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Preface

S | W S— 1Y IS S o a— T — —— - D
 —- 7 S § S—- V S e § 8 S S  S—/ 0 S— — L '-.—-u_ ---;— L —

Und dann erst Kommt der »Ab-ge - sang; daB der mdlt kurz und mcht zu lang,

From “Die Meistersinger von Niirnberg”, Richard Wagner

This final volume is concerned with some of the developments of the
subject in the 1960’s. In attempting to determine the simple groups, the
first step was to settle the conjecture of Burnside that groups of odd
order are soluble. The proof that this conjecture was correct is much too
long and complicated for presentation in this text, but a number of ideas
in the early stages of it led to a local theory of finite groups, some aspects
of which are discussed in Chapter X. Much of this discussion is a con-
tinuation of the theory of the transfer (see Chapter 1V), but we also
introduce the generalized Fitting subgroup, which played a basic role
in characterization theorems, that is, in descriptions of specific groups
in terms of group-theoretical properties alone. One of the earliest and
most important such characterizations was given for Zassenhaus groups;
this is presented in Chapter XI. Characterizations in terms of the
centralizer of an involution are of particular importance in view of the
theorem of Brauer and Fowler. In Chapter XII, one such theorem is
given, in which the Mathieu group M, , and PSL(3, 3) are characterized.
This last chapter is mainly concerned with some aspects of multiply
transitive permutation groups loosely connected with the Mathieu
groups or with sharp n-fold transitivity, and several results from Chapter
XI are used in it. The two last chapters are, however, independent of
Chapter X.

Again we wish to acknowledge our indebtedness to the many
colleagues who have assisted us with this work. In addition to those
named in the preface to Volume II, thanks are due to George Glauber-
man, who read an earlier version of Chapter X. The contributions of all
have done a great deal to improve this volume, and it is with the greatest
pleasure that we express our gratitude to them.

January, 1982 Bertram Huppert, Mainz
Norman Blackburn, Manchester
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Chapter X

Local Finite Group Theory

The word local is used in finite group-theory in relation to a fixed prime
p; thus properties of p-subgroups or their normalisers, for example, are
regarded as local. In the case of a soluble group, then, everything is
local, but an insoluble group also has global aspects. Now the local
behaviour influences the global, that is, there are theorems in which
the hypothesis involves only p-subgroups and their normalisers, but the
conclusion involves the whole group. This chapter is an introduction
to theorems of this sort.

Some such theorems are already known from Chapter IV; for
example, Burnside’s transfer theorem, which asserts that if the centre
of the normaliser of a Sylow p-subgroup & contains &, then the whole
group is p-nilpotent. This is proved by showing that the transfer into
S is an epimorphism. An essential lemma (IV, 2.5) states that two
S-invariant subsets of S are conjugate in ® if and only if they are
conjugate in Ng(S). This has many other applications, being a link
between the global and local properties. More generally, the situation
in which two subsets A, B of S are conjugate in ® frequently arises;
such sets A, B are often described as fused, particularly when they are
not conjugate in &. In general, fusion can be reduced not to one but
to a sequence of local transformations. This is the subject matter of § 4,
where the precise way in which 4 can be transformed into B is inves-
tigated. It is shown that if A = B, then g = g,g, - - - g, Where g; nor-
malises some subgroup B; of S and A% ¢ _ < B,. Moreover there
are certain sets & of subgroups of & for which the additional con-

_dition that B; € # may be imposed. These sets F are called conjugation
families.

Another theorem with a local hypothesis but a global conclusion is
the theorem of Thompson (IV, 6.2) that, for p odd, if Ce(Z(S)) and
Ng (Jo(S)) are p-nilpotent, so is ®. Here J,(€) denotes a characteristic
subgroup of &. Certain similarly defined characteristic subgroups are
very useful for establishing non-simplicity criteria; this is shown in § 2,
where a character-free proof of the solubility of groups of order p?g® is
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given. In § 3, it is shown that there is such a characteristic group ZJ(S)
which is always normal in ® whenever O,(®) > C5(0,(®)) and G is
p-stable. This can be used to give another proof of the above theorem
of Thompson; it was also used by BENDER [3] to simplify greatly a
section of the proof of the solubility of groups of odd order. For all
such applications, criteria for p-stability are of course required, such as
those given in Chapter IX.

