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Preface

The theory of formal languages has a long and dignified history. A major
influence on the nascent theory, around 1960, were the attempts of the linguist
Noam Chomsky to formulate a general theory of the syntax of natural languages.
Chomsky’s intellectual itinerary greatly influenced the field at a time when
computers were starting to cope with increasingly complex tasks. A melting
pot of ideas then developed, with a surprising convergence of thought between
linguists, mathematicians, logicians, and newly born computer scientists.

At present, formal languages are part of the basic training of most computer
scientists. They are everywhere to be found in the design and in the very
operation of computer systems. A modem, like an interface manager, will have
to respond to various external stimuli. Its design and its behavior are then
best understood when it is viewed as a device reacting to external events while
being governed by a finite set of rules—in short, a finite automaton. Next, the
syntax of programming languages is best described by context-free grammars,
themselves recognized by pushdown automata. We then have available one of
the fundamental building blocks of the design of parsers and compilers. Finally,
the last steps of the complexity ladder take us to languages of a higher structural
complexity, which swiftly lead to (un)decidability questions. This brings us to
the humbling realization that mathematically well-posed problems are far from
being all decidable!

The theory of formal languages and their companion automata thus provides
a powerful approach to the design of systems and to a variety of problems in
computer science. Dan Simovici and Richard Tenney develop the core theory in
a lucid manner. Their self-contained presentation combines mathematical rigor
and intellectually stimulating applications. For instance, the reader will find
in the book a perspective on algorithms for the processing of text files, lexical
analysis, and parsing. A notably innovative aspect is the last part that offers two
chapters on coding theory, data compression, as well as biological applications.
It should be a pleasure for most to discover there formal models that describe
the development of simple organisms or the splicing of nucleic acids.

To make a long story short, we have here a new book that offers new per-
spectives on an old subject. It contains a thorough treatment of a theory that
is fundamental not only in computer science but in many other scientific en-
deavors. The authors have done a great job of exposition. I hope you will enjoy
reading the book as much as I did.

Philippe Flajolet
Rocquencourt, February 28, 1999



Introduction

The theory of formal languages is an important part of the fundamental edu-
cation of computer scientists and linguists. It is also becoming significant for
biologists. This discipline blends algebraic techniques with abstract models of
computing devices. Its origins can be traced to the work of Chomsky, Rabin,
Scott, Nerode, Ginsburg, and Schiitzenberger, and this beautiful area of theoret-
ical computer science remains active today. Along the way are such milestones
as the theory of abstract families of languages and various applications of the
theory of complexity in the study of formal languages.

This book combines algebraic and algorithmic methods with decidability
results and explores applications both within and outside computer science.

Formal languages provide the theoretical underpinnings for the study of
programming languages. They are also the foundation for compiler design, and
they are important in such areas as data compression, computer networks, etc.
Recently, formal languages have been applied in biology and economics.

The first part of the book presents mathematical preliminaries. It begins
with a chapter that elucidates the mathematical background expected of the
reader—elementary notions about sets, algebras, and graphs—as well as the
notation that we use. It is intended to make this book as self-contained as prac-
tical. The second chapter deals with words and languages viewed as collections
of words. These are basic ingredients in the discipline of formal languages, so
this chapter presents the most important algebraic and combinatorial properties
of words and languages in order to make later chapters more readable.

The second part is centered on regular and context-free languages. The class
of regular languages is studied in the third chapter, starting with deterministic
finite automata. We then consider various extensions of these devices, includ-
ing nondeterministic automata and transition systems, as alternative ways of
defining the same class of languages. We introduce regular expressions as nota-
tions for regular languages, and we conclude the chapter by examining several
applications of the notions developed in the chapter.

The fourth chapter introduces the notions of semi-Thue system, and espe-
cially important, the notion of grammar. We study Chomsky’s hierarchy, and we
show the closure of each Chomsky class with respect to the regular operations.

We place particular emphasis on context-free languages due to their role
in compiler design. This class of languages is introduced using the class of
context-free grammars; the devices that provide an alternative characterization
of this class, pushdown automata are discussed in the next chapter. To allow
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Introductory Notions






Chapter 1
Preliminaries

1.1 Introduction

1.2 Sets, Relations, and Functions
1.3 Operations and Algebras

1.4 Sequences

1.5 Graphs

1.6  Cardinality

1.7 Exercises

1.8 Bibliographical Comments

1.1 Introduction

In this chapter we present some mathematical preliminaries intended to provide
a referrence for the reader. We discuss basic facts of set theory, universal algebra,
and the notion of cardinality of a set.

