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Introduction

The workshop on “Arithmetic of complex manifolds” was held at the Mathe-
matisches Institut der Universitat in Erlangen from May 27 to May 31, 1988.
It was supported by the Deutsche Forschungsgemeinschaft in the context of its
Forschungsschwerpunkt “Komplexe Mannigfaltigkeiten”.

It was the aim of the meeting to bring together number theorists and algebraic
geometers to discuss problems of common interest, such as moduli problems, com-
plex tori, integral points, rationality questions, automorphic forms etc. During
recent years such problems, which are simultaneously of arithmetic and geometric
interest, have become more and more important.

This volume contains written versions of some of the lectures given at the work-
shop as well as papers of other participants.

We are grateful to all those who took part for their contributions to the success
of the conference, and in particular to the contributors of this volume. We would
also like to thank the DFG for financial support and the Erlangen Mathematical
Department for its hospitality.

The Editors.
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Surfaces on quintic threefolds associated to the
Horrocks-Mumford bundle.

Alf Bjgrn Aure!

§0. Introduction

A Horrocks-Mumford (abbreviated HM) quintic threefold is a quintic hypersurface in
P* = CP* being invariant under the Heisenberg group of level 5 and with 100 ordinary
double points as singularities. We will study the Picard group of a small resolution of a
general such quintic, say V |, and classify the smooth surfaces on V. In §1 we recall some
known facts about the HM-bundle, and in §2 we calculate the defect of V. We show in
83 the existence of three “types” of surfaces of low degree on V; A): Abelian surfaces of
degree 10 or 15. B): Determinantal surfaces of degree 10. C): Some surfaces of general
type of degree 20. In §4 we use these surfaces to find a basis for the Picard group of a
small resolution of V' (Prop. 4.6 ). Finally, we show that a smooth surface on V is either
a complete intersection of V and another hypersurface, or it is linked to a surface of type
A,Bjor C (Theorem 4.7).

§1. Preliminaries

We recall some basic properties of the HM-bundle and the Heisenberg group; for de-
tails see [H.M] and [B.H.M] : A minimal abelian surface A in P* is of degree 10 and has
polarization type (1,5). It is the zerolocus of a section of F ,the HM-bundle ; ¢;(F) = 5,
and we have an exact sequence
(1.1) 0— Opi — F — I4(5) — 0
The Heisenberg group H =< 0,7 > acts on the standard basis of P* = P(C®) | by
0 e — epy1, T ex — €efex , where € = €2™/5 and indices are to be read modulo 5.

We have h°(F) = 4, and a property of F is
(1.2) A? HY(F) = HO(N* F)H = H°(Op4(5))7.
The latter linear system of rank 6 has as base locus 25 lines:
(1.3) Lij=01{zo=21+z4=22+23=0},0<4,5 <4
After blowing up P* in the 25 lines, the linear system gives a morphism ¢

P4

(1.4) |™&_

Pi{—— 5 QCP®
Here ) =Im¢ is the Grassmannian of lines in P2 considered in P® via the Pliicker enibed-
ding. Generically € is 100 : 1, and it is seen to be given by
z € P* — { The pencil of sections of F vanishing in z }.
So a point p € Q corresponds to a pencil s; A s3,8; € H°(F),i = 1,2 (compare with
(1.2)). Let V,, denote the inverse image under ¢ of the tangent hyperplane section of §
inp; V, ={z € P*|si(a)Asz(x) =0} Then V, is singular in the , for p general,
100 points {71(p) = { = € P* | s1(z) = sy(z) = 0 } (the intersection of two abelian
surfaces of degree 10), and V, has no other singularities when p is general; V,, is said to
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be an HM-quintic. So a Zariski open subset of () parametrizes the HM-quintics, and an
HM-quintic is determined by one of its 100 singular points.
(1.5) The quintic hypersurface in P* of C.Schoen [S2] is

zy + 2} + 23 + 25 + 5 — Sror1T2T3T4 = 0.

This quintic is Heisenberg invariant, but it has 125 ordinary double points;

{ (1,¢, €, ec,e~(a+4+)) | a,bc € Zs } , so it is not an HM-quintic. The point on the
Grassmannian corresponding to this quintic is the (single) image point under £ of the 100
points obtained by letting the Heisenberg group act on the four points (1,1,¢*,e7* 1), k =
1,2,3,4. We will need this quintic to use it as a specialization of HM-quintics, and for
this reason we can only state the main results for a general HM-quintic.

§2 A small resolution and the defect of a general HM-quintic.