Now J(*B) is defined for any p-group ‘B by certain rules. To analyse
these, we consider first, in § 5, completely general rules, supposing only
that there is defined in each p-group B a subgroup W(B) and that
whenever o is an isomorphism of P onto B, W(P)a = W(B). Such a
W is called a characteristic p-functor. In order to study fusion, a con-
jugation family is defined in § 5 corresponding to any characteristic
p-functor W. This enables us to prove, for example, that ® and Ng(W(S))
have isomorphic maximal p-factor groups if and only if the same is true
in the normaliser of any non-identity p-subgroup (Theorem 7.3). By
combining this with some results about the transfer developed in § 6,
a commutator condition is obtained which implies that ® and Ng(W(S))
have isomorphic maximal p-factor groups. In § 8, two characteristic p-
functors K, K are defined, and, completely within the context of p-groups,
a complementary commutator condition is established (Theorem 8.10).
Putting the two together, a theorem of Glauberman, which states that
for p > 5, ®, Ng(K(©)) and Ng(K(S)) all have isomorphic maximal
p-factor groups, follows. Griin’s second theorem (IV, 3.7) makes a similar
assertion, but requires that ® be p-normal Glauberman’s theorem,
however, has no such hypothesis. Among its consequences are the
fact that if ® is not a p-group, there exists a Sylow subgroup € of ®
for which Ng(©) > &. In §9, it is shown that K, K could be used in
place of J, in the theorem of Thompson, and before this, it is shown
that when every section of ® is p-stable, K, K and, for p odd, ZJ have
a property which is described as strongly controlling fusion: whenever
A, A? are contained in S, there exists h € Ng (W(S)) such that a? = a*
foralla € A.

In § 10, we consider another property of J. If ® is p-soluble,
0,(®) = 1 and S € 5,(®), then the equation

6 = Ne(J(9)Cs(Z(S))

holds under many circumstances; certainly if p > 3. This kind of
fuctorization is of considerable importance and made its first appearance
(implicitly) in Thompson’s theorem. Conditions for its validity when p
is 2 or 3 are found in § 10, and in § 11 these are applied to prove a
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theorem on fixed point free automorphism groups. It is conjectured that
if A is a fixed point free group of automorphisms of ® and (|¥U|, |G|) = 1,
then ® is soluble;in § 11 this is proved when U is elementary Abelian.

Since /6’ is in duality with Hom(®, C*) = H}(®, C*), where C~ is
regarded as a trivial Z®-module, the transfer of ® into a subgroup
gives rise to a homomorphism of H'($, C*) into H(®, C*). This is a
special case of the corestriction homomorphism of H*($, M) into
H"(®, M) described in I, 16.17. It is shown in 12.8 that H'(®, M) and
H"(Ng(W(S)), M) have isomorphic Sylow p-subgroups if M is a trivial
®-module and W is a characteristic p-functor which strongly controls
fusion in ®—Griin’s second theorem is a special case of this. This is
applied to the Schur multiplier of ® in 12.17;if S € §,(®) and the class of
S is at most 4p, the Sylow p-subgroups of the Schur multipliers of ® and
of Ng(S) are isomorphic.

In addition to the transfer, a number of results, which have be-
come very familiar in finite group theory, are frequently used in proving
these theorems; these include the properties of the centralizers of
the Fitting subgroup and O, ,(®) and a number of other facts which
are collected in § 1. In § 13 and § 14, some of these results are generalized
in such a way that solubility hypotheses are removed. In doing this,
the role of the nilpotent group is taken by the quasinilpotent group
(13.2) and that of the p'-group by the p*-group (14.2). It is shown, for
example, that every group ® has a unique maximal normal quasinil-
potent subgroup F*(®) and that C4(F*(®)) < F(®); again, every
group ® has a generalized p’'-core O,.(®), and if P is a p-subgroup of ®,
0,.(C4(P)) < 0,.(®). Finally, in § 16, another aspect of local properties
is briefly considered; this involves the relationship between the various
soluble p'-subgroups of a group ® which are normalised by a fixed
Abelian p-subgroup of 6.

