" PROVING
PROGRAMS
~~ CORRECT

—ROBERT B ANDERSON

PROVING PROGRAMS
CORRECT

ROBERT B. ANDERSON

University of Houston

JOHN WILEY & SONS

New York Chichester Brisbane Toronto

Copyright © 1979 by John Wiley & Sons, Inc.
All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of

this work beyond that permitted by Sections

107 and 108 of the 1976 United States Copyright
Act without the permission of the copyright
owner is unlawful. Requests for permission

or further information should be addressed to

the Permissions Department, John Wiley & Sons.

Library of Congress Cataloging in Publication Data

Anderson, Robert Brockett, 1941-
Proving programs correct.

Bibliography: p.

Includes index.

1. Computer programs—Testing. 2. Debugging in
computer science. I. Title.
QA76.6.A47 001.6’425 78-9321
ISBN 0471-03395-2

Printed in the United States of America
1098765432

PREFACE

The purpose of this book is to explain and illus-
trate some basic techniques for proving computer
programs correct. A large research effort has been
devoted to this topic in recent years. Much of this
research is aimed at formalizing and ultimately mecha-
nizing such proofs. Our emphasis, however, is on
rather informal correctness proofs of the type program-
mers can employ in trying to systematically convince
themselves of their program's correctness. Of course,
we are well aware that informal correctness proofs can
easily contain errors and are no panacea for preventing
or discovering all programming errors. Nevertheless,
we do believe that such informal correctness proofs
provide programmers with a more systematic means of
desk checking their programs. We also think that the
basic techniques wused in correctness proofs give
additional insights into the most basic programming
constructs, looping, and recursion. For these reasons
we believe that all programmers should be taught the
basic techniques for proving programs correct.

The only prerequisites for understanding this book
are programming experience in a high-level programming
language and some slight exposure to mathematical
proofs. Almost no specific mathematical knowledge is
required. Chapter 1 provides a thorough introduction to
mathematical induction, which is the main mathematical
proof technique that underlies correctness proofs.

Chapter 2 examines the method of inductive asser-
tions, which is the most commonly used technique in
correctness proofs for iterative programs. It contains
the most basic material. Chapter 3 illustrates further
the method of inductive assertions for FORTRAN and

PL/1 programs. It also briefly introduces the idea of
verification rules and their equivalence with the method
of inductive assertions. In Chapter 4 we deal with the
method of structural induction, which is the most
commonly used technique for proving the correctness of
recursive programs. This technique is also shown to be
useful in proving the correctness of iterative programs
that are basically carrying out recursive processes.
Chapter 5 is a very brief introduction to some of the
current research related to proving program correctness.
We have also supplied a fairly extensive bibliography as
an aid to the reader who is interested in pursuing this
topic.

This book can be used as a supplementary text for
an undergraduate or first-year graduate course on the
theory of computation. It can also be used as a supple-
mentary text in a second course on programming
emphasizing such topics as programming style and
program correctness. Since it is sufficiently self-
explanatory, it can also be used for self-study by any
one with a slight familiarity with mathematical proofs and
a background in programming.

Robert B. Anderson

vi

CONTENTS

CHAPTER I MATHEMATICAL INDUCTION

1.1 Introduction
1.2 Simple Induction

1
1

1.3 A Stronger Version of Mathematical Induction 9

1.4 Generalized Induction

CHAPTER II PROVING THE CORRECTNESS OF
FLOWCHART PROGRAMS

Introduction

Basic Principles of Proving Flowchart
Programs Correct

Additional Examples of Correctness
Proofs for Flowcharts

The Method of Inductive Assertions
Abbreviated Correctness Proofs

NN [\ NN
o Ui w oo =

CHAPTER III PROVING THE CORRECTNESS OF

PROGRAMS WRITTEN IN A STANDARD

PROGRAMMING LANGUAGE
3.1 Introduction

3.2 Example Correctness Proofs for Fortran

Programs

3.3 Example Correctness Proofs for PL/1
Programs

3.4 An Axiomatic Treatment of Partial
Correctness

3.5 Proving Program Correctness as Part
of the Programming Process

Formalizing Inductive Assertions Proofs

14

21
2a
40

78
80

91
91

102
107
116

CHAPTER IV PROVING THE CORRECTNESS OF
RECURSIVE PROGRAMS

Introduction

A Simplified Programming Language for
Illustrating Recursion

Structural Induction

More Difficult Examples of Structural
Induction

Structural Induction for Non-Recursive
Programs

= Lot b
(%)) B w N =

CHAPTER V CURRENT RESEARCH RELATED TO
PROVING PROGRAM CORRECTNESS

Introduction

Proof Techniques

Program Design - Language Design
Mechanization of Correctness Proofs

oot
=W =

DESCRIPTOR-INDEXED BIBLIOGRAPHY
INDEX

viii

120

121
131

140
153

164

166
167

170
183

CHAPTER ONE __
MATHEMATICAL INDUCTION

1.1 INTRODUCTION

Mathematical induction is a standard method of
proof in mathematics. Although not always explicitly
stated, it is the underlying technique of all correctness
proofs for computer programs. This chapter is intended
to thoroughly familiarize the reader with this fundamental
method of proof.

