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INTRODUCTION

In the study of n-dimensional knots, i.e. imbedded n-
spheres in (n + 2)-space, one encounters a collection of

A-modules Al, ey An (the Alexander modules), where

A= 1][t, t_l], the ring of integral Laurent polynomials.
These modules encompass many of the classical knot invari-
ants.

The more important properties and relations among these
modules are more easily stated in terms of the Z-torsion sub-
modules {Ti} and the quotients Fi = Ai/Ti' An important
additional feature is the existence of a product structure
on Fq, when n = 2q + 1, and Tq’ when n = 2q. It is now

understood exactly which collections {Ti,

Fi} of A-modules,
with product structure on the correct term, arise from knots
(except for T,). See [L] for more detail.

In the present work we make an algebraic study of the types
of modules and product structures which arise as Alexander
modules. In particular, we introduce a collection of invariants
which are reasonably tractable but sensitive enough to reflect
the panorama of these modules. In some cases, they succeed
in classifying but we will be most concerned with determining
when a given set of invariants can be realized.

A preliminary reduction of the problem is obtained as

follows. Let 71 be an irreducible element of A. For any
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A-module A we can then consider the w-primary submodule ATr
If A 1is a Z-torsion module, then we consider w which are
integer primes; in this case A splits as the direct sum
of the {A"). If A 1is Z-torsion free, we consider g which
are irreducible primitive polynomials—but now A only contains
the direct sum of the {A"}. We will, in either case, concen-
trate on these p-primary modules. A further restriction will
be made in the Z-torsion free case. The quotient ring
R = A/(r) 1is, in an obvious manner, a subring of the algebraic
number field generated by a root of 5. We will restrict our
attention to the case when R 1is integrally closed, i.e. a
Dedekind ring. Later on we will determine effective criterion
for 1 to satisfy this condition.

The general setting then is the following. We consider
a unique factorization domain A with a particular prime
such that the quotient ring R = A/(w) 1is a Dedekind domain.
If A 1is a g-primary A-module, we will derive from A a col-
lection of R-modules {Ai’ Ai} tied together by means of a
family of short exact sequences 0 - Ai+1 > Ai > Ai > Ai+1 >
It will also be useful to consider by = Cok{A.

i+l
Ker{A1 > A1+1}. If R 1is a Dedekind domain, these modules

-»Ai}:’

are all described by '"numerical'" invariants (rank and ideal
class). When A carries a suitable product structure, there
is a duality relationship between the {Ai} and {Ai} and,
furthermore, Ay (or a closely related Zi) inherits a more

familiar type of product structure which can be handled by
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techniques from algebraic number theory.

We now outline in somewhat more detail the implementation
of the above program. Our treatment of the Z-torsion case is
relatively brief. In this case, R is the principal ideal
domain Z/p[t, t'l] and all the derived modules are R-torsion.
It is easy to see that the derived modules and sequences fail
to classify A (except in trivial situations), but, on the
other hand, the realizability problem is easily solved: All
possible {Ai’ Ai}, related by the required exact sequences,
are realizable. When A has a product structure of the type
we are considering, Aj inherits a symmetric (or skew-symmetric)
bilinear form, as a vector space over Z/p, in which t acts
isometrically. Such "isometric structures' are completely
understood (see [La], [MI]). The product realizability theorem
requires somewhat more work. It turns out that any {Ai}, with
each Ai+1 c Ai’ together with any isometric structure on the

A: = Ai/A

i can be realized by some A with product structure.

i+l
As mentioned above, because of duality relations between {Ai}
and {Ai}, this is the best one can hope for.

