SOME TOPICS IN PROBABILITY
& ANALYSIS

—N



Conference Board of the Mathematical Sciences
REGIONAL CONFERENCE SERIES IN MATHEMATICS

Supported by the
National Science Foundation

Number 70

SOME TOPICS IN PROBABILITY
AND ANALYSIS

Richard F. Gundy

Published for the
Conference Board of the Mathematical Sciences
by the
American Mathematical Society
Providence, Rhode Island




Lectures given at DePaul University,
Chicago, Illinois, July 14-18, 1986
Supported by the Conference Board

of the Mathematical Sciences

Research supported by National Science Foundation Grant DMS-8602950.
1980 Mathematics Subject Classifications (1985 Revision). 60G44, 26D15,
26B15, 44A15, 47D0S5, 60J0S, 60J25.

Library of Congress Cataloging-in-Publication Data

Some topics in probability and analysis / Richard F. Gundy.

p. cm. —(Conference Board of the Mathematical Sciences

Regional conference series in mathematics; no. 70.)

Bibliography: p.

ISBN 0-8218-0721-8 (alk. paper)

1. Inequalities (Mathematics) 2. Harmonic functions. L. Series: Regional
conference series in mathematics; no. 70.
QAL.R33 no.70 [QA 295] 510 s—dcl9 [512.9'7] 89-303 CIP

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for
them, are permitted to make fair use of the material, such as to copy an article for use in teaching or
research. Permission is granted to quote brief passages from this publication in reviews, provided the
¢ustomary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication (in-
cluding abstracts) is permitted only under license from the American Mathematical Society. Requests for
such permission should be addressed to the Executive Director, American Mathematical Society, P.O. Box
6248, Providence, Rhode Island 02940.

The owner consents to copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright
Law, provided that a fee of $1.00 plus $.25 per page for each copy be paid directly to the Copyright
Clearance Center, Inc., 21 Congress Street, Salem, Massachusetts 01970. When paying this fee please
use the code 0160-7642/89 to refer to this publication. This consent does not extend to other kinds of
copying, such as copying for general distribution, for advertising or promotion purposes, for creating new
collective works, or for resale.

Copyright (©)1989 by the American Mathematical Society. All rights reserved.
Printed in the United States of America
The American Mathematical Society retains all rights
except those granted to the United States Government.

The paper used in this book is acid-free and falls within the guidelines
established 10 ensure permanence and durability. €



Contents

Introduction

The Barlow-Yor Inequalities

The Density of the Area Integral

Norm Inequalities for D

Local Estimates

Terminal Expectations and Singular Integrals

The Ornstein-Uhlenbeck Semigroup

P. A. Meyer’s Riesz Transform Inequalities

The Ornstein-Uhlenbeck Process for the Rademacher Functions

References

o NN

11
18
31
37
44
47



Introduction

In these lectures I concentrated on three topics: (1) Local time theory
for Brownian motion and some geometrical inequalities for harmonic func-
tions in the upper half-plane R%*!, (2) A probabilistic treatment of Riesz
transforms in R%*! and semimartingale inequalities. (3) A discussion of the
Ornstein-Uhlenbeck semigroup and P. A. Meyer’s extension of the Riesz in-
equalities for the infinite-dimensional version of this semigroup, introduced
by Malliavin (see [26, 27]). :

Regarding topic (1), we sketch a proof of the inequalities obtained by Bar-
low and Yor in [1] for the maximal local time functional. These inequalities
led the author to some new inequalities for a geometric functional, defined
on harmonic functions in R}*!, called the density of the area integral.

Topic (2) is a probabilistic approach to the Riesz transform inequalities in
R". This method of proof was first introduced by the author and Varopou-
los [24]. The method was elaborated further by the author with Silverstein
[23]. We show that the same ideas are effective in proving semimartingale
inequalities of the type usually obtained for martingales.