Let the HM-quintic V be defined by s; A s, = 0,s; € H°F),: = 1,2 and consider
V= {(z,(A\,p)) € P* x P! | Asi(z) + ps2(z) = 0} . Then by projection to the first
factor V — V is a small resolution; i.e. V is smooth and a singular point of V', say p €
{z € P* | s1(z) = s2(z) = 0} is replaced by a P'; denote it by L,. For a surface X in
V, let X denote the proper transform of X under V — V. The tangent cone of V in p
has two rulings of planes. We can divide the set of surfaces in V being smooth in p, in
twp families according to which ruling the tangent plane in p belongs to. One family has
the tangent planes of the pencil of abelian surfaces. For a surface X in this family X is
the blown up of X locally around p, and L, becomes the exceptional divisor; X.L, = —1
in V. If Y is a surface in the other family, then Y is isomorphic to Y locally around p
and Y.L,, = 1. If two smooth surfaces on V through p are linked to eachother , then they
belong to different families.

Let S denote the singular locus of V. The defect of V is by definition the rank of
the subvector space of Hy(V; Q) spanned by {L,},es (see [W])). A result of C.Schoen
[S1.Propl.3] used on our quintic V says
(2.1) defect(V) = h'(Is(5)).

Proposition 2.2: Let V = {F = 0} be a general HM-quintic. Then H°(Is(5)) is
generated by {-’”i%}osn:‘s4 together with 4 Heisenberg invariant quintics linearly indepen-
dent of F. The defect of V is 3.

Remark 2.3: V is a threefold with trivial canonical class, so H'(Ty) ~ H'(Q2),
where T} denotes the tangent bundle of V (see [C]). The space of first order deformations
of V is H'(Ty), and H'(Q22) is isomorphic to H°(Is(5))/ < x;g—i > o<i,j<4 by Griffiths’
residues. The proposition tells that these vector spaces have rank 4. It follows that
the open subset of the Grassmannian of lines in P® which parametrizes non-isomorphic
HM-quintics, is the whole moduli space of HM-quintics.

Proof of the proposition: The Heisenberg group act as Zs x Zs =: G on P*
and on H°(Op«(5)) . An element of H°(Op4(5))¢ is also invariant under the involution
¢ : ey — e_x. Hence there are points p;,[ = 1,...,4, such that S = U}, Ugecla(p)},
and «(p1) = «(p2), «(p3) = ¢(p4)-

The evaluation mapping ¥ : H°(Ops«(5)) — H°(Os) is a morphism of G-modules;
H®(Os) is 4 times the regular representation of G , and H°(Op«(5)) = 6Vo,0 B, 5 £(0,0) Ve,



where V; ; are the characters of G =< 0 > x < 7 >. A basis for 5V, , or 6V4 is

4 4
B,y={>e"]] x| Y jmj=s (mod5),> m; =5}
7=0

1=0

By Schur’s Lemma 1 decomposes; ¢ = @1, s, where for (r,s) # (0,0),¢,, : 5V, s —
4V, o, and o : 6Vo 0 — 4V are given by A — [(A(p1)]i=1,...4. Consequently

H°(Is(5)) = keryp = P ker ¢, .

The mapping £ : P* — — — P® (defined by 6Vp) of §1 sends the points py,...,p4 to
a single point p. Hence kergo comes from the set of hyperplanes in P® through p; a
5-dimensional vector space. So F' together with 4 other Heisenberg invariant quintics
constitute a basis for kert)g .

In the sequel we assume that (r,s) # (0,0). We want to show that the mapping
1, s is surjective. This is an open condition on S (or the image point p € Q under ¢),
so it suffices to check it in a special case because V is assumed to be general. Choose
m=(1,1,€,e7,1),l = 1,...,4; the points considered in (1.5). Write B, , ={f7,};=1,..5
and let M, = [f (p:)]1<ica1<j<s. The Galois automorphism € — ¢ sends M, , to M, ,
and ¢ sends M, , to M_,_, (modulo permutations of rows and of columns). Hence it is
enough to check that M o; My 1, Moy; My, and My, have maximal rank. This is straight
forward using the explicit bases B, , , so we omit the calculations.

The 24-dimensional space @ ;,s)(0,0) ker ¥r,s is contained in the space < :t,-g—f: > 0<ij<4-
This follows when one considers the action of G on the latter space. From the cohomology
of the exact sequence

0— 15(5) =) 0P4(5) — (95 — 0,
it follows by (2.1) that the defect of V' is 3.