Z-torsion free Z[t, t-l]-modules are treated as a special
case of g-primary A-modules, where A 1is a unique factoriza-
tion domain, R = A/(w) 1is Dedekind, and the module has
"r-only torsion,'" i.e. its annihilator is the principal ideal
generated by some power of 5. This corresponds precisely to

demanding that the {Ai} (or, in fact, just A,) is

R-torsion free. The realization theorem then states that any
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{Ai’ Ai}, where A, 1is R-torsion free, can be realized. The
proof is long. As a first step, we consider the simplest case
in which A, = A = o = A and A, = 0, for some d.
These turn out (when A, 1is R-torsion free) to be exactly the
projective A/(nd)-modules. Realization of these modules
reduces to the construction of invertible ideals in S = A/(nd),
with a given reduction in R = S/yS. Once these elementary
modules are realized, the general case is treated by amalgamating
elementary modules together according to instructions read from
the sequences: 0 » Ai+1 - Ai > Ai > Ai+1 + 0.

The ability of the derived modules and sequences to classify
n-primary A-modules depends on the degree—the degree of A
is the smallest d such that nd+lA = 0. For modules of degree

< 3, classification is successful, but it is shown, by an
example, that nonisomorphic modules of degree 4 can have iso-
morphic derived modules and sequences.

The product structures we consider are (skew)-Hermitian
bilinear forms with values in Q/pA, where Q 1is the quotient
field, or, equivalently, in S = A/nd+1, where d 1is the
degree of the module. Such a structure will induce a (skew)-
Hermitian form on Ei = R-torsion free quotient of by with
values in K. In the case A = Z[t, t-l], we are thus dealing
with integral (skew)-Hermitian forms over algebraic number
fields (see [J]). The classification question is handled by

the following result. Two g-primary A-modules (satisfying

an extra technical condition which is always true for knot
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modules) are isometric if and only if they are isomorphic in
such a way that the induced isomorphisms on Zi are isometries.
Thus the classification result above for degree < 3 extends
immediately to a classification result for modules with pro-
duct structure.

To deal with the product realizability question, we res-
trict our attention to those modules which are the direct sum
of "homogeneous" modules. A module of degree d is homogeneous
if every nonzero element o arises from one of degree d in
the sense that, for some X ¢ A relatively prime to w, we
can write Ao = nss, for some B with ndB # 0. If
AN=1Z[t, t-l], A is homogeneous of degree d if A OZQ is

a free QIt, t-I]/(ﬂd+1

)-module—this condition can be easily
expressed in terms of the Alexander polynomials. All modules

of degree < 2 are semi-homogeneous (direct sums of homogeneous
modules), but modules of degree 3 are not necessarily. If A

is homogeneous of degree d, we have {A;} all of the same
rank-—they can therefore be usefully considered to be ''lattices"
in the vector space V = AO BhF - F is the quotient field

of R. Furthermore Zd-l is the only nonzero Zi

, and since

Ed-l = Ad-l is a lattice in V, the induced (skew)-Hermitian

form on Zd—l determines such a form on V.

It turns out that nonsingularity of the original form is

equivalent to the condition that A, is dual to Ay ;. ; in
V for each i. Thus we can consider our invariants to consist
of a nonsingular (skew)-Hermitian form over F and a nest of

integral lattices Ay ;¢ --- € Ay where d = 2k or 2k + 1



and Ay is self-dual if d is odd. Our realizability theorem
then states that any such nest of integral lattices in the
space of a nonsingular (skew)-Hermitian form can arise from
a homogeneous module of degree d with a nonsingular pro-
duct structure.

To obtain a more comprehensive realization theorem for
nonsemihomogeneous modules we consider the 'rational' invariants.

1

When A = Z[t, t '] this means we pass to A = A G&Q, con-

sidered as a module over the principal ideal domain Q[t, t™!

15
in our more general context, we pass to A = A GRA“, where A11
is the discrete valuation ring obtained by localizing A at
(r). The derived invariants of A are, obviously, also
invariants of A. The trivial nature of An immediately tells
us that these invariants classify A. When there is a product
structure, the results of [MI] can be interpreted to state
that the derived invariants (with the forms on Ki) classify
A isometrically; the derived forms are (skew)-Hermitian forms
over the algebraic number field F, when A = Z[t, t-l], which
are well understood (see [La]). Realizability of these invari-
ants by An-module is easily established ([MI]), so the problem
is to pass from A to A. It turns out that realization cor-
responds to the existence of a self-dual lattice in ?KZi’