§ 1. Elementary Lemmas

In this chapter a number of elementary results will be used frequently.
Some of these have already appeared in the previous chapter; the
remainder are collected together in this section.

First, we establish a lemma for characteristic subgroups of p-groups
analogous to the theorem (IIl, 7.3) that a maximal normal Abelian
subgroup of a p-group is its own centralizer.
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1.1 Lemma. Let ® be a p-group and let U be a characteristic Abelian
subgroup of ®. Then there exists a characteristic subgroup B of ® such
that

(i) B > Cg(B) = Z(B) > U, and

(i1) B/Z(B) is an elementary Abelian subgroup of Z(®/Z(B)).
In particular, the class of B is at most 2.

Proof. Let & be the set of characteristic subgroups X of ® such that
Z(X) > U and X/Z(X)is an elementary Abelian subgroup of Z(®/Z(X)).
Thus A € Z. Let B be a maximal element of . If B > Cg(B), then B
has all the required properties. Suppose then that B # Cg(B), that is,
Z(B) < Cg(B). Let D/Z(B) be the sét of elements of order at most p
in (Cg(B)/Z(B)) n Z(G/Z(B)). Thus D < Cg(B), D? < Z(B) and
[D,6] <Z(®).ByIII,72, D > Z(B), so D £ B. But DB € Z,, since
[DB, 6] = [D,6][B, ] < Z(B) and (DB)? = D?B? < Z(B). This
contradicts the maximality of B. q.e.d.

1.2 Lemma. Suppose that ® is a p-group and that o is an automorphism
of ® of order prime to p. If there exists a subgroup 9 of ® for which
HCs(9H) < Cg(a), then a is the identity automorphism.

Proof. This is proved by induction on |®|. There is nothing to prove if
HCs(H) = G. Otherwise, there exists a maximai &-invariant proper
subgroup M of ® such that M > HCq(H). Since Ng (M) is a-invariant,
Ng(M) = G, by III, 2.3. Thus M = G. By the inductive hypothesis,
M < Cg(x). By IX, 6.3, « induces the identity mapping on G&/Cg ().
But Cg(M) < Cg(H) < M, so o induces the identity mapping on G/IN.
By I, 4.4, a is the identity mapping. q.ed.

1.3 Lemma. Suppose that ® is a p-group and Cg(RN) < N = . Suppose
that

N=RNy,=2N, =>2---=>2N, =1,

where N, = G (i = 0,1, ...,k). Let A be a group of automorphisms o
of ® for which o =N, (i =0,1,...,k). Let

B ={p|peU xN)p =xN, forall xeR,_;(i=1,...,k}
Then B is a normal p-subgroup of U.

In particular, any non-identity p'-element of U induces a non-identity
automorphism on N,_, /N, for at least one i.
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Proof. If a € U, let p(x) denote the automorphism of N induced by «.
Then p is a homomorphism of A into the group of automorphisms of
N.Let & = kerp, A, = im p, B, = p(B). Then there is an isomorphism
between A/K and A, in which B/K and B,, correspond. Now

B, = {B|fe Wy, xN)p = xN, forall xeN,_,(=1,...,k}.
By IX, 7.3, B, is a normal p-subgroup of U,. Hence B = A and it only
remains to show that R is a p-group. If y € &, choose r such that the
order of 6 = y?" is prime to p. Then NCGN) = N < Cg(d), s0 6 = 1
by 1.2. Thus K is a p-group. q.e.d.

1.4 Lemma. Suppose that o is an automorphism of the Abelian p-group
A and that o leaves fixed every element of W of order p. Then the order
of o is a power of p.

