dynamical nature
of this hierarchical structure is what makes the notion of evolution algebra
applicable to the study of stochastic processes and many other subjects in
different fields. For example, when we apply the structure theorem to the
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evolution algebra induced by a Markov chain, it is easy to see that the Markov
chain has a dynamical hierarchy and the probabilistic flow is moving with in-
variance through this hierarchy, and that all Markov chains can be classified
by the skeleton-shape classification of their induced evolution algebras. Hier-
archical structures of Markov chains may be stated in other terms. But, it
is the first time that we show algebraic properties of Markov chains and a
complete skeleton-shape classification of Markov chains. Although evolution
algebra theory is an abstract system, it gives insight into the understanding of
non-Mendelian genetics. For instance, once we apply evolution algebra theory
to the inheritance of organelle genes, we can predict all possible mechanisms to
establish the homoplasmy of cell populations. Actually, these mechanisms are
hypothetical mechanisms in current mitochondrial research. Using our alge-
bra theory, it is also easy to understand the coexistence of triplasmy in tissues
of sporadic mitochondrial disorder patients. Further more, once the algebraic
structure of asexual progenies of Phytophthora infectans is obtained, we can
make certain important predictions and suggestions to plant pathologists.

In history, mathematicians and geneticists once used nonassociative
algebras to study Mendelian genetics. Mendel [30] first exploited symbols that
are quite algebraically suggestive to express his genetic laws. In fact, it was
later termed “Mendelian algebras™ by several other authors. In the 1920s and
1930s, general genetic algebras were introduced. Apparently, Serebrowsky [31]
was the first to give an algebraic interpretation of the sign “x”, which indi-
cated sexual reproduction, and to give a mathematical formulation of Mendel’s
laws. Glivenkov [32] introduced the so-called Mendelian algebras for diploid
populations with one locus or two unlinked loci. Independently, Kostitzin [33]
also introduced a “symbolic multiplication” to express Mendel’s laws. The sys-
tematic study of algebras occurring in genetics can be attributed to I. M. H.
Etherington. In his series of papers [34], he succeeded in giving a precise
mathematical formulation of Mendel’s laws in terms of nonassociative al-
gebras. Besides Etherington, fundamental contributions have been made by
Gonshor [35], Schafer [36], Holgate [37,38], Hench [39], Reiser [40], Abraham
[41], Lyubich [47], and Worz-Busekos [46]. It is worth mentioning two un-
published work in the field. One is the Ph.D. thesis of Claude Shannon, the
founder of modern information theory, which was submitted in 1940 (The
Massachusetts Institute of Technology) [43]. Shannon developed an algebraic
method to predict the genetic makeup in future generations of a population
starting with arbitrary frequencies. The other one is Charles Cotterman’s
Ph.D. thesis that was also submitted in 1940 (The Ohio State University)
[44] [45]. Cotterman developed a similar system as Shannon did. He also put
forward a concept of derivative genes, now called “identical by descent.”

During the early days in this area, it appeared that the general genetic
algebras or broadly defined genetic algebras, could be developed into a field
of independent mathematical interest, because these algebras are in general
not associative and do not belong to any of the well-known classes of nonasso-
ciative algebras such as Lie algebras, alternative algebras, or Jordan algebras.
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They possess some distinguishing properties that lead to many interesting
mathematical results. For example, baric algebras, which have nontrivial rep-
resentations over the underlying field, and train algebras, whose coefficients of
rank equations only are functions of the images under these representations,
are new concepts for mathematicians. Until 1980s, the most comprehensive
reference in this area was Worz-Busekros’s book [46]. More recent results, such
as genetic evolution in genetic algebras, can be found in Lyubich’s book [47].
A good survey is Reed’s article [48].

General genetic algebras are the product of interaction between biology
and mathematics. Mendelian genetics introduced a new subject to mathe-
matics: general genetic algebras. The study of these algebras reveals algebraic
structures of Mendelian genetics, which always simplifies and shortens the
way to understand genetic and evolutionary phenomena. Indeed, it is the in-
terplay between purely mathematical structures and the corresponding genetic
properties that makes this area so fascinating. However, after Baur [49] and
Correns [50] first detected that chloroplast inheritance departed from Mendel’s
rules, and much later, mitochondrial gene inheritance was also identified in the
same way, and non-Mendelian inheritance of organelle genes was recognized
with two features — uniparental inheritance and vegetative segregation. Now,
non-Mendelian genetics is a basic language of molecular geneticists. Logically,
we can ask what non-Mendelian genetics offers to mathematics. The answer
is “evolution algebras” [24].

The purpose of the present book is to establish the foundation of the
framework of evolution algebra theory and to discuss some applications of
evolution algebras in stochastic processes and genetics. Obviously, we are just
opening a door to a new subject of the mixture of algebras and dynamics and
to the many new research topics that are confronting us. To promote further
research in this subject, we include many specific research topics and open
problems at the end of this book. Now, I would like to briefly introduce the
content contained in each chapter of the book.