The final topic in the series is a discussion of the Ornstein-Uhlenbeck semi- -
group. We give a proof of Nelson’s hypercontractivity inequality, following
the ideas of Neveu [29]. Then, we present a proof of P. A. Meyer’s inequal-
ities, the analogues of the classical Riesz transform inequalities in which the
role of the Laplacian A”is replaced by the Ornstein-Uhlenbeck generator,
A— X -V. This approach, found in [21], is a direct extension of the methods
discussed in the previous section (topic (2)).

The author would like to express his warmest gratitude to the organizers
of the Conference at DePaul University, the participants, and especially, to
Roger Jones for his enthusiastic hospitality.



The Barlow-Yor Inequalities

For HP-theory of harmonic functions in R?*!, two functionals have been
studied in detail: the nontangential maximal function and the Lusin area
function. These two geometric objects are analogs of two probabilistic func-
tionals associated with continuous martingales. If X = {X;,t > 0} is a con-
tinuous martingale, then

—sup]X,l and S(X —(X)'/2

(where (X) is the quadratic variation of X). The basic relatxon between S(X)
and X* is well known now:

NSOl = 1 X"1lp

for all 0 < p < oo. Until the appearance of Barlow and Yor’s paper [1], no
-other functional “of significance” had been found. They discovered another
functional that is, in some sense, in between the maximal function and the
quadratic variation: the maximal local time. Suppose for simplicity that
X is Brownian motion run up to a stopping time 7. The local time of the
Brownian motion may be defined as follows. For each trajectory @ consider
the mapping X(w) : {0,7] — R!, and the “push-forward” map X.. That
- is, X.(dt) is the image measure of Lebesgue measure on [0, 7] on R!, under
the mapping X. The measure X,(dt) on R! is absolutely continuous, by a
result due to P. Lévy, and its density L(r) = L(r, , 1) is called the local
time at r (up to time t for the trajectory w). Consider L(r) as a process in
the real parameter r. Of course, the filtration, based on the space parameter
r, is completely different from the time filtration. Now, take the maximal
function L* = sup, L(r).
We seek to prove a good-4 inequality of the form

(1) P(L* > pA,S(X) < 62) < &(B,9)P(L" > 4)

with 8> 1, d < 1, valid for all 2 > 0. From this we can obtain an inequality
for norms of the form e -
1L, < CpllS(X)llp,

p > 1, by now standard arguments [7]. The converse inequality is obtained
by another good-4 inequality with the roles of L* and S(X) interchanged.

2



THE BARLOW-YOR INEQUALITIES 3

Because L* is a maximal function across a different filtration than the one
giving time evolution, Barlow and Yor appealed to the Ray-Knight theorem
which specifies the structure of L(r) as a-process. However, during these
lectures, Burgess Davis observed that this was not necessary. The scaling
properties of these functionals already foretell the good-A inequalities and
their consequences. As it turns out, Richard Bass had observed the same
thing some months before. Their articles appear in [3, 11]. (That the scaling
and Markov property implies the good-4 inequality between S(X) and X*
already was observed by Burkholder [8].)

Suppose we wish to prove (1). Let X’ be the process X stopped at a
stopping time ¢. The key observation is that, for constant times t, the random
variable L*(X') scales like Brownian motion:

L*(X") ~ AL* (X7

and, like (X')* and S(X'), it is an increasing, subadditive functional in ¢
(since L(X',r) is additive for each fixed r). Now the proof of the good-A
inequality is standard: Let
p=inf{e:L*(X') =2}, v=inf{t:L*(X")= BA}.
If X%, X" and 6, are the stopped Brownian mbtions, and shift operators,
respectively, then L*((X 0 8,)""#) = (f — 1)A on the set {u < 0}. Now
suppose in addition, that 7!/2 < §4. Then the lifetime of (X -6,) is bounded
by (d4)?, so that
P(L* > i, 112 <62) = P(L*((X 0 6,)"*) = (B — A, 12 < 63, u < 00)
S P(L*(X06,)%" > (B - 1)A, u < o).
Now (d4)? is a constant stopping time, and we may rescale:
L*(X 06,) ~ (SA)L(X 06,)'
so that
P(L*(X06,)®" > (B~ )4, u < oo)
=P((GA)L*(X 06,)"' > (B - 1)A, u < )

