


Cambridge Computer Science Texts -

An Introduction to
Computational
Combinatorics

E.S.PAGE

Vice-Chancellor
University of Reading

L. B. WILSON

Computing Laboratory
University of Newcastle upon Tyne

Cambridge University Press

Cambridge
London - New York - Melbourne



Published by the Syndics of theﬂ Car'n!bridge University Press

The Pitt Building, Trumpington Street, Cambridge CB2 1RP
Bentley House, 200 Euston Road, London NW1 2DB

32 East 57th Street, New York, NY 10022, USA

296 Beaconsfield Parade, Middle Park, Melbourne 3206, Australia

© Cambridge University Press 1979
First published 1979

Reproduce(f printed and bound in Great Britain by
Cox & Wyman Ltd, London, Fakenham and Reading

ISBN 0 521 22427 6 hard covers
ISBN 0 521 29492 4 paperback



Preface

By the time students have done some programming in one or two
languages and have learnt the common ways of representing information
in a computer they may wish to embark upon further study of theoretical
or applied topics in computing science. Most of them will encounter prob-
lems which need one or more of the techniques described in this book;
for example, the analyses of certain algorithms and of some models of
scheduling strategies in an operating system depend upon the formation
and solution of difference equations; the tasks of making lists of possible
alternatives and of answering questions about them crop up in as diverse
areas as stock records and the theory of grammars; searches for discrete
optima - or for the best that can be found with just so much computing -
occur in manufacturing, design and many operational research investi-
gations. These examples would be justification enough for the teaching
of this material but we believe that the field of computational combina-
torics itself contains fascinating problems and we hope that this introduc-
tion gives a glimpse of some of them.

It will be obvious from a count of the numbered equations that some
chapters are more mathematical than others, and that chapters 2 to 4 have
a higher 'equation count' than the rest. We could almost as easily have
changed the order of presentation and put this material near the end, and
some readers and lecturers will prefer to do so. However, mathematical
techniques have to be acquired if one is to calculate how large or lengthy a
combinatorial calculation will be. Problems can grow so big so quickly
that much human and computer time, and money, can be wasted if an in-
feasible computation is started. We therefore put this material first in
our courses but it could be postponed and the more practical programming
topics treated first instead, referring to chapters 2 to 4 for definitions

where necessary.



It is convenient for us to teach most of the material in this book
during the second year of certain groups of students at Newcastle; but the
mathematical and computing science preparation that students have re-
ceived will vary from place to place and elsewhere other times might be
more appropriate. The mathematics needed is elementary algebra and
calculus - for example, an isolated use of Taylor's theorem occurs in
chapter 2 and simple first order differential equations in chapter 3 - and
the students should have sufficient computing experience to be able to under- .
stand the algorithms which are described here in an Algol-like language,
and to program them for running on the machine available to them. The
students can check their grasp of what they have read by tackling the exer-
cises given at the end of the chapters; some of them are straightforward
drill but others are longer, taken from university examination papers,
which will give an idea of the standard required in a written paper at this
level. There are also suggestions for some programming tasks which
can be expanded if the time and course structure so demand. Some hints
on the solutions of the exercises are given at the end of the book; we hope
that they are sufficiently detailed to indicate the way to proceed to some-
one who is stuck but not so full as to be specimen answers which a student
might find attractive to copy.

We are pleased to acknowledge our gratitude to the Universities of
Newcastle upon Tyne, Warwick and Linkoping for their permission to in-
clude questions from their examination papers.

However hard authors try to eliminate all errors and misprints they
will be fortunate if they succeed in doing so; if any remain in spite of our
own efforts and the helpful comments of some of our colleagues we apolo-
gise.