In Chapter 2, we introduce the motivations behind the study of evolu-
tion algebras from the perspective of three different sciences: biology, physics,
and mathematics. We observe phenomena of uniparental inheritance and the
reproduction of bacteria involved by bacteriophages; we also analyze the neu-
tral Wright-Fisher model for a haploid population in population genetics. We
study motions of particles in a space and discrete flows in a discrete space,
and we also observe reactions among particles in general physics. We mention
some research in knot theory where negative probabilities are involved. We
analyze and view a Markov chain as a discrete time dynamical system. All
these phenomena suggest a common and intrinsic algebraic structure, which
we define in chapter 3 as evolution algebras.

In Chapter 3, evolution algebras are defined; their basic properties are
investigated and the principal theorem about evolution algebras — the
hierarchical structure theorem — is established. We define evolution algebras
in terms of generators and defining relations. Because the defining relations
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are unique for an evolution algebra, the generator set can serve as a basis
for an evolution algebra. This property gives some advantage in studying
evolution algebras. The basic algebraic properties of evolution algebras, such
as nonassociativity and nonpower-associativity are studied. Various algebraic
concepts in evolution algebras are also investigated, such as evolution sub-
algebras, the associative multiplication algebra of an evolution algebra, the
centroid of an evolution algebra and, the derived Lie algebra of an evolution
algebra. The occurrence relation among generators of an evolution algebra
and the connectedness of an evolution algebra are defined. We utilize the oc-
currence relation to define the periodicity of generators. From the viewpoint
of dynamical systems, we introduce an evolution operator for an evolution
algebra that is actually a special right (left) multiplication operator. This
evolution operator reveals the dynamical information of an evolution alge-
bra. To describe the evolution flow quantitatively, we introduce a norm for an
evolution algebra. Under this norm, an evolution algebra becomes a Banach al-
gebra. As we have mentioned above, what makes the evolution algebra theory
different from the classical algebra theory is that in evolution algebras we can
have two different categories of generators, algebraically persistent generators
and algebraically transient generators. Moreover, the difference between alge-
braic persistency and algebraic transiency suggests a direction of dynamical
flow as it displays in the hierarchy of an evolution algebra. The remarkable
property of an evolution algebra is its hierarchical structure, which gives a
picture of a dynamical process when one takes multiplication in an evolution
algebra as time-step in a discrete-time dynamical system. Algebraically, this
hierarchy is a sequence of semidirect-sum decompositions of a general evolu-
tion algebra. It depends upon the “relative” concepts of algebraic persistency
and algebraic transiency. By “relative” concepts, we mean that concepts of
higher level algebraic persistency and algebraic transiency are defined over the
space generated by transient generators in the previous level. The difference
between algebraic persistency and algebraic transiency suggests a sequence of
the semidirect-sum decompositions, or suggests a direction of the evolution
from the viewpoint of dynamical systems. This hierarchical structure demon-
strates that an evolution algebra is a mixed subject of algebras and dynamics.
We also obtain the structure theorem for a simple evolution algebra. We give
a way to reduce a “big” evolution algebra to a “small” one that still has the
same hierarchy as that of the original algebra. We call it the reducibility. This
reducibility gives a rough classification, the skeleton-shape classification, of
all evolution algebras.

To demonstrate the importance and the applicability of the abstract
subject — evolution algebras we study a type of evolution algebra that
corresponds to or is determined by a Markov chain in Chapter 4. We see
that any general Markov chain has a dynamical hierarchy and the proba-
bilistic flow is moving with invariance through this hierarchy, and that all
Markov chains can be classified by the skeleton-shape classification of their
evolution algebras. When a Markov chain is viewed as a dynamical system,
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there should be a certain mechanism behind the Markov chain. We view this
mechanism as a “reproduction process.” But it is a very special case of repro-
duction process. Each state can just “cross” with itself, and different states
cannot cross, or they cross to produce nothing. We introduce a multiplication
for this reproduction process. Thus an evolution algebra is defined by using
transition probabilities of a Markov chain as structural constants. In evolu-
tion algebras, the Chapman-Kolmogorov equations can be simply viewed as
a composition of evolution operators or the principal power of a special ele-
ment. By using evolution algebras, one can see algebraic properties of Markov
chains. For example, a Markov chain is irreducible if and only if its evolution
algebra is simple, and a subset of state space of a Markov chain is closed in
the sense of probability if and only if it generates an evolution subalgebra.
An element has the algebraic period of d if and only if it has the proba-
bilistic period of d. Generally, a generator is probabilistically transient if it
is algebraically transient, and a generator is algebraically persistent if it is
probabilistically persistent. When the dimension of the evolution algebra de-
termined by a Markov chain is finite, algebraic concepts (algebraic persistency
and algebraic transiency) and analytic concepts (probabilistic persistency and
probabilistic transiency) are equivalent. We also study the spectrum theory
of the evolution algebra My determined by a Markov chain X. Although the
dynamical behavior of an evolution algebra is embodied by various powers
of its elements, the evolution operator seems to represent a “total” principal
power. From the algebraic viewpoint, we study the spectrum of evolution op-
erators. Particularly, the evolution operator is studied at the Oth level in the
hierarchy of an evolution algebra. For example, for a finite dimension evolu-
tion algebra the geometric multiplicity of the eigenvalue 1 of the evolution
operator is equal to the number of the Oth simple evolution subalgebras. The
spectrum structure at higher level is an interesting further research topic.
Another possible spectrum theory could be the study of plenary powers. Ac-
tually, we have already defined the plenary power for a matrix. It could give a
way to study this possible spectrum theory. Any general Markov chain has a
dynamical hierarchy, which can be obtained from its corresponding evolution
algebra. We give a description of probability flows on its hierarchy. We also
give the sojourn times during each simple evolution subalgebra at each level on
the hierarchy. By using the skeleton-shape classification of evolution algebras,
we can reduce a bigger Markov chain to a smaller one that still possesses the
same dynamical behavior as the original chain does. We have also obtained
a new skeleton-shape classification theorem for general Markov chains. Thus,
from the evolution algebra theory, algebraic properties about general Markov
chains are revealed. In the last section of this chapter, we discuss examples
and applications, and show algebraic versions of Markov chains, evolution
algebras, also have advantages in computation of Markov processes.