Mathematical induction is usually stated as a method
of proving statements about the positive integers. In
the next section we state and illustrate the most elemen-
tary version of this method. In Section 1.3 we give a
slightly stronger version of it, and in Section 1.4 we
give a generalization of the method that is applicable to
proving statements about any well-ordered set rather
than just the positive integers. Only the material in
Section 1.2 is necessary for most of the book. There-
fore, you may prefer to skip Sections 1.3 and 1.4 and
only return to them later if needed. Section 1.4 is more
abstract than Sections 1.2 and 1.3 and should be
skipped by the reader who lacks "mathematical
maturity."

1.2 SIMPLE INDUCTION

THE SIMPLE INDUCTION PRINCIPLE

Suppose S (n) is some statement about the integer
n and we wish to prove that S (n) is true for all
positive integers n. The method of simple induction
states that in order to prove this we only need to:

(i) Prove that S (1) is true.

(ii) Prove (for ail positive integers n) that if S

(n) is true then S (n + 1) is also true.

2 Mathematical Induction

The fact that these two statements together do
show that S (n) is true for all positive integers is
intuitively obvious (although, in an axiomatic treatment
of the integers, some form of this principle would have
to be assumed as an axiom). From (i), we know that
S(1) is true. From (ii) we know that if S(1) is true
then S(2) is also true. But S(1) is true and hence S(2)
must also be true. From (ii) we also know that if S(2)
is true then S(3) is also true. Thus, since we know
that S(2) is true, it follows that S(3) is also true, and
so on. Hence, intuitively we see that (i) and (ii) to-
gether show that S(1), S(2), sS@3),..., S (n),... are
all true.

We now give several examples of the use of a simple
induction.

EXAMPLE 1.2.1

We wish to prove for all positive integers n that the sum
of the first n positive integers is equal ton - (n + 1)/2.
In other words, for all positive integers n, 1+2+...+n =
n-(n + 1)/2. To prove this by simple induction, we
only need to prove:

(i) The sum of the first 1 positive integers is
equal to 1-(1+1)/2, that is, 1 =1-(1+1)/2.
This is obviously true.

(ii) If the sum of the first n positive integers
equals n-(n+l1)/2, then the sum of the first
n+l positive integers equals (n+l)-[(n+1)+1]/2.
Thus we may assume that 1+2+---+n=n-(n+1)/2
is true. This is called the induction hypo-
thesis, and we must try to prove that it
follows from this that
1+2+---+n+(n+l) = (n+l)-[(n+1)+1]/2 is also
true.

To prove this note that

1+2+--+-+n+(n+l) = (1+2+---n)+(n+l)

[n-(n+l1)/2]+(n+l) by the
induction
[(n24n)/2]+(n+1) hypothesis

[(n?+n)/2]+[(2n+2)/2]

I}

Simple Induction 3

(n2%2+3n+2)/2

(n+l)-(n+2)/2
= (ntl)-[(nt1)+1]/2

This concludes the proof of part (ii). Since (i) and (ii)
have both been proven, simple induction justifies the
claim that for all positive integers n, 1+2+-<-+n =
n-(n+l)/2.

THE MODIFIED SIMPLE INDUCTION PRINCIPLE
Sometimes we wish to prove that a statement S(n) is
true for all integers n 2 n,. Simple induction can be
trivially modified to show this as follows. In order to
prove that S(n) is true for all integers n 2 n, we only
need to:
(i) Prove that S(ng) is true.
(ii) Prove (for all integers n 2 ng) that if S(n) is
true, then S(n+l) is also true.
In particular, if we wish to prove that some statement
S(n) is true for all nonnegative integers (i.e., n 2 0),
we only need to:
(i) Prove that S(0) is true.
(ii) Prove that (for all nonnegative integers n) if
S(n) is true then S(n+l) is also true.

EXAMPLE 1.2.2

For all nonnegative integers n, we wish to prove that
204214224420 = 201 _ 1 1 order to prove this by
simple induction, do the following.