. /P(L‘(X 08,) > (‘BJ;I)HX,,)P(;; ok

Now by the joint continuity (¢, r) of L(X,r), and the Markov character of
local time, P(L*(X 0 6,)' > C||X,) is uniformly small in X, as C tends to
infinity. Thus,

-0
B -1
as desired. The converse inequality is obtained in much the same way. For
the details, see [11].

P(L* > BA, "2 < 62) < o( )P(L* > A)



4 THE BARLOW-YOR INEQUALITIES

.

REMARKS. What is L* good for? The answer lies in the theorems one can
prove with the new device.

(1) Factorizations, and ratios. The most straightforward application is the
following observation. Suppose X is a continuous martingale. Following
what we did for Brownian motion, we have a measure d(X) on [0, (X)) and
a push-forward X.(d(X)) = L(r)dr, where —X* <r < X*.

By definition,

(X) = /_ _Ldr<2x° e

This intriguing “factorization” of (X) is perhaps the principal feature of L*.
It prompted this writer to wonder whether such a factorization could be ob-
tained when (X) and X* were replaced by the geometrically defined analogs,
A and N, the Lusin area function and the nontangential maximal function,
respectively. This will be the subject of the next section.

(2) LlogL characterizations for nonnegative martingales X: X* belongs
to L' if and only if X, belongs to Llog* L [17]. This result was recently
extended in an interesting way by Brossard and Chevalier [6]. Their theorem
concerns a martingale X of arbitrary sign: The martingale X is in L Log* L
if and only if X* belongs to L' and, L(0) belongs to L log" L.

Notice that for a positive martingale, L(0) = 0, and that zero is not dis-
tinguished here: L(0) is in Liog* L if and only if L(r), —o0 < r < oo, is in
Llog" L. i

Here is a proof, drawn from [6]. Assume for simplicity that X is a Brown-
ian motion stopped at a stopping time 7. By Tanaka’s formula, the terminal
variable

[ Xoo] = Yoo + L(X,0)

where Y is the random variable

0
Now recall the Llog L results: For any martingale M, we have
[|IM*]l; € C {E(Molog" Mco) + 1}

and for nonnegative martingales (see [17])

E(Moo logt M) < E(M*) + ||Molls log* || Moolls-
We propose to show that for X, the stopped Brownian motion,

sup E(|X;|log* | X;|) < C {E(L(X,0) log*t L(X,0)) + E(X*)}.
t

If we take conditional expcctations, then

E(IX|||F) = | Xool: and E(L(X,0)||F;) = L((X.0)



THE BARLOW-YOR INEQUALITIES 5

are nonnegative martingales. By the above inequalities, and Jensen’s inequal-
ity,
CE(|X,|log* | X:|) < E(|1X]*) + || X||1 log™ || X1]1

< BOr)+ E( sup L(X,0)) + 1X1) Tog” 11l

< E(Y*) + CE(L(X,0)log" L(X,0)) + C + || X1|: log" [| X[}
< CE(X*)+ CE(L(X,0)log" L(X,0))
+ C + || X}l log* || X1l
since E(Y*) < CE(X*) by the standard H'-inequality. The other direc}ion,

E(L(X,0)log" L(X,0)) < C {sgp E(1X/|log" | X,]) + E(X;,)}

is proved in the same manner.

The Brossard-Chevalier theorem, too, has a geometric version, based on
what we call the density of the area integral, the subject of the next section.
Our goal will be to take from the probability theory the idea of local time and
replace it by a geometric functional. With some regret, we shall also deprive
ourselves of the probability ideas in order to find a purely analytic proof of
Barlow-Yor type inequalities in this setting.'