and this condition can be expressed in terms of the classical
invariants of forms over F. As a by-product of this, one sees
easily that semihomogeneous modules are relatively sparse, since
semihomogenity requires that each KZi contain a self-dual

lattice.
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The final sections of this work are concerned with the ring
R = A/(v). The first problem is to determine, from 1w, whether
R 1is integrally closed. We are, in fact, able to find a com-
pletely effective procedure involving prime factorization of 7
over L/p, for each p dividing the discriminant of r, to
resolve this issue. Once we know that R 1is Dedekind, we have
the problem of computing the ideal class group of R. This is
not the same as computing the ideal class group of an algebraic
number field, since, if 7 1is not monic, R contains nonintegers.
R does, however, come close to being of the form C?[%], where &
is the ring of algebraic integers in F and m an integer. In
fact, when 1« satisfies a condition first considered in [C],
R = @[%] ’ where m is the product of the first and last
coefficients of w. In this case, the ideal class group of R
can be determined from that of & This computation is then
actually carried out, for some quadratic m, wusing the tables

in [B].
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§1. The derived exact sequences

Let A be an integral domain, and 1T ¢ A a prime element, i.e.,
if m =1, n,, then either m, or 1n, 1is a unit of A. Let A be
a pA-module. Define l(i = Ki(A) to be the submodule of all elements
killed by ni, i.e., Ki = {a e A: nia = 0}. Define Li C A to be
niA. We have inclusions:

0 =K CK CK,

A=1l, DL DL, _

Finally define Ai = Ki+1/Ki’ the i~ th lower N-derivative of A, and

Al = Li/Li+1’ the i~th upper N-derivative of A, for i > 0. Since

nK c K; and 7L, €L we conclude that A, and A' are modules

i+l i+l?
over A/(nm). Furthermore, multiplication by 1 induces homomorphisms

n;: Ai+1 > A.1 and p§': A' > A1+1. We can also construct a homomorphism
Ayt Ai > At by multiplication by n', since HlKi+l c n'A = Ll, while
n'k. = 0.

These constructions are clearly functorial. Given a map A » B
of A-modules, there are obvious induced maps Ai > Bi’ A' » B* com-

muting with I, n* and b -

Proposition 1.1: The sequence

- A - . i .
1 > A. i A1 il 5 A1+1 50

is exact for i > 0.



The proof is straightforward and will be omitted. We refer to this

exact sequence as the i-th -primary sequence of A.

Note that K =l_JKi is the M-primary submodule of A. If A is
1
Noetherian and K 1is finitely generated, the nested sequence of {Ki}
terminates after a finite number of steps. The criterion for termination

of {Li} is as follows:

Proposition 1.2: Let A be a Noetherian domain, I a prime

element of A and A a finitely generated A-torsion module. The
following three conditions are equivalent.
i) ™A = nm+1A, for sufficiently large integer m.
ii) A = AH P HmA, for sufficiently large integer m, where
AH is the I-primary submodule of A.
iii) There is an element ¢ € A coprime to N (i.e., (I, ¢) = A)

and an integer m, such that (Hm¢)A = 0 (and;therefore,

A = AH® A¢).

Proof:
1

i) =—> (iii): Choose m 1large enough so that ™A = ™A

and nmATI = 0. Then 1™AN ATI = 0. Given a € A we may find B8 € A

such that @"a = nzme; the decomposition o = (a - HmB) + HmB esta-
blishes A = Kern™ + n"A.
(ii) —> (iii): Choose m again so that n“‘An = 0. Let aj,...,0
generate nm™A; then a; = nm(gxijaj) for some Aij € A. Rewriting
. m _ =
this as ;(Gij - I Aij)“j = 0, we conclude that ¢xi 0, for

¢ = determinant (Gi - nmxij)--see proof of [L, Cor. (1.3)]. Clearly

j
(45 Hm) = A, which implies (¢, ) = A.