83. Surfaces of low degree on V.

We will stick to the notation and the small resolution in §2.

First of all some wellknown facts for a smooth surface X in P*: Let d = the degree
of X , x = x(Ox), H = the class of a hyperplane section of X , K = a canonical divisor
and wy = Ox(K) , 7 = the sectional genus of X , and ¢ = h'(Ox) = the irregularity of
X. Then (see [H, p.434])

(3.1) d*—10d —5H.K —2K* 412y =0

and by adjunction

(3.2) HEK=2r-2-4d.

If X is contained in a hypersurface of degree n with only ordinary double points, then
(3.3) 7=1+d/2(d/n+n—4)—pu/2n , where p = #(Sing(V)N X).

(Proof: Use p = c2(Ix/I% (n)) and d*> = eo(Ix/1%) )
If X and X' are linked by the hypersurfaces V,, and V, (i.e. XUX' = V,,NV,), of
degree m and n respectively, then we have the exact sequence of linkage ([P.S])
(3.4) 0——+wx(5—(m+n))—»(9xez—>(’)x:——»0
We say that X is linked (m,n) to X"



The following surfaces on V will be used to find generators of PicV. To simplify the
reference we will divide them into three “types”.

Type A. Abelian surfaces on V:

By definition V contains a pencil of abelian surfaces of degree 10 passing through S,
the 100 singular points of V. For such a surface A, the invariants are d = 10, 7 = 6,
K=0, x=0,and A.L, = —1forallp € S.

By (1.1) we have h°(14(5)) = 3 , spanned by three G-invariant quintics. This ideal
is generated by global sections outside | L;; , and we can link A to a smooth surface A’
containing the 25 lines ; AUA’ = VN Vs, where V5 is a G-invariant quintic. From (3.4)
we get
(3.5) 0 — war — Ovuy, (5) — O4(5) — 0.

Since h°(Ovuv,(5)) = h°(Op«(5)) — 2 = 124 and h°(O4(5)) = 125 by Riemann-Roch, the
fact h°(14(5)) = 3 implies h®(wa) = 1 and h'(war) = A (O4) = 2; hence x(Oq) = 0.
By (3.3) and (3.2) we get H.K = 25 , and by taking global sections of (3.5) we find
K =¥ L;;. Since K* = —25 by (3.1), we can blow down the 25 skew lines L;;, and we
get an abelian surface by the Enriques’ classification. Since A’ is linked to A, we have
/i"Lp =1forall p € S. In Corollary 4.11 we will see that A’ has polarization type (2,10).

Conclusion: The surfaces of type A constitute two linear systems of divisors in V.

Type B. Determinantal surfaces of degree 10 on V:

At first, consider a slightly more general setting: Let M = M(z) be a 5x 5 matrix with
linear forms in zo,...,T4 as entries , and let Vjs denote the quintic hypersurface in P*
defined by det M = 0. The degeneracy locus { z € P*| rankM(z) < 4} is contained in
the singular locus of V3s. By Giambelli’s formula [F,p.261] the degeneracy locus consists
of 50 points or it has dimension one or more. We will assume that M is general in the
following sense: Vis has only isolated singularities (but possibly more than 50) and M
drops rank (rank = 3) in 50 distinct points.

Consider a general rank-4 subvector space of the row/column space of M ; it can be
represented by a 4 x 5 matrix N = N(z). By Giambelli’s formula

A = {z € P* | RankN(z) = 3}

is a surface of degree 10. This surface is projectively Cohen-Macaulay with resolution
0 = 40pi (5] =2 50ps—4) L5 Ops — Ox —> 0,

where L is the dot product with the maximal minors of N. The surface A passes through
the 50 singular points of Vs considered above, so 7 = 11 by (3.3). From the resolution
we find x = 5, and K? =5 by (3.1).

A surface Ag coming from the row space of M is linked (4,5) to a surface Ag from
the column space. Restricting the exact sequence of linkage to Ac we get

0 — wa.(—4) — Oac. — Oapnae — 0

So K =4HA_, — ArN A¢, and the canonical mapping of A¢ is induced by the Cremona
transformation given by 5 independent quartics containing Ag (i.e. 5 maximal minors of
the matrix defining Ag ). We have a diagram



7\

Vv — — — Vapr c pt
u |K| U
A———*Ss

where [ ={(z,z') € P*xP* | M(z)![z']= O }, and M’ is the matrix satisfying M'(z')![z]=
M(z)![z']. The projections p;,7 = 1,2, contract 50 lines; the “kernel” of the matrix where
it has rank 3. Hence Vjy — — — Vi replaces 50 singular points with 50 lines and contracts
50 lines to 50 singular points. Vs has only isolated singularities iff the same holds for
Varr. The surface Ss is a hyperplane section of Vi , so it is smooth when Ac is general.