The Density of the Area Integral

The references for this section are [18, 20, and 23]. The geometric analogue
of the quadratic variation of a martingale is, formally, the area integral

A? == =mul?(x, y)dxd
(1)(x0) //mo)y IVuP(x, y)dx dy

where I'(xp) is the cone with base x, and axis y > 0. The aperture is some-
times indicated with a subscript a > 0. Thus,

Fa(x0) = {(x, y):|x — X0l < ay};

if a = 1, we omit the subscript.

If (X), the quadratic variation of a martingale, has an associated lo-
cal time, one is led to inquire whether 4A2(x) can be treated in the same
manner. Local time for X is the “push-forward” X.(d(X)). In the same
spirit, replace X by the harmonic function u: consider u(x, y) as a mapping
u:I(xg) — R!. Then u,(y'~"|Vu|(x, y)dxdy) is the ‘push-forward” of the
indicated measure to another measure on R!. The specification of this mea-
sure may be accomplished in two ways:

(1) The coarea formula (elementary version). Let u(x, y) be a C*°-function
on R}*! to R! and y, f be a pair of functions with compact support in R**+!
and R, respectively. Suppose that on the support of y, |Vu| # 0. Then
by the standard change of variables theorem from advanced calculus, we
can find functions v;, i = 1,2,...,n, defined on R"*! such that the n + 1
vector (v(x, ¥), u(x, y)) forms a coordinate system with the property that the
Jacobian

| det(8(v, u)/0(x, y))| = |Vul.

This translates integrals in the following way:

/ / S (ulx, )y (x, p)|Vu(x, y)P dx dy
= [[ rwv  vun.w, y(o.u)dv du

The loss of a power on |Vu/|? going from left to right comes from the interpre-
tation of |Vu| as the Jacobian of a transformation. In this context, we do not

6



THE DENSITY OF THE AREA INTEGRAL 7

have to worry about the complications of the general coarea formula of Fed-
erer [12] since the presence of the “extra” |[Vu| on the right-hand side (|Vu|?
as opposed to |Vu|) means that we can avoid discussion of critical values of
the transformation (v(x, y), u(x, y)). Finally, notice that for y with compact
support in R7*', [(y - |Vu|)(x(v,r), y(v,r))dv is a continuous function of
the parameter r, indexing the level surfaces {(x, y): u(x, y) = r}.

Now we apply these considerations to the area integral

/y!Vu|2wy(x0 —x)dxdy = A*(u)(xp)

where y, is the dilated “bump” function given above. %ve‘.

2w = [ [y Tl dy) d
W)ko) / o / Yl ul(x.y)wy(xO—‘xafr r

N(xo)
= / D(u;r)(xo) dr
=N(xo)
where o,(dx dy) is the n-dimensional Hausdorff surface meaSUre'or the level

set u = r. Notice that D(u;r) is lower semicontinuous as a function of r, so
that the supremum and the essential supremum (over r) coincide. We define

D(u)(xo) = sup D(u; r)(xo).

(2) A second change of variables formula. In the previous change of vari-
ables formula, we have assumed that ¥ was smooth, but not necessarily har-
monic. Now we suppose # to be harmonic. We wish to prove

D(u; r)(x0) = / / YUy (X0 — X)A( — r)*(dx, dy).
Write o
Fis)= / (s —r)* f(r)dr

so that F"(s) = f(s), and if u(x, y) is harmonic, AF[u] = S(u)|Vul®. Again
for any y(x, y) with compact support strictly in the interior of R**!, we have

// w(x, y)AF[ul(x, y)ydxdy = / AyFluldxdy
= ///(Aw)f(r)(u —r)tdrdxdy
= [[ wienseaw=-rnt@xdyar
I\iow form an integral using the dilated function y,(x) as before, and F(r) =
! .We have |