(iii) =—> (i): Choose m so that @™A = 0. Consider n"x an
arbitrary element of m™A. If we write:
1 =22 +ul, then o = A¢a + plla and so

Hma = A¢Hma + uHm+1a = uHm+1a, which completes the proof.

The following propositions are of interest because of the definition

of a module of type K (see [L]).

Proposition 1.3: If A is finitely generated and N-primary, and

A 1s any element of A, then the following statements are
equivalent:

i) Multiplication by A defines an automorphism of A.

ii) Multiplication by A defines an automorphism of every Ai‘

iii) Multiplication by A defines an automorphism of every AL,

Proof: This follows by repeated use of the five lemma and the

abservations above.

Proposition 1.4: If A 1is II-primary and A Noetherian, the

following statements are equivalent:

i) A 1is finitely generated.
ii) Ai is finitely generated, for every i, and some A = 0.
iii) Al s finitely generated, for every i, and some Ak = o.

The proof follows immediately from the above observations.



Corollary 1.5: If A = Z[t, t-l] and A is l-primary, the

following statements are equivalent:

i) A 1is of type K.

ii) Ai is of type K, for every i, and Ak 0 for some k.

iii) A is of type K, for every i, and Ak = 0 for some k.
§2. Finite modules
From now on we assume A = Z[t, t-l]. We turn first to the case

of finite A-modules. As usual any such can be decomposed into the
direct sum of its p-primary components, p running over scalar primes.
Each of these p-primary components is a A-module and so it suffices to
study finite p-primary A-modules.

If we apply the considerations of §1 for 1 = p, we have the

family of p-primary sequences

(2.1) 0 + A. s A, —25 A > AYY S

where each Ai’ Ai is a Ap = A/ (p) = Zp[t, t-l]-module. Since Ap
is a principal ideal domain, we may describe the modules Ai’ Ai by
polynomial invariants. The condition that A be a module of type K
is equivalent, by Corollary 1.4, to the condition that t =1 not be
a root of any of these polynomial invariants.

It is easy to see that the p-primary sequences (2.1) are not
generally sufficient to classify A. For example, define two A-module

structures on Z/p? by

i) ta = 2a,



ii) ta = (p + 2)a (p # 2).
It is easy to check that the p-primary sequences (2.1) are isomorphic,
but the modules themselves, are not.

It is of interest to compare the p-primary sequences (2.1) of A
and e?(A) = ExtX(A, A) in light of the duality relation ([L, 3.4(i)]).
For any Ap—module B, define B* = HomZ (B, Zp) with Ap-module

*

structure induced from that on B, i.e., if ¢ € B, X ¢ Ap, then
A6 = ¢ o A (perhaps one really should set X¢p = ¢ o A). Then it is not
difficult to check that B* =~ B, if B 1is a finitely generated
Ap-torsion module. The interest of * is that it defines a contra-

variant functor.

Proposition 2.2: Let A be a p-primary A-module of type K.

Then ez(A)i % Ai, eZ(A)1 » Ai and the i~th p-primary sequence

for e?(A) 1is the '"dual" of that for "
is1,x b’ g (A% . (1) *
A: 0 » (AY™h > (A —EF— A] — 2 A > 0.

i %
Proof: A homomorphism eZ(A)i > (Al) is defined as follows. Let

i+l

¢ € HomZ(A, Q/2) ~ e?(A) ([L, 4.2]) satisfy p ¢ = 0. Then

¢(p1+1A) = 0 and so ¢ induces a homomorphism plA/p1+1

It is a straightforward exercise to check it is bijective.

A~>17 c Q/z.
pE Y

1 *
Similarly we define an isomorphism ez(A)1 - (Ai) . If
¢ € piHomZ(A, Q/Z), then pla = 0 implies ¢(a) = 0--i.e., ¢(Ki) =0
where Ki = Ker pi and we can define a homomorphism Ki+1/Ki > Zp c Q/Z.
If ¢ ¢ p1+homz(A, Q/Z), then ¢(Ki+l)= 0 and we get a well defined
homomorphism eZ(A)1 > (Ai)*. Again, it is straightforward to check this

is an isomorphism.