(i) Prove that 20 = 20+1-1. But this is obvious,
since 20 = 1 = 20%14
= 21-1
= 2-1
=1

(ii) Prove that (for all nonnegative integers n) if

20421422+ .42 = 2% j5 true. then

4 Mathematical Induction

n+l _ 2(n+1)+1

204214224+« +42M42 -1 is also true.

The statement 20421422+.--420 = 2"*11 s
g?)ltl:dtht;?te induction hypothesis. To prove (ii)
204214224+ . .42M420 L = (904914924, . 4T)N]
= @™l by the
induction
) (zn +1+2n +1)_1hypothe31s
= {2egT iy
- 2n+2_1
= o(n*t1)+1 4

We sometimes wish to prove that a statement S(n) is
true for all integers n such that ng< n £ my. Since
there are only a finite number of integers between ng
and my, we may be able to prove S(n) is true for all of
these by merely checking all of the different cases.
However, it is often easier and sometimes necessary
(e.g., when we don't know specific values for ny or mg)
to prove S(n) by induction. In this situation there are
two versions of simple induction that one can try to use
to show that S(n) is true for all nop £ n £ mg:

SIMPLE UPWARD INDUCTION
(i) Prove that S(ng) is true.
(ii) Prove (for all integers nyo £ n
S(n) is true then S (n+l) is als

£ myp-1) that if
o true.

SIMPLE DOWNWARD INDUCTION
(i) Prove that S(mg) is true.
(ii) Prove (for all integers ngtl £ n £ my that if
S(n) is true then S(n-1) is also true.
The student should be able to see that intuitively
each of these is sufficient to prove that S(n) is true for
all ng £ n £ myg.

Simple Induction &

PROVING STATEMENTS ABOUT COMPUTER PROGRAMS
Sometimes it is ambiquous whether we are trying to
prove that S(n) is true for all n so that np £ n £ my or
no £ n. In such situations we can frequently prove the
result without knowing which of the two cases is
involved. For example, in proving program correctness,
we sometimes want to prove that a statement S is true
each time execution reaches a particular point in the
program. We might try to prove this by induction on n
the number of times that execution has reached the
point. But we may not know exactly how many times
execution will reach this point - this may depend on
what data is used when the program is executed.
Execution may reach the point some finite number of
times mg, or it may reach the point an infinite number of
times if the program fails to terminate. Thus we may be
trying to prove that S(n) is true for all n so that 1 £ n
£ mg or 1 £ n. Nevertheless, we may be able to prove
the result without knowing which of the two possibilities
is in fact the case. If we can prove the following, then
we are justified in claiming that S(n) is true each time
execution reaches the point:
(i) S@) is true (i.e., S is true the first time
execution reaches the point). th
(ii) If S(n) is true (i.e., S is true the n " time
execution reaches the point) afhd execution
returns to the point for an n+l time, thPtR
S(n+l) is also true (i.e., S is true the n+l
time execution reaches the point)
If execution only reaches the point m, times, the only
values of n for which the hypothesis of (ii) can possibly
be true -- those values of n {Rr which execution will
return to the point for an n+l time -- are all those
values of n such that 1 £ n £ mp-1. On the other hand,
if execution reaches the point an infinite number of
times, the values of n for which the hypothesis of (ii)
could be true are all those values of n such that 1 £ n.
Thus if we can prove (i) and (ii) we will have proved
by simple upward induction or simple induction that S(n)
is true for all the relevant values of n, regardless of
which of the two possibilities is the case.

6 Mathematical Induction

EXERCISES

1. Prove that for all positive integers n,

1 + 1 +ooot . =1
1 - @) @) - Q) m)-(n+D) n+l
2 Prove that for all nonnegative integers n

304314324...430 = 301
2
3. Prove that for all positive integers n,

13+23+.. .+n3 — 112.4_4&1)3

Note that this together with Example 1.2.1 proves
the remarkable fact that

13423+--.+n3 = (1+2+---+n)2.

o A Level 0
j{k Level 1

Level 2

Level 3

The above graphs are examples of complete binary
trees of levels 0, 1, 2, and 3. A complete binary
tree of level n is a graph like the above in which
all nodes except those on level n have two branches
coming out of them. The nodes at level n that do
not have any branches coming out of them are
called the tip or leaf nodes of the tree. Prove by
induction on the level n that the number of tfjip
nodes in a complete binary tree of level n is 2.
Find a formula for the total number of nodes (both
tip and nontip nodes) in such a tree and prove the
formula by induction.

Simple Induction 7

T T AN M

The above graphs are examples of complete graphs
containing 1, 2, 3, 4, and 5 nodes. A complete
graph on n nodes is a graph like the above, which
contains n nodes and has one link or branch con-
necting each pair of nodes in the graph. Figure
out a formula for the number of branches or links
that occur in a complete graph on n nodes and
prove the formula by induction on n.