Proof. Let U, = Q,(A)(n =0,1, ...). Thus A,a = A, and
1=Q[0SQI1SSQIM=Q[
for some m. If x e A, and xa = xy,

ypl-l = x_pl—l(xa)pl-l = x—p._l(xp.-l)a = 1’

since the order of x?"" is at most p. Thus ye ¥,_,, and (x2A,_,)a =
xU,_,. By 1.3, the order of « is a power of p. q.e.d.

1.5 Lemma (THOMPSON). Suppose that ‘B, K are subgroups of the group
®, B is a p-group, ] = OP(R) and [K, B] = 1. Suppose that B is a
p-subgroup of ® and PR < Ng(B). If [], Cs(B)] = 1, then [K], B] = L.
Proof. Let § = {(u, v)|u € B, v € B}. Then H is a group if we put

(u, v)(W', V') = (u', v*0)

for all u, v’ in PR and v, v’ in B. If x is an element of K of order prime
to p, then x € Cg(B), so

(u, v, V') = (uu', v™v'*) = (uu', (V*V)).

Hence if we put (u, v)a = (u, v™), a is an automorphism of $. Note that
9 is a p-group and the order of o is prime to p. If Q = {(u, 1)|u € B},
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Q < Hand Cs(Q) = {(u, v)|u € Z(B), v e Cy(P)}. Since [K], Cx(P)] =
1, QCe(RX) < Cg(x). By 1.2, x is the identity automorphism. Thus
x € Cg(B) for every element x of & of order prime to p. Since & = O?(R),
it follows that B centralizes K. q.e.d.

1.6 Lemma. If B is a p-subgroup of the p-constrained group ®,
0, (Ng(P)) < 0,(6).

Proof. Let 6 = 6/0,(6), P = PO, (6)/0,.(®), N = V,,(‘B) ] =
o, (91) Then ] = O"(R) since K is a _p'-group, and [B.]] =1
smce B, | are normal subgroups of M of coprime orders. Also
PR < N(0,(®)) and

[R Com(P)] < 0,(6)n[KN] <0,(6)n & = 1.

Hence by 1.5, [], 0,(®)] = 1. But 0,(®) = 1 and G is p-constrained
(VII, 13. 3) s0 R < 0,(®). Since R is a p’-group, ! = 1. Now by
IX, 6.11, M = Ng( ()0,.(6)/0,.(6), so RN =~ Ng(P)/M, where M =
Ng(B) N 0,(®) is a norma] p-subgroup of Ng(P). Since O, (M =

K] =1,it follows that O, (Ng(P)) = M < O,(6). q.e.d.

1.7 Corollary. Suppose that B is a p-subgroup of the p-constrained group
®. If B contains every p-element of Cg(B), then

Co(B) = Z(P) x (Co(B) N O,(®)).
Proof. By hypothesis, Z('B) is the only Sylow p-subgroup of Cg(B).
Since Z(P) < Z(Cg(P)), Co(B) = Z(P) x N for some N, by IV, 2.6.
Thus N = O0,(Ce(P)) < 0,(Ng(B)) < 0,(G) by 1.6, and N =
Ce(B) N 0,(G). q.e.d.

We now turn to a generalization of part of IX, 6.11.

1.8 Lemma. Suppose that U is a group of operators on a group ® and
that either W or & is soluble.

then
Coa(U) = Ce(UYN/N.

b) If (|[6, A]|, |A|) = 1, then & = Co(W[6, A].



§ 1. Elementary Lemmas 7

Proof. a) Obviously Cg(WN/N < Cgu(N). If xN € Cgu(A), then by
I, 18.6, there exists y € Cg(A) such that yR = xN. Hence x € Cg(WN.

b) By III, 1.6b), M = [®, A] is a normal A-invariant subgroup of
®. Clearly Cgm(¥) = /M. But by a),

Thus & = Cg(W)M = Co(A)[G, AJ. qed.
\

Note that on account of the solubility of groups of odd order, the
hypothesis that either U or ® be soluble is unnecessary.

1.9 Lemma. Suppose that ® is a p'-group and U is an Abelian p-group
of operators on ®. Then

® = (Co(B)|B < A, A/B is cyclic).
If also W is not cyclic,

® = (Cg(x)|x €U, x # 1).