We begin to apply evolution algebra theory to biology in Chapter 5.
We first introduce the basic biology of non-Mendelian genetics including or-
ganelle population genetics and Phytophthora infectans population genetics.
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We then give a general algebraic formulation of non-Mendelian inheritance. To
understand a puzzling feature of organelle heredity, that is that heteroplasmic
cells eventually disappear and the homoplasmic progenies are observed, we
construct relevant evolution algebras. We then can predict all possible mech-
anisms to establish the homoplasmy of cell populations, which actually are
hypothetical mechanisms in current mitochondrial research [55]. Theoreti-
cally, we can discuss any number of mitochondrial mutations and study their
genetic dynamics by using evolution algebras. Remarkably, experimental bi-
ologists have observed the coexistence of the triplasmy (partial duplication of
mt-DNAs, deletion of mt-DNAs, and wild-type mt-DNAs) in tissues of pa-
tients with sporadic mitochondrial disorders. While doctors and biologists
cultured cell lines to study the dynamical relations among these mutants of
mitochondria, our algebra model could be used to predict the outcomes of their
cell line cultures. We show that concepts of algebraic transiency and algebraic
persistency catch the essences of biological transitory and biological stability.
Moreover, we could predict some transition phases of mutations that are dif-
ficult to observe in experiments. We also study another type of uniparental
inheritance about Phytophthora infectans that cause late blight of potatoes
and tomatoes. After constructing several relevant evolution algebras for the
progeny populations of Phytophthora infectans, we can see different geneti-
cally dynamical patterns from the complexity of the progenies of Phytophthora
infectans. We then predict the existence of intermediate transient races and
the periodicity of reproduction of biological stable races. Practically, we can
help farmers to prevent spread of late blight disease. Theoretically, we can
use evolution algebras to provide information on Phytophthora infectans re-
production rates for plant pathologists.

As we mentioned above, evolution algebras have many connections with
other fields of mathematics. Using evolution algebras it is expected that we
will be able to see problems in many mathematical fields from a new perspec-
tive. We have already finished some of the basic study. Most of the research
will be very interesting and promising both in theory and in application. To
promote better understanding and further research in evolution algebras, in
Chapter 6, we list some of the related results we have obtained and put for-
ward further research topics and open problems. For example, we obtain a
theorem of classification of directed graphs. We also post a series of open
problems about evolution algebras and graph theory. Because evolution alge-
bras hold the intrinsic and coherent relation with graph theory, we will be able
to analyze graphs algebraically. The purpose of this is that we try to establish
a brand new theory “algebraic graph theory™ to reach the goal of Gian-Carlo
Rota — “Combinatorics needs fewer theorems and more theory” [29]. On the
other hand, it is also expected that graph theory can be used as a tool to
study nonassociative algebras. Some research topics in evolution algebras and
group theory, knot theory, and Thara-Selberg zeta function, which we post as
further research topics, are also very interesting. Perhaps, the most significant
topic is to develop a continuous evolution algebra theory for continuous time
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dynamical systems. It is also important to use evolution algebras to develop
algebraic statistical physics models. In this direction, the big picture in our
mind is to describe the general interaction of particles. This means any two
generators can multiply and do not vanish when they are different. This in-
volves an operation, multiplication, of three-dimensional matrices. Some pre-
liminary results have already been obtained in this direction. We are also
interested in questions such as how evolution algebras reflect properties of a
3-manifold where a particle moves when the recording time period is taken
as an infinite sequence, and what new results about the 3-manifold can be
obtained by the sequence of evolution algebras, etc.

We give a list of background literature in the last section, though the
directly related literature is sparse.
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