1.2 Sets, Relations, and Functions

In this section we review briefly some concepts from set theory.

1.2.1 Sets

Informally, a set is a collection of objects, called elements. For any set S and
object a, either a is one of the objects in S or it is not. In the former case, we
use any of the following phrases: “a is a member of S,” “a is an element of S,”
or “aisin S,” and we write a € S.

The elements of a set € may be themselves sets; in such cases, we refer to @
as a collection of sets.

We use the following notations for various subsets of the set R of real num-
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bers:

for the set of natural numbers
for the set of positive integers
for the set of rational numbers
for the set of integers

NO=Z

Let S and T be two sets. The set S is included in T (or S is a subset of T')
if every element of S is an element of T'. In this case, we write S C T. If S is
not a subset of T', we write S € T'.

If S and T are sets such that S C T and S # T, then we say that S is strictly
included in T. We denote this by S C T'. If S is not strictly included in T, we
write S ¢ T'.

There exists a set with no members. This set is called the empty set and is
denoted by 0.

A singleton is a set {z} that consists of a unique element.

If S is a set, then the power set of S is the set that consists of all the subsets
of S. We denote the power set of S by P(S5).

Note that for every set S, @ € P(S), so P(S) is never empty.

1.2.2 Ordered Pairs and Cartesian Products

Given two objects a and b, we can form the set {a,b}, which we refer to as an
unordered pair.

Definition 1.2.1 Let a and b be two objects. The ordered pair, or simply, the
pair, (a,b) is the collection of sets {{a}, {a,b}}. 0
The pair (a, a) is the singleton {{a}}. Conversely, if (a,b) is a singleton then
{a,b} = {a}, so b € {a}, that is, b = a.
It is easy to see that if (a,b) = (c,d), then a = ¢ and b = d. For the pair
(a,b), we call a the first component and b its second component.

Definition 1.2.2 Let A and B be two sets. The Cartesian product of A and
B, written A x B, is the set of all pairs (a,b) such that a € A and b € B. a

If either of the two sets A or B is empty, then so is their Cartesian product.

Definition 1.2.3 Let C be a collection of sets. The union of C, denoted by
UG, is the set defined by

U(?:{ac|z€AforsomeA€€}.

0

If € = {A,B}, we have z € |JC if and only if z € A or z € B. In this case,
U € may be denoted AU B. We refer to the set AU B as the union of A and B.

For any sets A, B,C, we have

1. AU(BUC) = (AUB)UC = J{A, B,C} (associativity of union),

2. AUB = BU A (commutativity of union),

3. AU A = A (idempotency of union), and

4. AUD = A.
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Let C be a nonempty collection of sets. The intersection of €, denoted by
N C, is the set defined by

ﬂ@z{z|x€Af0reveryA€(‘3}.

If € = {A, B}, we may denote (€ by AN B, and we refer to AN B as the
intersection of A and B. Then, z € AN B if and only if z € A and z € B.

Definition 1.2.4 Two sets A, B are disjoint if AN B = (.

A collection of sets € is pairwise disjoint if for every A and B in C, if A # B,
then A and B are disjoint.

A partition of a set M is a collection € = {B; | i € I} of nonempty, pairwise
disjoint sets such that |J€ = M. We refer to the members of the partition as
blocks and to I as the index set. 0

Example 1.2.5 If E,O are the sets of even and odd natural numbers, respec-
tively, then the collection {E, O} is a partition of the set N. This partition can
be generalized as follows. Let k¥ € N be a natural number, k > 0. For every num-
ber n € N there is a unique number 7 € N, 0 < r < k — 1, such that n = kp+r,
namely the remainder of the division of n by k. Let B, = {n € N | n = kp+r}
for 0 < r < k- 1. Since the remainder of the division of n by k is uniquely
determined for every n, it follows that Cx = {By,... ,Br-1} is a collection of
pairwise disjoint sets. It is easy to see that

U B-=N,

0<r<k—1

so €y is a partition. We refer to €y as the partition of the natural numbers
modulo k.