/,wa(xo - X)A(u—r)*(dxdy) = D(u;r)(xy) a.e.
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as defined above since the two change of variables formulas give the same
result when integrated in r. We would like to establish that the two proce-
dures give the same result for all r. We conjectured that A(u — r)* never
charges the set |Vu| = 0, but we could not prove this. Nevertheless, by Sard’s
theorem, the set of r such that u~'(r) contains points {(x, y): Vu(x, y) = 0}
has Lebesgue measure zero. Furthermore, the integral

// vy, (xo — X)A(u —r)* (dx dy)

is lower semicontinuous as a function of r, so that again, the supremum
over r is equal to the essential supremum over r. Therefore, the supremum
functional D(u)(xy) may be defined by procedure (1) or procedure (2).

" The question that we could not answer, that is, whether A(u — r)* charges
therset where |Vu| = 0 has recently been answered by Jean Brossard [5]. In
fact, Brossard shows, using the Weierstrass preparation theorem, that locally,
{|Vu| = 0} is a surface of dimension at most n— 1 in R"*!. This means that
this’s‘urfage is of capacity zero (see Carleson [10, p. 28]) and therefore, cannot
support any measure with finite potential, such as A(u — r)*. Conclusion:
A(u—r)* does not charge {|Vu| = 0}. Here is an alternative proof of the fact
that, at most, the set {Vu = 0} is of dimension n—1 in R’*'. First of all, since
u is assumed to be nonconstant on R%"', there is a partial derivative v of some
finite order such that the set {Vu = 0} is contained in {Vv = 0;D%v # 0}.
Observe that the latter surface has dimension at most n — 1: The matrix D?v
is symmetric and of trace zero. Certainly {Vv = 0} has dimension at most n,
the exact dimension given by the number of independent rows in the matrix
D2v. However, since D?v is not trivial, and of trace zero, there must be at
least two independent rows. (To see this, simply diagonalize the matrix.)



Norm Inedualities for D

With the maximal density D defined in the most natural way, it is tempting
to ask whether the Barlow-Yor inequalities hold for D. That is what we wish.
to show.

THEOREM. ||D||, =~ ||4]|, for 0 < p < 0.

There are two proofs known for this set of inequalities. The first, given
in [18], relied on the Barlow-Yor inequalities together with a probabilistic
argument relating the local time of the martingale u(B;) to the area integral.
The second proof [23] relies on a technique of Barlow and Yor and the ma-
chinery of the Calderén-Zygmund theory. It is this method that we present
here. The proof is not quite perfected. For example, the good-A inequalities
proved by Barlow and Yor for L* have escaped us, so that the most general
integral inequalities of the form

/ ®(D)(x0) dxo = / D(4)(x0) doxo

are still open.
The original selling point for the D function (see [18]) was a ratio theorem
of the form ?

N2 @IN@l, = |I4ll,, 0<p<oo.
One direction is easy: Write
(A/N')(N'?) = 4.
and use Schwarz’ inequality to obtain
4115 < A2 /NI x [INIG.
Then use ||N]|, < C,||4]|, to arrive at the inequality
ll4ll, < Coll4?/N1l,.

The other direction uses the pointwise relation

N(u)
AX(u) = D(u;r)d
w=[ | Dsrydr

9



10 NORM INEQUALITIES FOR D

and its consequence A2 < 2N - D. This means that ||4%/N||, < 2||D||,; the
problem now is to prove that ||D||, < Cp||A||,- d

The study of ratios of the functionals 4 and N was continued in [13], using
the technique of the good-A inequality. However, it was always necessary in
[13] to require a larger cone aperture for N than for 4, so that the statement
of the norm inequalities is not as succinct as above. The D functional, like
local time, seems to measure another aspect of the behavior of u. Recall
that, in the previous section we gave the Brossard-Chevalier characterization
of the Zygmund class L log L using the local time. The same authors show
that D(u;0) belonging to LlogL characterizes Llog L as a subspace of H )
[6].