Back to the HM-quintics: A result of R.Moore is that the equation of an HM-quintic
can be expressed as determinants: Let M, (z) = [zi4;¥i—jlo<ij<a for y € P*  ie.

TolYo T1Ys4 T2Ys T3Yz T4l
T1Y1 T2Yo T3Ys4 T4aY3z Tol2
M,(z) = | zay2 Tay1 TaYo ToYs T1Y3
T3Ysz T4Y2 ToY1 T1Yo T2Y4
T4Ysa ToYys T1Y2 T2Y1 T3Yo

Then F, = det My(z) is a Heisenberg invariant quintic as is easily checked by the action
on the matrix. Furthermore , RankM,(z) = 3 in the 50 points < G, >{y}.

Let &,...,&s be a basis for HO(Op«(5))¢. Since F, is also invariant letting G act on
y, we have Fy, = ¥ a;;&i(y)¢;(x) ya;; € C. The mapping £ is defined by &,...,& , and
it is 100 : 1 , so there are points y; and y, in P* such that for our given quintic we have
F =F, =F, ,and for the singular locus S =< G, ¢ >{y1,y2}.

Let A; (resp. Aj) be a determinantal surface from the rowpace of M,, (resp M,,).
The involution ¢ transposes M, (z) (modulo permutations of rows and of columns ), so A;
is linked to ¢tA;, 7 = 1,2. Since ¢ leaves an abelian surface of type A invariant , we can
divide S into four groups each invariant under (G, such that (after possibly interchanging
Aj; and tAj) we have the intersection numbers

X| XL | XLy | XLs | X Ly
Table 3.6 : VAN +1 —1 0 0

A, 0 0 +1 -1
Here Ly denotes any of the 25 exceptional lines in group k, and «L; = Ly , ¢L3 = Ly.

The matrix M,(z) gives rise to a matrix M, (z') under the Cremona transformation
defined above. Let 2’ = x and y = z, then

Tg2Zp T124 T22Z3 T322 T42y
T422 TRy T12Z0 To24 I323
M!(z) = | 2324 T4z3 Tozz T121 T220
T221 T329 T4Z4 ToR3 T122
T1Z3 T222 T321 T4Z0 To24

As for M,(z) one finds G, := det M.(z) = ¥ b;;&i(2)€(z) ,b;; € C . The assignment

F, — G, is well defined and gives a bijection of the set of HM-quintics. So for our given



quintic F, there are points z; and z; in P* such that F' = G, = G,, and < G, >{z1, 23}
consists of 100 points. Write the singular locus S as < G, ¢ >{y1,y2}.
Claim: We can order 21, z; and y;,y2 such that
2\y |y | wn [ Y2 | e
2 4 31 3 4
Table 3.7: RankM!(y)= tz | 3| 4| 4| 3
z3 4 31 4 3
1523 3 41 3 4
Proof: M/ (wy) is equal to M.(y) (modulo permutations of rows and of columns), so
it suffices to check row 1 and 3 in the table. Consider I ={(y,z) € P* x P* | F, = G, }.
The rank of M!(y) is 4 or less when (y,z) € I because G.(y) = F,(y) = 0, and there
exist 50 y’s such that RankM!(y) = 3. If RankM/(y) = 4,then the same is true in a
neighbourhood of (y,z) € I. So for our general quintic it suffices to check the table in a
special case:
Let y1 = z1 = (1,1,¢,€%,1) and y = 25 = (1,1,€%,€%1). Then RankM] (y) = 3 for
y €{ty1,y2} (two rows coincide) ; hence G, = F,,, = F,, is Schoen’s quintic (see (1.5) ),
and RankM] = 4 for y €{y1,wy:} since this quintic has isolated singularities. Under the
Galois automorphism € — €2, we have z; — 2o {y1, w2} — {y1,v2} , {1,942} —
{w1,w2} , and G,, = F,,, = F,,. Hence G,, = G, , and the table follows.
From the matrices M, (z) and M|, ,j = 1,2, we find 8 divisor classes in V of deter-
minantal surfaces, say represented by Vq,¢Vy, V,,:V; together with their linked deter-
minantal surfaces. From Table 3.7 we have_

X|X.Ly| X.Ly | X.Ls | X.L4
A\ 0 * * 0
Table 3.8: V1 * 0 0 *
VQ 0 * 0 *
LV2 * 0 * 0

We will see in Lemma 4.3 that * = 1 by choice of V; and V,.