E.S. Page
L. B. Wilson

vi



Contents

Page
Preface .
Chapter 1 The Problems of Computational Combinatorics 1
1.1 Introduction 1
1.2 Where? 1
1.3 Which is Best? 3
1.4 Methods 4
Chapter 2 Constant Coefficient Difference Equations 5
2.1 Introduction 5
2.2 The Homogeneous Equation 8
2.3 The Complete Equation 11
2.4 Solution by Generating Functions 22
2.5 Simultaneous Equations 25
2.6 Applications 26
2.7 Bibliography 30
2.8 Exercises 31
Chapter 3 Other Difference Equations 36
3.1 Variable Coefficients 36
3.2 Reduction of the Order 42
3.3 Partial Difference Equations 48
3.4 Bibliography 51
3.5 Exercises 52
Chapter 4 Elementary Configurations 54
4,1 Introduction 54
4,2 Combinations and Permutations 54
4,3 Generating Functions 60
4.4 The Principle of Inclusion and Exclusion 64
4,5 Partitions and Compositions of Integers 67
4.6 Graphs and Trees 74



4,7 Bibliography

4,8 Exercises

Chapter 5 Ordering and Generation of Elementary Configurations
5.1 Lexicographical Orderings

5.2 Permutations

5.3 The Generation of Combinations

5.4 The Generation of Compositions

5.5 The Generation of Partitions

5.6 Recurrence Relations

5.7 Bibliography

5.8 Exercises

Chapter 6 Search Procedures

6.1 Backtrack Programming

6.2 Branch and Bound Methods

6.3 Dynamic Programming

6.4 Complexity

6.5 Bibliography

6.6 Exercises

Chapter 7 Theorems and Algorithms for Selection
7.1 Introduction

7.2 Systems of Distinct Representatives

7.3 Algorithms for Systems of Distinct Representatives
7.4 Matrices of Zeros and Ones

7.5 Assignment Problems

7.6 Bibliography

7.7 Exercises

Notes on the Solutions to Exercises

Index

88

90

97

97
103
116
118
120
122
125
127
131
131
139
149
154
156
157
164
164
165
169
173
175
188
189
195
215



1 The Problems of Computational
Combinatorics

1.1 INTRODUCTION

Digital computers represent the items which they store and manipu-
late in a discrete form. The operations that are performed on the items
are exact and they are necessarily finite in number even though each oper-
ation is completed very quickly. Each item may need only a few bits or
bytes for its storage but there may be many such items. When one plans
a computer application one normally needs to know, at least approximately,
how much storage will be required and about how big a computation it is.
A major component of the storage needed may be the number of items of
a particular type that have to be stored. Similarly, a knowledge of how
many operations of the various types the computation involves will help in
assessing how much computing will be needed. These quantities, both
dependent upon the answer to a question 'How many ?', are important if
one attempts to compare different methods of achieving the desired end
or even to decide whether the computation is feasible., In computing some
use of one resource of the computing system can nearly always be reduced
at the expense of making use of another of the resources; for example,
there can nearly always be a trade of storage for processing time, and
vice versa. For a proper comparison of the alternative methods the
amounts need to be quantified. One needs to be able to answer the ques-
tions which start '"How many ?' - one of the interests included in the subject

of computational combinatorics.

1.2 WHERE?

For some applications in computing, the answers to questions of the
'How many ?' type may be sufficient; for example, if two algorithms which
each perform a certain computation are being compared it may be enough

to know how many operations of the various types each algorithm requires



and how many storage locations each needs. In some other applications
an answer to the question 'How many ?', whether approximate or exact,
may only be enough to determine whether or not the problem can be tackled
at all. For example, the task of sorting some items into order within the
main storage of the machine will only be possible by the given algorithm if
the number of items is small enough so that the storage needed for the
final list and for intermediate working storage is within the bounds of what
can be spared for this program. However, once an ordered list has been
obtained, other questions may need answering. Does a certain item appear
in that ordered list, and, if so, where is it? Such a question might call
for a suitable searching algorithm but it might be possible to answer it by
calculation without searching the list itself. The converse question "Which
item is at a given position in that order ?' could present a task of retrieval
but it might be possible to identify and construct the item without refer-
ring to the order by performing an appropriate computation. The latter
approach would be the only feasible one if the number of items were so
large that not all could be conveniently stored and also if the items had
not been explicitly generated and it was wasteful to do so. For example,
the number of permutations of n items increases rapidly with n and
soon becomes too large to generate and store (there are over 400 million
even for n = 12) but there are several ways of defining an order so that
the questions can be answered directly. In other problems answers to
'Where ?' and 'Which?"' questions may be found most suitably by applying
one of the number of techniques available for searching and retrieval, but
there can be cases where such techniques are not applicable or can be
replaced by more efficient ones special to the application. Ina sense, all
these problems are included in computational combinatorics but as algor-
ithms for searching, sorting and retrieval are normally introduced at an
early stage of study in computing science the latter are only mentioned
incidentally in this book.