So where are we now? We wish to prove the main theorem of this section.
We have seen, in the exam'ination of ratios, that for 0 < p < oo,

4], < CpllA4*/Nllp < 2C,|IDll-

Therefore, our main task is to prove that ||D||, < Cpl||4]|,.

When confronted with the problem of proving the boundedness of D, the
first problem is to choose the appropriate definition of D. The two equiva-
lent definitions are not symmetrical in all respects: viewing D(u;r) via the
coarea formula seems to lead to a dead end. The Laplacian definition, how-
ever, opens the possibility of using Green’s theorem. The drawback of this
approach is clear, in that we*are limited to harmonic functions. It would be
interesting, in the light of everything we know about area integrals, [14, 9] to
develop a proof of the boundedness of D that does not require u(x, y) to be
the harmonic extension of a distribution f defined on R".

Let us pass to the details of the proof. It is convenient to work with a
smoothed version of the area integral. Let y(x) be a smooth, nonnegative,
radial function on R”. We assume that y(x) decreases monotonically as |x|
increases y(x) > -;—V/(O) when |x| = % and that w(x) has integral one. For
y >0, let ,(x) = y~"w(x/y). Our version of the Lusin area integral is then

20 = [ [ vyl - x)y1vulx.y) dedy
with associated densities
D)) = [ [ (o~ X)yAlu ~ r)* (dxdy).

Here we have an abuse of notation with D defined with respect to cones-and
with respect to the smooth approximation of the identity w. As will become
clear in the proof, the precise shape ot spread of y is not important, in so
far as the support of v is compact. Thus D(conical) can be majorized by
D(smooth) and conversely. Therefore, the boundedness of D is independent
of the exact shape or spread of the approximate identity that defines it.
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Local Estimates

The exposition is based on [23]; however, since that paper was written,
Murai and Uchiyama [28] have improved the technique for doing such in-
equalities.

We introduce W), a subset of R”, and associated with it the union of cones
W = Uew, I'(x) and also the union of larger cones W, = Usrem, Fa(x) with
a > | fixed once and for all. In the rest of this section we work with the “cut
down” functions Na(Wo)(Xo) = Supr. (x,) 41w,

D(W,1)(xo) = / / Wy (X0 — X)Tw (x, p)yA(u - t)*(dx, dy)

with Iy, , Iy denoting the indicators (characteristic functions to nonproba-
bilists) of W, W,.

LEMMA 1. Foreacht € R and for 1 < p < o
Jewmowyra<c JLACAENE S

with C > 0 depending only on p and the dimension n.

PrROOF. We can obtain the inequality as a consequence of the method
of Murai and Uchiyama [28]. They introduced a new technique for obtain-
ing the good-A inequality that significantly improved the estimates given in
[13]. (The method allowed Uchiyama to complete McConnell’s subharmonic
function inequality. See [34].) We must establish a good-A inequality of the
form

(1)  m(DWt)> P, No(Wo) < 02) < c exp(—cB/S)m(D(W,1) > 4)

1



12 LOCAL ESTIMATES

for 6 > 0 and g > 1 sufficiently large. For a fixed p > 1, this inequality
implies

@ [omor=p [ |

<B’p fow AP='m(D(W, 1) > BA, Na(W.) < 64) dA

P

D(W 1)
B

+B%p /0 m AP~ 'm(N,(W,) > d3)dA _

< Cexp (- (cg)) p/oool”"m(D(W,) > A)dA

+(5) [imowar :

=céxp (— (cg)) B / D, 1) +C (g), / iNa(W,)]?

If B is large, c exp(—cB/d)BP? < 1/2, so that, if the integrals are all finite, we
may subtract the right-hand side from the left to finish the proof. In general
we can truncate W and replace u to be a harmonic function with boundary
function in C3,(R"), so that the right side of (2) is finite, argue as above,
and then pass to the limit to establish (5) for the given u and W. Thus the
proposition will follow if we prove (1).