Conclusion: There are 12 linear systems in V of surfaces of type B. Such a surface in
V is isomorphic to a quintic surface in P2 via the canonical mapping.

Type C. Surfaces of degree 20.

Let X; €{A;,¢A;} with Aj from Table 3.6, 7 = 1,2. Consider the linear system
| X, + X; | in V. Let X! = 1Xj, so X; + X; = 4H where H denotes a hyperplane
section of V. Let 1 be the natural mapping H(Oy(4H — X})) ® H(Oy(4H — X})) —
H°(Oy(8H — X} — X3)) = H(Oy(X; + X,)). Since X] and X} are both cut out by
quartics, Bertini’s theorem implies that a general member X of Imy is a smooth surface.
The image X of X in V is also smooth since X; U X is smooth in the 100 singular points
of V.

Let X’ = X ,then X' is linked (8,5) to X and X' ~ X. By (3.3) nx = 41, and we
have by (3.4)

0 — wx(—8) — Oxux — Ox — 0.

Riemann-Roch yields x(wx(—8)) = x(Ox) + 400, and x(Oxux) = 460. Since x(Ox/) =
x(Ox), we find x(Ox) = 30, and by (3.1) K% = 130.

The surface X is regular: The Koszul complex defining the (connected) complete
intersection X; X, in V induces the exact sequence



0— OX]UX: — O, ®03, — O/\"m)l’g — 0

Hence regularity of X; and X, , implies regularity of X; U X;. By semicontinuity, X and
then X are both regular.

Conclusion: There are four linear systems of surfaces of type C. The invariants of such
a surface are d = 20 ,7 =41 ,x =30 , K? =130, and ¢ = 0, so the surface is of general
type.

§4. The Picard group of V and the smooth surfaces on V.

The Picard group of a small resolution of a nodal hypersurface in P* is torsion free
by Lefschetz’ theorem, and the rank is the defect + 1 (see [W,p.7]). Hence PicV =~ Z*.
Lemma 4.1: Let Ay and A, be the surfaces of Table 3.6, A an abelian surface of
degree 10, and H the pullback of a hyperplane section of V. Then {H, A, Ay, Ay} is a
basis for PicV ® Q.
Proof: We have the following intersections
X | XLy | XLy | X.Ls | X.Ly
H 0 0 0 0

Table 4.2: A -1 -1 -1 —1
Ay | +1 -1 0 0
A, 0 0 +1 —1

It follows immediately that the four divisors are independent using this table.

For a determinantal surface Y let Y’ denote a linked determinantal surface. Recall
that A’ =1A; =4H — Aj,5 = 1,2.

Lemma 4.3: Let V1,:V1,V,, and (V, be the surfaces of Table 3.8. After possibly
interchanging Vi and V' or V, and V), ;we have the intersections

X | XLy | XLy | XLy | X.Ly
Vi 0 +1 +1 0
Table 4.4: IAVA +1 0 0 +1
V, 0 +1 0 +1
Vo |+l ol +1 0

Proof: Choose V; such that the intersection of @j with one of the lines is +1. Since
the surfaces have degree 10 , we find by Lemma 4.1 and Table 4.2:

(4.5) Vi=-1/2A-1/2A1+1/2A,+3H, ~V1=-1/2A+1/2A,-1/2A,+3H
Vo==1/2A-1/2 A, =1/2 A, +5H, Vo=—-1/2A+1/2A,+1/2 A+ H
and the table follows.

Proposition 4.6: {H, A,V,,V, } is a basis for PicV.

Proof: The set is clearly a basis for PicV ®Q, and if X = nH + aA + bV, +
bV, €PicV, then X.Lx € Z implies a, by, and b, € Z. That n € Z follows by intersecting
X with a line in V (fi. Lgo).

Theorem 4.7: Let X be a smooth surface in V. Then X is either a complete
intersection of V and another hypersurface in P*, or X is linked to a surface of type A,B,
or C, by V and another hypersurface.

Proof: We will work in PicV/ < H > since we are only interested in linkage. Write
X € PicV/ < H > as aA+ b,V + bV, then X.L, = —a, X.Ly = —a+ b, + by,
X.Ls=—a+b;, X.Ly=—a+ by, and X.L; €{-1,0,1} since X is smooth.