Proof. The first assertion is proved by induction on |®|. If g is any
prime other than p, ® possesses an U-invariant Sylow g-subgroup L,
by IX, 1.11, and ® is generated by all such Sylow subgroups. Thus it
suffices to prove that Q = €, where

€ = (Co(B)|B < A, A/B is cyclic).

Suppose that € < Q. Then ¢(Q)E < Q. Let M be a maximal A-
invariant subgroup of Q for which #(Q)€ < M < Q. Then QM is
irreducible under U. If B, is the kernel of the representation of A on
LQ/IM, then A/B,, is cyclic, by 11, 3.10. Also

D/SJI = Cn/!l(%o) = Cn(ﬁo)w‘/ﬂn,
by 1.8a), so

Q = Co(By)W = M,

a contradiction.

Suppose that U is not cyclic. If A/B is cyclic, then B # 1 and
Cg(B) < Cg(x) for some x e A — {1}. Hence
® = (Ce(x)|x e U, x # 1). q.e.d.
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1.10 Lemma. a) If S € §,(®) and A is a maximal normal Abelian sub-
group of S, Cg(W) = U x D for some p'-subgroup D.

b) If p is odd, © € S,(®) and U is a maximal normal elementary
Abelian subgroup of S, every element of order p in Cg() lies in AU.

c) Suppose that W is a p-subgroup of ® and every element of order
pin Cg(A) liesin U If R < G, U< Ng(R)and KN A =1,Kisa
p’-group.

Proof. a) See 1X, 5.9.

b) Since S € §,(Ng(¥U)) and Cg(A) = Ng(A), Ce(A) € S,(Ce(A)).
Hence if x is an element of Cg(UA) of order p, x € Cg(A) for some
c € Cg(). But x¢ is of order p, so by III, 12.1, x° € A. Since ¢ € Cx(A), it
follows that x € 2.

c) Suppose P € S, (UAK) and P > A. Then P = AP, where P, =
BN KeS,(R). Also B, = B, so if B, # 1, P, contains an element z
of Z(*B) of order p. But then z € Cg(), so by hypothesis, z € U. Since
AN K = 1, it follows that z = 1, a contradiction. Thus B, = 1 and
K is a p’-group. q.e.d.

1.11 Theorem. Suppose that ® is p-constrained, S € S,(®) and U is a
maximal normal Abelian subgroup of S. If K is a subgroup of ® for which
A < Ng(R)and A N ] = 1, then }& < 0,.(6).

Proof. Suppose that this is false and that ® is a counterexample of
minimal order. By 1.10a) and c), K is a p’-group.
a) 0,(6) =

Let & m (53/0 (®), © = €0,(6)/0,(6); thus SeS,(6) and

= U0,(6)/0, (Y)) is a maxnmal normal Abelian subgroup of €.
Also A < NG(R) where ﬁ K0,,(6)/0,(®). Since K is a p'-group,
ANK=1But R#1= ((5) so ® is a counterexample to the
theorem, and O,.(®) = 1 on account of the minimality of |®|.

Let ¥ be a minimal non-identity U-invariant subgroup of }. Thus
T is a p’-group.

b) 6 = 0,(6)TA.

Let § = 0, (G)IA Thus H$ <G and O,(6)AeS,(H). Since
0,(6)A < & and Ce(A) = A, A is a maximal normal Abelian sub-
group of O,(®)U. Since O,(®) = 1 and & is p-constrained, O,(®) >
Co(0,(®)), so [0,(6), T] # 1 and T £ O,(H). Thus H is a counter-
example to the theorem, and $ = & on account of the minimality of
G|
| Ic) [T, U] # L

This is clear if T & Ng(), so we suppose that T < Ng(A). Then
A =26 since ® = ST by b). By 1.10a), Cs(A) = A x D for some
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p-subgroup . Thus D is a characteristic subgroup of Cg(2) and
Cs(U) = G. Hence D= 6 and D < 0,(®) = 1. Thus C(A) = A
and [T, A] # 1.

d) Let V = 0,(6)/#(0,(®)). Then & is a group of operators on V,
and by III, 13.4b),

V =[V,I] x Cu).