The problem of sorting - given a set of items, put them in order -
has a counterpart when the items are not given explicitly, but instead are
defined in some implicit manner. For example, the set of items may be
all possible arrangements of the four letters A, B, C, D. Insucha
case, the problem is to generate the set as well as to place the items in

order, but it is often possible to choose the method of generation which



will produce the desired order directly, and also enable other questions

about the order to be answered easily.

1.3 WHICH IS BEST?

Problems of optimisation have claimed the attention of mathema-
ticians from earliest times; some appear elementary - like finding the
shortest distance from a point to a given circle - others, while calling
for more advanced methods, are routine - like the 'soup tin' problem of
obtaining the cylinder of greatest volume for a given surface area, or
discovering the closed curve of given length which encloses the greatest
area. Yet others are comparatively simple in specific cases but difficult
in general - the task of showing that at most four paints are needed to
colour a given planar map is of a different type and order of difficulty
from proving that all such maps can be coloured by at most four paints.
The problems of optimisation encountered in computational combinatorics
are, not surprisingly, concerned with discrete rather than continuous
v/ariables, and are predominantly of the apparently trivial type "Which is
the best item out of this finite set of items?'. Of course, the method by
which one item is compared with another may be complicated but the
principal difficulty with such problems is that the set concerned, though
finite, is large. Indeed, it may be so large that an exhaustive search
through it will be beyond the resources of the computing equipment avail-
able. Thus we look for algorithms better than mere exhaustive searching.
For example, we know that there are only (!) n! different ways of visiting
n towns once and once only starting from another given town; one of these
routes must have the shortest length and so it must be easy to discover it
and so solve this 'travelling salesman' problem: so it must, were it not
for the vastness of n! for n more than a few handfuls. A naive approach
soon founders. We need algorithms which use the properties of the set and
of the criteria determining the optimum to reduce the size of the compu-
tation. The construction of such algorithms and the assessment of the work
they entail is another of the topics studied in computational combinatorics.

A more theoretical aspect, but one often with great practical signifi-
cance, is that which describes attempts to quantify how 'difficult' classes
of computations are. This field of study, called computational complexity,

assesses how the numbers of operations of various types in the best possible



algorithms increase with the size of the problem. Sometimes the study
yields a constructive proof leading to a practical algorithm; in other cases,
the most that can be done is to show the equivalence of different classes

of (rather difficult) problems and to conjecture how fast the number of
operations required increases with the size of the problem. We restrict

ourselves to the mention of one or two problems of this kind.

1.4 METHODS

Readers will recall from their studies in elementary algebra the
method of proof by mathematical induction. In a simple form this requires
one to demonstrate that if a proposition is true for a general value of some
integer parameter n, it is also -true for the next larger integer, n +1,
and then to exhibit a case for a particular value of n, usually a small
one (n=1 or 2 perhaps), in which the proposition is true. It then fol-
lows that the proposition is true for any greater integer value of n quite
generally. The idea of relating the situation for one value of n with
other, usually adjacent, values (say n-1 and n- 2) is one which is
used widely in combinatorial problems. These recurrence relations
when they can be found are most useful tools in many problems in com-
putational combinatorics. Sometimes they can be solved as difference
equations to answer questions of the '"How many ?' kind; in other examples
they can be used as the basis of algorithms to compute 'How many ?' for
specific cases or to generate lists and solutions for bigger problems from
smaller ones that have already been solved, and to exhibit the structure
of problems and to reveal relations between different problems. The
methods which are introduced in this book first show how to solve some of
the important types of difference equations and how to apply them to prob-
lems in computational combinatorics. Recurrence relations are used to
develop various algorithms, and appear frequently in different guises -
sometimes a generating function is used to solve the corresponding differ-
ence equation, while at other times a generating function gives a means
of deriving a recurrence relation. The recurrence relation itself provides
some unity over a field which includes a great variety of different kinds of

problems.