For a = 1 one gets the following solutions for X using (4.5) :
A, A+Vy=—V, (inPicV/< H>), A+2V,=-A, - A,

A+v1:—LV1, A+Y1+~V2—A1~, A+2V1:—A1+A2 ~ .
For a = 0: :I:Vl, —V1 + Vg = _Az, :tVQ, 0 and V] 2 = Ag.
For a = —1 one has the negative of the solutions for a = 1, and the theorem follows.

Remark 4.8: The minimal degree of a hypersurface used to link a surface of type A
(resp. B) to a smooth surface is 5 (resp. 4). This number is 8 or possibly 7 for a surface
X of type C: The linkage X J X' = V N V4 yields
(4.9) 0— wxl(—l) — OVQVB(7) — Ox(7) — 0
By Riemann-Roch and Severi’s theorem h°(wx/(—1)) > x(wx/(=1)) — h*(wx.(=1)) =
10 — 5; hence by (4.9) , X is contained in at least 5 septics (not being a multiple of V). Tt
is not known if one can link X to a smooth surface of degree 15 on V' by such a septic ( if
possible, then the invariants are y = 5, K2 =5 ). It is easy to check that a sextic cannot
be used.

Corollary 4.10: The only irregular surfaces on V' are the abelian surfaces of type A
and possibly the surfaces of degree 15 in Remark /.8.

Proof: This follows from a more general fact. Suppose a surface X is linked (m,n)
to a surface X’. Let a = m +n — 5 | then we have a commutative diagram

0— ‘JJX'(S) —_ OXUX’(G+5) —/\> O,\'(a+s) — 0

[# |
0— Ix(a+s) — Opi(a+s) - Ox(a+s)— 0

H°(%) is surjective and H'(Oxyux:(a + s)) = 0; hence

H'(wx(s)) =cokerH°(\) =cokerH°(y) = H'(Ix(a + s)).
By the Kodaira vanishing theorem we then get H'(Ix(a +s)) = 0 when s > 0. So if X is
linked (m/, n’) to a surface X", then for a’ = m’+n'—5, we get H'(wxn) = H'(Ix(a')) = 0,
when a’ > a. If we use a fixed hypersurface in the linkage (m = m’), then it follows that
only a surface of minimal degree linked to X can be irregular.

Corollary 4.11: A degree 15 abelian surface of type A has polarization (2,10).

Proof: Consider a Cremona transformation between two HM-quintics as defined in
§3; ¥ :V'—— — V. Let X C V be abelian of degree 15. It is easily checked using the
matrix representation of t, that the 25 lines |J L;; in V are “blow ups” of 25 points in V’,
and that the lines |J L;; in V' are not contracted by 3. Hence X’ = ¢=1(X) is a surface
passing smoothly through 75 of the singular points of V’. So X’ is smooth by Proposition
4.6 and the intersection tables; hence by Remark 4.8 and Corollary 4.9, X' is of type A.
Since the lines |J L;; in V' are not contracted, X’ is minimal so it has degree 10.

¥ is given by a linear system |A| , where A is a determinantal surface. Since
A +:A = 4H, the mapping 1) restricts as a subsystem of 2H|x, (assuming X’ is general
with Picard number 1). So X has polarization (2,10) because X’ has polarization (1,5).
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Curves of genus three on a general abelian threefold
and the non—finite generation of the Griffiths group

Fabio Bardelli

Introduction Let A be a general principally polarized abelian threefold defined
over C, and G(A) its Griffiths group defined as

{ algebraic 1-cycles on A homologous to 0}

A) =
G(4) { algebraic 1-cycles on A algebraically equivalent to 0}
We denote by [—1] : A — A the “multiplication by —1 ” map. The main result of this
paper is the following:

Theorem: A contains wnfinitely many birationally distinct irreducible curves
{Ci}ieN of geometric genus 3. Furthermore there are infinitely many algebraically
independent 1-cycles Cy, — [—1]Cx on A. In particular G(A) is not finitely generated.