Now [V, T] is U-invariant, so [[V, T], A] < [V, T]. But also
[[V,T],A] <[V, A] < C\(I), since

[0,(6), %, T] < [, T] 1 0,(6) < T~ 0,6) = 1.

Hence[[V, T], A] = land [V, T] < Cy(¥).Since [V, T]is T-invariant,
it follows that [V, T] < C,(¥')for all t € T; hence

[V,T] < C([T, A)).

Now [T, ] is an U-invariant subgroup of T, and by c), [T, A] # 1.
By minimality of I, [T, A] = T. Thus [V, T] < Cy(T). Hence [V, T]
=1 and

T < G(0,(0)/2(0,(®))).
By IX, 1.6, T < O,(6), contrary to T # 1. gq.e.d.

We show that for p odd, the conclusion of 1.11 holds under weaker
assumptions.

1.12 Theorem (THOMPSON-BENDER). For p odd, suppose that U is a p-
subgroup of the p-constrained group ® and that every element of order
pin Cg(A) lies in W If R < ®, A < Ng(R) and K n A = 1, then
! < 0,(6).

Proof. Suppose that this is false and let ® be a counterexample of minimal
order. By 1.10, & is a p’-group.

a) 0,(6) = 1.

Suppose that ! = O, (®) # 1. By IX, 6.11, Cg g(UAN/N) = Cg (W R/N.
Thus any element of order p in Cgu(UAN/N) is of the form xN with
x e Cg(A) and xP e N. If x = x,x, = x,x,;, where x, is a p-element
and x, is a p’-element, then x, € N and x{ = 1. Since x; € Cg(N), it
follows from the hypothesis that x, € 2. Hence xR € AN/N. Thus G/N
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satisfies the conditions of the theorem. Since ® is a minimal counter-
example, it follows that R9/N < 0,.(G/N) = 1 and R < N = O,(6).

Let & be the set of subgroups X of O,(®) such that AK < Ng(X)
but & £ Cg(X). Since O,(®) = 1, & is p-constrained and R is a non-
identity p'-group, O,(®) € . Thus % is non-empty. Let $ be a minimal
element of &. Thus

b) $ is a subgroup of 0,(G), UK < Ne(H), K £ Co().

We prove next that

c) the class of § is at most 2 (cf. III, 13.5).

Indeed, by minimality of §, R < Ce(9’). Thus [§', 9, ]] =[], ', 9]
= 1. By III, 1.10, [, &, ] = 1. Now since & £ Cg(9), there exists
y € & such that y induces a non-trivial automorphism n on $. In fact
n is not of order a power of p, since K is a p’-group. But & < Ng([ 9, K]),
so n leaves [9, &] fixed and induces the identity automorphism on
9/[9, ]]. It follows from I, 4.4 that n induces a non-identity auto-
morphism on [H, ]]. Thus & £ Cg([D, ]]). But UK < Ng([9H, K]), so
[9, &] € #. By minimality of §, [H, R] = $. Thus

[99]1=[9%9]=1

and the class of § is at most 2.

Since |H| is odd, each element of $ has a unique square root. Thus
by c¢) and VIII, 9.16, there exists an addition on § with respect to which
$ is an Abelian group $ and UK is a group of operators on §. By
II1, 13.4b),

here [$, K] is understood in the sense of the additive structure of §
and Cg(8R)) = C4(R). Thus [, ]] is an W-invariant subgroup of $, and
by b), [§, &] # 0. Since [9, K] and A are p-groups, there exists an
element u of order p in [§, K] such that u € Cg(2) = C4(A). But then,

by hypothesis, u € A. Thus if g € & and the commutator [u, g] is now
understood in the ordinary sense,

[u,9]eHN[UR]<Hn /=1
Thus u € C4(R) = Cy(R) and
ue Cg(R) N [, 8] =0,

a contradiction. q.e.d.