Let Q be an arbitrary cube in R” and

x€Vy

Vo= {x: D(W,t)> A, No(W,) <A} N Q; V='{ U F(x)nW}.

We shall prove that A(u — ¢)*, restricted to W N V, is a Carleson mea-
sure: If B(Q) is the box over Q of height m(Q)'/" (that is, {(x,y): x € Q,
0 < y < m(Q)'/"}) then

(3) Alu— )" (B(Q)NWNV) < cdim(Q).

Once we have this result, then it follows that D(W NV, t), being the balayage
of a Carleson measure, is a BMO function with BMO norm less than cdi.
(See Garnett [15, pp. 229-330].) By an extension of the John-Nirenberg
theorem (see Murai-Uchiyama, [28]), we have

m(D(W N V1) > PA) < c exp(—cB/S)m(D(W NV, 1) > A).

Since D(W N V,t) < D(W,t) in any case,-and D(W N V,t) = D(W,t) where
N,(W,) < 64 we have obtained the good-A estimate from the BMO inequality.
It remains to show that A(u—¢)*, restricted to W NV, is a Carleson measure.
For this we use Green’s theorem. Note, first of all, that we may assume that
|t| < dA: if not, the measure A(u — )* = 0 on W N V. The integration is
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taken over B = B(Q) intersected with W N V, so that

b el Dol heasli . e
/BanVyA(u 9 -./awanV)ya'l(u 0 3'I(u -

Here we are applying Green’s theorem altixdﬁgh some justification is required.
The function (u—¢)* as well as the boundary of BnW NV may be smoothed,
and the integral computed before passing to the limit. This gives an estimate

m(D(W;t) > BA, No(W,) < 6, Q)

+(u—-10)*

2 a i ay| ,_
3 BA Jotwnvy y,aﬂ(u 0 a’l, -
Since W c W,, we conclude that Y|Vu| < Co4 on 8(W N V) (This is because
Y|Vu| < CN,(W,) on W; see [30, p. 207].) The smooth function that ap-
proximates (# — a)* can be chosen with uniformly bounded derivatives, so
that y]a%(u —0)*| £ CéAlon d(WNV). Also (u—1t)* < 264 since we assume
[t] < N(W) and Ig‘s] < C; we conclude that (u — t)*l%%l < CoA. Finally, we

see that
/ do < Cm(Q)
a(BNWNY)

by the examination of the region. Thus we have shown that A(u — )* is a
Carleson measure. This concludes the proof of the lemma. ‘

The passage from D(u;r) to the supremum functional D(u) is made via an
inequality of Garsia, Rodemich, and Rumsey [16]. The idea for this passage,
due to Barlow and Yor [2], goes as follows: We first establish a smoothness
result of the form

ID(u;r)(x) = D(u; 5)(x)| < CB(x)|r — s|"/2-2®

for some p > 4, provided r,s are contained in an interval / =

{r: |r] < A}. Here all the points x belong to the set {x: N,( W,)(x) < i}

so that D(u;r)(x) = 0 outside of /. Now the function B(x) is defined as
D(u;r)(x) — D(u; 5)(x)|”

follows:
P -
B = | /,x, Ir —sp72

It turns out that B?(x) is integrable over the set {Na(W,) < 4}. The GRR
inequality should be understood as follows: If D(u;r)(x) were Holder con-
tinuous of order %, then clearly B?(x) = C(x) - ] < oo. If BP?(x) satisfies
this estimate, however, we have no guarantee that D(u;r)(x) is Holder con-
tinuous as a function of . The GRR inequality tells us that it Jjust misses by
the amount ¢ = 2/p. We estimate the supremum functional D(u)(x) by its
maximum oscillation, since it vanishes off / . Thus

D(u)(x) < CB(X),I"/Z—Z/P X CB(X)il/z‘z/P

dr ds.