2 - Constant Coefficient Difference
Equations

2.1 INTRODUCTION

Many problems which seek to determine how many objects of a
particular type there are, can be made to depend upon a single variable
which takes integer values; these values are often the natural numbers
0,1,2,3,4,... but sometimes they may be just a subset like the even
positive integers, 2,4,6,... For example, the elementary problem of
determining how many different permutations of n different objects there
are, can be reduced to discovering the appropriate function of n, which
we could write as p(n) or P, for n=0,1,2,... Other problems of the
same general type involve two or more independent integer variables; to
find the number of combinations of n things taken m at a time we seek

a function which we can write as
n n
m,n) or c C or
c¢(m, n) mn? ()

depending on the notation chosen.

One way of approaching the desired solutions is by looking for a
reasoned argument which will relate the unknown function for a general
value n (in the one variable case) with values of the unknown function at
one or more smaller values of n. If such a recurrence relation can be
produced, it can usually be made the basis of an algorithm for computing
values of the desired function, while in certain very useful classes of
cases the relation can be solved to give an explicit expression for the
unknown function. This chapter and the next are concerned with some
of the techniques that are available for finding the explicit solutions of
certain recurrence relations and with illustrating the sorts of combina-

torial problems which are amenable to this approach.



2.1.1 Differences and Definitions
If u is a function of one variable n, which takes integer values

0,1,2,..., the difference of the function values at two consecutive argu-

ments

is called the first (forward) difference of u s it is often written

where A is the forward difference operator. An alternative way of

writing the difference is in terms of the shift operator, E , where

Eun = un+1

so that

Aun = Eun -u
The operators A and E both require a certain operation to be per-

formed on the functions to which they are applied, and, of course, are not

ordinary algebraic quantities. In spite of this it will be found that much

algebraic manipulation of A and E turns out to lead to legitimate re-

sults, and with this cautionary word we shall proceed to "multiply' and

to 'expand' them in what follows.

For example, since
Aun = (E—l)un
we have a formal relation
A=E-1 (2.1)

The second difference (i. e. the difference of the first difference)



2 = -
A un = Aun+1 Aun
= (un+2_un+1) - (un+1_un)

= - +
un+2 2un+1 un

can be derived in terms of the function values more swiftly by using (2. 1);
A%y = (E-1)%u
n n
= (E%-2E+1)u
n
More generally for any positive integer k,

k

K
D1 *

k
Au = Z)un+k-2_"'

k
- + (-
n= U~ ¢ -1 (2.2)
The relation can be used in the other sense, too. From (2.1)

E=1+A (2.3)

and the function values are given in terms of differences by

k. _ k k, k-1 Kk, k-2
un+k—E un—Aun+(1)A un+(2)A un+...+un (2. 4)
If there exists some relation F(un, LR PRRREL S n) = 0 between

the values of the unknown function u at a set of values of the independent
variable n which has extent exactly r + 1, then the function u is said

to satisfy a difference equation of order r . In the form quoted, the

function values themselves appear and the equation is often called a

recurrence relation. When it is equivalently expressed in terms of dif-

ferences, say, in the form g(un, Aun, Azun, s W i Arun, n) = 0, it is usu-
ally called a difference equation of order r.

If the relation between the function values and the differences is
such that it is linear in the unknown function, so that no powers of u or
products of u values at different arguments appear, we have a linear

difference equation. Unless a non-linear equation happens to have a

rather convenient form, its solution in explicit terms is likely to be im-
possible. A few examples where some progress can be made do occur,

but most of our attention is directed towards the solution in explicit



terms of linear difference equations, commencing with those in which
all the coefficients of the unknown function or its differences are con-
stants, i.e. the 'linear difference equation with constant coefficients’.