Let Hz be the upper-half Siegel space of genus 3 and 7 : A — H; the “universal”
abelian threefold overit. Here is an outline of the paper. In section 1 we associate to each
element ¢ of the rational symplectic group GQ = Sp(6,Q) an isogeny ¢, : Ay — A,
where Ag = 771(Q); this association is compatible with the Gg-action over H;. Since
GQ is dense in the real symplectic group GR (which acts transitively on H3), one can
easily produce the infinitely many curves {Ci}, N of the statement of the theorem by
considering the image under 7, of some Abel-Jacobi embedded curve C in A, = J(C)
(see prop. 3.2). We prove in section 3 that the algebraic equivalence class of the cycle
C —[~1]C in a general jacobian J(C) is not of finite order (thus giving another proof of
G. Ceresa’s theorem (see [Ce.])), and in section 4 that this algebraic equivalence class is
carried by the monodromy action around the hyperelliptic locus K C H3 into the class
of the cycle [-1]C' — C. We extend this result to each cycle Cy — [~1]C by considering
the monodromy action around its corresponding translate of X in Hjz. We observe that
the cycle Cx — [—1]C is defined only locally over Hs and therefore, to circumvent the
problems arising from this ambiguity (and its density in Ha!), we rely on the study of
the local normal functions associated to each Cy — [—1]C) with values in the primitive
intermediate jacobian bundle of the family 7 : A — H3. Since finally we have produced
infinitely many cycles Cy — [—1]Cy with infinitely many distinct branching divisors in
Hz (which are the translates of X under the Gq—action) we can easily conclude the
proof of the theorem in section 5.
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Some years ago Nori had proved the non-finite generation of G(A) by using repre-
sentation theory (letter to H. Clemens). As yet his proof has not appeared and so we
decided to work out all the details of our proof in which the explicit construction of
the infinitely many cycles Cx — [—1]C} is given and their behaviour with respect to the
monodromy action is studied.
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Notations
p.p.a.v. stands for principally polarized abelian variety
c.u.p.a.s. stands for countable union of proper analytic subvarieties

hi(X,T) = dimH (X, T)

Very often the letter denoting a certain abelian variety will also be used to denote
the point associated to it in Hz = Siegel upper half space. Same remark for pairs (C, X)
C curve contained in a variety X and the corresponding point in the appropriate Chow
variety.

All varieties will be defined over C and considered with their complex manifold
topology.

1 Isogenies and the rational symplectic group

j Py [ Let L be a lattice of rank 2n, ¥ an alternating, integral valued, unimodular
bilinear form on L. We will denote by Gz, Gg, GR respectively the integral, rational,
real symplectic group Sp(d,-) of the form . Set Lg = L ®7 Q and consider a linear
map ¢ : LQ — LQ; g € GQ. Clearly g(L) ¢ L in general, so we consider the set

I={heZ:h-g(L)CL}.

I is an ideal; therefore I = (k) for k € Z and we define L, = k- g(L) C L :
L, is a sublattice of finite index in L and we obviously have
1.1.1 for each m € Z m - kg(L) =mL,

1.1.2 for any z, y € L Ik - glz), k- g(y)) = k¥(a,y); so
(kg)*9 = k*9 and therefore J|;, is a multiple of an integral
valued unimodular form on L,: we will denote this form by 9,.
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1.2. We recall that we can construct any p.p.a.v. of dimension n by assigning an
isomorphism L ®7 R =: Lg — C" such that 9 is of type (1,1) and positive when read
over C"; and in fact the abelian variety obtained in this way is A = C"/i(L) = C"/L.

The construction in 1.1. allows to associate to each element g € GQ the abelian
variety A, =: C"/L, (principally polarized by ¥,) together with the isogeny ¢,

A, =C"/L, 5 C"/L=A

where 7, is induced by the inclusion L, C L. By 1.1.2. 3(9(A)) = k?9,(4,) for k € Z,
where J(A) and J,(A,) are the principal polarizations induced by ¥ and ¥, on A and
A, respectively; furthermore by looking at all the isogenies induced by m - kg, m € Z,
we obtain factorizations v
A; 2 Ay 3 A

so that the abelian variety A, does not depend on the choice of the element m - kg such
that mkg(L) C L, whereas the isogeny ¢, does and is in fact modified by a multiplication
by m. In the sequel we will always refer to the unique isogeny A; — A determined by
the inclusion L, C L.

1.3. In order to see how the period matrices of A and A, are related it is enough
to choose a symplectic basis {a1,...,an;B1,..., 5.} of L and a (uniquely determined)
basis {ej,...,e,} of C" such that the period matrix of A4 is

Q
I
where @ is an n x n matrix with Q@ =@ ImQ > 0, I the identity matrix.
Let g € Gq, then g(a,) = ¥ ariai + X, 0085 9(Br) = Ticrici + ¥ dpifi for r =

1,...,n; so g is represented by a matrix

A B
C D
where A = {a,;} and so on; kg can be computed consequently and therefore the pe-

riod matrix of A, with respect to the basis {kg(ay),...,kg(an); kg(B1),...,kg(Bn)} and

{e1, ... en} is
(paa+m)

which can be obviously transformed (by changing the basis {ey,...,e,}) into

(AQ+ B) - (CQ + D)
Id

It follows that



13

1.3.1. The period matrices of A and A, are related by a Siegel modular substitution
of degree n (see [Si.] p.128) defined over Q.