Find the error in the following proposed proof. We
wish to prove that

1 .3

1-2 23

1 _ 3n-2
(n-1)(n) =~ 2n

L RRRE 3

for all positive integers n. The proof is by induc-
tion on n.
(i) For n =1, the formula is true for

1 _ 3:1-2 _3-2
12 2-1 2

=1
2

(ii) Suppose the formula is true for n, that is,

« S A 1 _ 3n-2

1-2 23 (n-1D-(n) = 2n

then note that

L -

1-2 2-3 (n-1)-(n) n(n+l)

1+ 4 .

1 +
1-2 2-3 (n-1)-(n) n(n+l)

8 Mathematical Induction

3n-2 1 by the induction
2n n(n+l) hypothesis

(3n-2)(n+l) | 2
(2n)(nt+l1) (2n)(n+l)

3n2 +n-2+2
2n(n+l)

3nZ2 + n

~ 2n(n+l)

n(3n+l)
2n(n+l)

3n+l
2(ntl)

3(n+1)-2
2(n+l)

Thus it is true for n+l also.
Although the proof appears to be valid it must be
incorrect, since when n = 4, we get

1 1 1 _1 .1 1 _ 9 _3

-2 "33 "3 T2 " Y- T3 T3
3n-2 _ 3-4-2 _10 , 3

But 50== 57 =37 1

7. Find the error in the following proposed proof. We
wish to prove that any collection of marbles
contains only marbles of the same color. The proof
will be by induction on the number, n, of marbles
in the collection.

(i) For n = 1 it is obvious, since any collection of
marbles that contains only one marble
obviously contains only marbles of the same
color.

(ii) Suppose the statement is true for any collec-
tion of n marbles. Let us show that it is then
also true for any collection of n+l1 marbles.

A Stronger Version of Mathematical Induction 9

Suppose we picture a collection of n+l marbles
as

00...0 O
12 n nt+l

If we remove the n+lst marble from this collec-
tion, we are left with a collection of n marbles:

0oo0... O
12 n

By the induction hypothesis all the marbles in
this collection must be of the same color. Now
suppose that we instead remove the first
marble from the collection. Then we are left
with the collection:

00...0 O
23 n nt+l

But this collection also contains n marbles and
hence, by the induction hypothesis, all the
marbles in this collection must also be of the
same color. This implies that all n+l marbles
are of the same color, since we know that

marbles
00... O
12 n

are all of the same color and the n+lst marble
is also of the same color as marble n (in fact,
it is not only the same color as marble n: it
is the same color as marbles 2, 3, ..., n.)
Thus all n+l marbles are of the same color.

1.3 A STRONGER VERSION OF
MATHEMATICAL INDUCTION

Sometimes a slightly stronger version of the induc-
tion method is needed to prove some statement about the
integers. This slightly stronger version is the
following.

10 Mathematical Induction

THE STRONG INDUCTION PRINCIPLE

Suppose S(n) is some statement about the integer n
and we wish to prove that S(n) is true for all positive
integers n. In order to prove this we only need to:

(i) Prove that S(1) is true.

(ii) Prove (for all positive integers n) that if S(1),
S(2), ..., S(n) are all true, then S(ntl) is
also true.

Note that this stronger version of induction is
identical to simple induction, except that in proving (ii)
we get to assume as the induction hypothesis that all of
the statements S(1), S(2), ..., S(n) are true rather
than simply that S(n) is true. From this stronger
induction hypothesis, we still need only to show that
S(ntl) is true.

As with simple induction, it is intuitively clear that
(i) and (ii) together imply that S(n) is true for all
positive integers n. By (i) we know that S(1) is true.
From (ii) we know that if S(1) is true, then S(2) is also
true and hence, since S(1) is known to be true, then
S(2) must also be true. But then, since S(1) is known
to be true and S(2) is also known to be true, (ii) would
imply that S(3) is also true. And, since S(1), S(2),
and S(3) are all known to be true, (ii) would imply that
S(4) is also true, etc.

We now give several examples where this stronger
version of induction is useful.

EXAMPLE 1.3.1

A positive integer is called a prime number if the only
positive integers that divide it without remainder are 1
and itself. We wish to prove that every positive integer
n can be expressed as the product of (one or more)
prime numbers. The proof is by strong induction on n.

(i) If n = 1, then it is itself a prime number and
hence can be expressed as the product of (one)
prime number(s).

(ii) Suppose that each of the numbers 1, 2, ...,n
can be expressed as the product of prime
numbers. We need to show that n+l can also