The remainder of this chapter deals only with equations of this type.

2.2 THE HOMOGENEOUS EQUATION
The constant coefficient linear difference equation of order r can

be written

aoun+r + alun+r—1 Tt arun = ¢(n) (2.5)
where the coefficients a, (i=0,...,r) are constants and the function
¢(n) is given. The equation is in homogeneous form if ¢(n) =0. Clearly
a solution of the complete (i. e. non-homogeneous) equation can have added
to it any multiple of a solution of the homogeneous equation and the sum
will still be a solution. Accordingly we now seek the general solution of
(2. 5) for the case ¢(n) =0 and in the next section we deal with more
general cases.

By trial, it is evident that u = m" is a solution for those values
of m which satisfy the equation
r-1

m ~+..,,+a_ } =0 (2. 6)

n r
+
m {aom a, "

The solution m = 0 is of no interest. The remaining condition on the

value of m is called the indicial equation. This r'Ch degree polynomial

equation has, of course, r roots and the form of the solution of the homo-
geneous difference equation depends upon whether the roots of the indicial

equation are distinct or whether certain of them are repeated.

Case 1. Distinct Roots

Suppose the indicial equation of (2. 6) has r different roots; let them
be m;,m,,...,m_ ; then the general solution of the homogeneous equation
is

u =A mn+A2mn+...+Amn (2.7

n. 171 2 rr



where Al’ v ,Ar are constants which may be chosen to satisfy any

boundary conditions upon the solution. The most commonly encountered

such conditions are when the first r values U Upseees u,_q, are known.

Example 1. To solve u Tu + 12un = 0 subject to the

nt+2 ~ Tn+l

boundary conditions u0=2, u1=7 s

The indicial equation is
m® - 7m+12=0

which has roots m = 3,4, and so the general solution of the difference

equation is
u = A3" + Ba"

where A, B are any constants. In order to satisfy the boundary con-

ditions, however, we must obtain the given values for U,y . Hence
A+ B=2
3A+4B=7

which give A = B =1, and the required solution is

u =3n+4n
n

Case 2. Multiple Roots

Where two or more roots of the indicial equation are coincident, the
previous form of the solution (2. 7) loses one or more of its independent
constants Ai and it is clear that they could not be uniquely determined by
r initial values of the u's. In this case we can try a solution of the form
un = mnvn and hope to obtain an equation for v that we can solve, In
operator form the homogeneous equation (2, 5) is

n+r_n+r

(agm™ TETT 4+ armnEn)vO =0 (2. 8)



which can be written as
m"E"[f (mE)]v0 =0 (2.9)

where f(x) is the polynomial in x of the indicial equation (2. 6).
If now we write E =1+ A and expand the polynomial f by Taylor's
theorem, we can write (2. 9) as

mf'(m)A n mzf”(m)A2

1! 2! T *

mrf(r)(m)Ar ]

T v.=0 (2. 10)

[£(m) + 0

It was mentioned in the last section that we intended to 'expand' the operator
expressions in cavalier fashion but that the results would justity the means.
They do so here.

We note that the expansion terminates and that it has just r + 1
terms since f is a polynomial of degree r ; moreover since we have
supposed that m is a multiple root of multiplicity k say, the first k-1

derivatives at x=m must vanish.
fm) =f'(m)=... = f(k-l)(m) =0

Hence one solution of (2. 8) is given by Akv0 = 0. In just the same way
that differentiating a polynomial of degree r produces a polynomial of
degree r - 1, so differencing a polynomial reduces the degree by one,

for

A = (n+1)k - nf

= ko + terms with lower powers of n

Accordingly the solution we need is

k-1, n n n
= +A_n+...+
u = A FAnt AT my FA L m L A M (2.10)

k

Thus the part of the solution of a homogeneous equation corresponding to a
root of the indicial equation which is repeated k times is the product of
an arbitrary polynomial of degree (k-1) in n and the root raised to the

th
n power.

10