If & = 2, the partition {By, B1} is simply the partition {E, O} discussed
before.

Definition 1.2.6 Let A, B be two sets. The difference of A and B is the set
A — B defined by

A-B={ze€ A | z¢B}.

O

Sometimes, when the set A is understood from the context, we write B for
A — B, and we refer to the set B as the complement of B with respect to A or
simply the complement of B.

For every set A and nonempty collection C of sets, we have

A-|Je ({A-cC | Cceey,
A-Ne H{a-c | cee).

In the special case when € = {B,C} we have:
A-(BUC) = (A-B)N(A-C),
A-(BNC) = (A-B)U(A-C).

I

I
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If the set A is understood, B,C C A, and we denote A -~ M by M for each
M € P(M), then we get the following equalities
BuC = BnC

BNnC = BUC,

known as the DeMorgan’s laws.
The linkage between union and intersection is given by the distributivity
properties. Namely, for any collection of sets C and set A, we have

(Ue)nA=U{CnA | C ee).

If C is nonempty, we also have
(Ne)uva=Ncuajceey

1.2.3 Relations

Definition 1.2.7 A relation is a set of ordered pairs. If A and B are sets and
p is a relation, then we call p a relation from A to B if p C A x B. A relation
from A to A is called a relation on A. 0

The set P(A x B) is the set of all relations from A to B. Among the relations
from A to B, we distinguish the empty relation, 0, and the full relation, A x B.

If (a,b) € p, we sometimes denote this fact by a p b, and we write a 4b to
denote (a, b) & p.

Example 1.2.8 For any set A, we can consider the identity relationtqg C Ax A
defined by

ta = {(z,z) |z € A}.

0
Note that A C B if and only if 14 C ¢.
Definition 1.2.9 The domain of a relation p is the set
Dom(p) = {a | (a,b) € p for some b}.
The range of p is the set
Ran(p) = {b| (a,b) € p for some a}.
0

It follows easily that if p is a relation and A and B are sets, then p is a
relation from A to B if and only if Dom(p) C A and Ran(p) C B. Naturally, p
is always a relation from Dom(p) to Ran(p).

If p and o are relations and p C o, then we have Dom(p) C Dom(o) and
Ran(p) € Ran(o). We also remark that Dom(A x B) = A unless B = (. In the
latter case, we have Dom(A x @) = 0. Similarly, Ran(A x B) = B if A # 0. For
A =0, we have Ran(@ x B) = 0.
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Example 1.2.10 Let A be a subset of N. The relation “less than” on Ais
given by

{(z,y) | z,y € A and y = = + 2 for some positive integer z}.

Example 1.2.11 Consider the relation v C Z x Q given by
v={(n,q)|n€Z,geQ andn<qg<n+1}.

We have (—3,-2.3) € v and (2,2.3) € v. Clearly, (n,q) € v if and only if n is
the integral part of the rational number gq. 0

Example 1.2.12 We can define a relation d7, C Z x Z, where (m,n) € 4z, if
there is k € Z such that n = mk. In other words, (m,n) € d7 if m divides n
evenly. 1

Example 1.2.13 Let S be a set. Then, the relation from S to P(S) “is a
member of” is given by

{(z,X) | X € P(S) and z € X}.

If p and o are relations from A to B, then so are pUo, pNo, and p —o.
Definition 1.2.14 Let p be a relation. The inverse of p is the relation p~!
given by

Pt ={(y,2) | (z,y) € p}.

0

Theorem 1.2.15 Let p and o be relations.

1. Dom(p~!) = Ran(p).

2. Ran(p~!) = Dom(p).

3. If p is a relation from A to B, then p~! is a relation from B to A.

4- (e =0p.

5. If pC o, then p~! C 0! (montonicity of the inverse).
Proof. We leave these arguments to the reader. 1

Definition 1.2.16 Let p and o be relations. The product of p and o is the
relation p o o, where

poo={(z,2) | (z,y) € p and (y,z) € o for some y}.
0

The product of two relations p and o is also called the composition of p and o,
and we also use the alternative notation op for the relation product poo.

Definition 1.2.17 The powers of a relation p C A x A are relations denoted
by p™ C A x A, defined recursively as follows:
Po = A
pn+1 — pn op
for n € N. 0