We therefore introduce H, = { matrices n X n with complex entries with 2 =
tQ2; Im Q2 > 0} = the Siegel upper half space.

We recall that H,, carries a “universal” family of abelian varieties that we will denote
by 7 : A — H, Weset Ap = 77}(P). H, in fact may be thought of as a fine moduli
space for the set of pairs (A,B) where A is a p.p.a.v. and B a symplectic basis of
H,(A,Z). Therefore from now on Gz, GQ, GR will be the usual integral, rational, real
symplectic groups acting on ‘H, by

ifg:(é g>eGq,QeHn

9(Q) = (AQ + B)(CQ + D)!
We recall that:
1:3.2.
1. GR acts on H, transitively (see [Gr. IJ)
2. GQ is dense in GR.
In view of 1.3.1 and 1.3.2 we can conclude that:

1.3.3. For each P € H, and each g € Gg we have (Ap), = Ay(p), therefore for a
fixed P € H,, the set of p.p.a.v. 1sogenous to Ap by the construction 1.2. 18 parametrized
in H, by the Gq-orbit of P which 1s a dense countable subset of H,.

1.3.4. For each p.p.a.v. A one can consider g; € Gz, g2 € GQ and get a diagram:
igy Z
Agpqr = (Agx) — Ay _’A

Clearly 7,4, is an isomorphism of p.p.a.v. and therefore the isogenies 14, and 1,
correspond under the isomorphism i,,, that is t4,.5, = 14, - 24,.

1.4. We let K be the locus of jacobians of hyperelliptic curves in Hs, and we let
SK:{gEGQ : g(lC)ClC}

the stabilizeur of K in Gg. Sk is an infinite group (it contains for instance G7). We
consider the set (quotient set)

Q=0Gg/Sk
that is the set of equivalence classes of elements of G under the relation g; ~ ¢, <
g7 'g92 € Sk. Q is an infinite set because the Gq—orbit of a point P € K is dense in Hs.
We will denote by § the equivalence class in Q of the element g € Gq.
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Clearly it makes sense to talk about §(X) (that is this loci are well defined) and one
has

g1 # 92 & G1(K) # g2(K)
so that:

1.4.1. Q is in a one to one correspondence with the set of distinct transiates of K
under the action of Gq.

2 Some recalls: normal funcions

We want to recall several well known facts. We consider the intermediate jacobian
bundle # : J — Hs of the universal family = : A — Hj. The fibre 7#='(P) is just the
intermediate jacobian J(Ap) of the abelian threefold Ap.

2.1. For each P € H3 we let ¥ be the cohomology class in H*(Ap, Z) of the polarizing
form of Ap (or of its theta-divisor). The Lefschetz map

L:H'(Ap,Q) 2% H*(4p,Q)

defines a mapping £ : Pic’(Ap) — J(Ap) whose kernel is finite. We define J,.(Ap) =
J(Ap)/ImL. Here pr stands for primitive. We can perform this construction uniformly
over Hz and so a “primitive jacobian bundle” J,, — Hs is defined and its fibre over
P e H3 18 JpT(AP).

2.2. For each P € H; we denote by Jg(Ap) the maximal compact complex subtorus
of J(Ap) all of whose lattice vectors are annihilated by H*°(Ap). By using the derivative
of the period mapping of our universal family 7 : A — H; at the point P and specifically
the part of it giving the map

H3*(Ap)® H'(Ap,Ta,) — H*'(Ap),

plus the fact that Tp(H3) = H'(Ap, T4, )) = { cohomology classes whose cup product
with 9 is 0 } = { first order deformations of Ap for which ¥ is preserved of type (1,1)
in H%(A,C)} see [Gr. II], one can see easily that for a general point P € H3

JH(AP) =ImC.
Thus if for each open set U in Hz we define
H(U)={ueU:dimJy(A,) > 3}

H(U) is a cu.p.a.s.. in U; and Jp(A4,) = J(Ay)/IH(Ay) for each u € U\ H(U).
We also recall that the image under the Abel-Jacobi map of any algebraic 1-cycle Z
algebraically equivalent to 0 in Ap lies in Jy(Ap).



