€ von Luxb |
Gunnar Rétsch (Eds.

Tutorial

LNAI 3176

ML Summer Schools 2003
Canberra, Australia, February 2003
Tiibingen, Germany, August 2003, Revised Lectures

f Olivier Bousquet Ulrike von Luxburg
Gunnar Ritsch (Eds.)

Advanced Lectures
on Machine Learning

ML Summer Schools 2003

Canberra, Australia, February 2-14, 2003
Tiibingen, Germany, August 4-16, 2003
Revised Lectures

LN

E200404331

@ Springer

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jorg Siekmann, University of Saarland, Saarbriicken, Germany

Volume Editors

Olivier Bousquet

Ulrike von Luxburg

Max Planck Institute for Biological Cybernetics
Spemannstr. 38, 72076 Tiibingen, Germany
E-mail: {bousquet, ule} @tuebingen.mpg.de

Gunnar Ritsch

Fraunhofer FIRST

Kekuléstr. 7, 10245 Berlin, Germany

and Max Planck Institute for Biological Cybernetics
Spemannstr. 38, 72076 Tiibingen, Germany

E-mail: Gunnar.Raetsch@tuebingen.mpg.de

Library of Congress Control Number: 2004111357

CR Subject Classification (1998): 1.2.6,1.2, E.1, F.2, 1.5

ISSN 0302-9743
ISBN 3-540-23122-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2004
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11322894 06/3142 543210

Lecture Notes in Artificial Intelligence 3176
Edited by J. G. Carbonell and J. Siekmann '

Subseries of Lecture Notes in Computer Science

Preface

Machine Learning has become a key enabling technology for many engineering
applications, investigating scientific questions and theoretical problems alike. To
stimulate discussions and to disseminate new results, a series of summer schools
was started in February 2002. One year later two more such summer schools were
held, one at the Australian National University in Canberra, Australia, and the
other one at the Max Planck Institute for Biological Cybernetics, in Tiibingen,
Germany.

The current book contains a collection of the main talks held during those
two summer schools, presented as tutorial chapters on topics such as pattern
recognition, Bayesian inference, unsupervised learning and statistical learning
theory. The papers provide an in-depth overview of these exciting new areas,
contain a large set of references, and thereby provide the interested readers with
further information to start or to pursue their own research in these directions.

Complementary to the book, photos and slides of the presentations can be
obtained at
http://mlg.anu.edu.au/summer2003
and
http://www.irccyn.ec-nantes.fr/mlschool/mlss03/home03.php.

The general entry point for past and future Machine Learning Summer Schools
is
http://www.mlss.cc

It is our hope that graduate students, lecturers, and researchers alike will find
this book useful in learning and teaching machine learning, thereby continuing
the mission of the Machine Learning Summer Schools.

.Tibingen, June 2004 Olivier Bousquet
Ulrike von Luxburg
Gunnar Rétsch

Empirical Inference for Machine Learning and Perception
Max Planck Institute for Biological Cybernetics

Acknowledgments

We gratefully thank all the individuals and organizations responsible for the
success of the summer schools.

Local Arrangements

Canberra

Special thanks go to Michelle Moravec and Heather Slater for all their sup-
port during the preparations, to Joe Elso, Kim Holburn, and Fergus McKenzie-
Kay for IT support, to Cheng Soon-Ong, Kristy Sim, Edward Harrington, Evan
Greensmith, and the students at the Computer Sciences Laboratory for their
help throughout the course of the Summer School.

Tiibingen

Special thanks go to Sabrina Nielebock for all her work during the preparation
and on the site, to Dorothea Epting and the staff of the Max Planck Guest House,
to Sebastian Stark for IT support, and to all the students and administration
of the Max Planck Institute for Biological Cybernetics for their help throughout
the Summer School.

Sponsoring Institutions

Canberra

— Research School of Information Sciences and Engineering, Australia
— National Institute of Engineering and Information Science, Australia

Tiibingen

— Centre National de la Recherche Scientifique, France
— French-German University
— Max Planck Institute for Biological Cybernetics, Germany

Speakers

Canberra

Shun-Ichi Amari
Eleazar Eskin
Zoubin Ghahramani
Peter Hall

Markus Hegland

Tiibingen

Christophe Andrieu
Pierre Baldi

Léon Bottou
Stéphane Boucheron
Olivier Bousquet
Chris Burges
Jean-Francgois Cardoso
Manuel Davy

Gabor Lugosi
Jyrki Kivinen
John Lloyd
Shahar Mendelson
Mike Osborne

André Elisseeff
Arthur Gretton
Peter Griinwald
Thorsten Joachims
Massimiliano Pontil
Carl Rasmussen
Mike Tipping
Bernhard Scholkopf

Organization Committees

Canberra: Gunnar Ratsch and Alex Smola
Tiibingen: Olivier Bousquet, Manuel Davy, Frédéric Desobry,
Ulrike von Luxburg and Bernhard Schélkopf

Petra Phillips

Gunnar Rétsch

Alex Smola

S.V.N. Vishwanathan
Robert C. Williamson

Steve Smale
Alex Smola
Vladimir Vapnik
Jason Weston
Elad Yom-Tov
Ding-Xuan Zhou

Lecture Notes in Artificial Intelligence (LNAI)

le. 3206: P. Sojka, I. Kopecek, K. Pala (Eds.), Text,
Speech and Dialogue. XIII, 667 pages. 2004.

Vol. 3194: R. Camacho, R. King, A. Srinivasan (Eds.),
Inductive Logic Programming. XI, 361 pages. 2004.

Vol. 3192: C. Bussler, D. Fensel (Eds.), Artificial Intel-
ligence: Methodology, Systems, and Applications. XIII,
522 pages. 2004.

Vol. 3176: O. Bousquet, U. von Luxburg, G. Ritsch (Eds.),
Advanced Lectures on Machine Learning. IX, 241 pages.
2004.

Vol. 3159: U. Visser, Intelligent Information Integration
for the Semantic Web. XIV, 150 pages. 2004.

Vol. 3157: C. Zhang, H. W. Guesgen, W.K. Yeap (Eds.),
PRICAI 2004: Trends in Artificial Intelligence. XX, 1023
pages. 2004.

Vol. 3155: P. Funk, P.A. Gonzélez Calero (Eds.), Advances
in Case-Based Reasoning. XIII, 822 pages. 2004.

Vol. 3139:F.Iida, R. Pfeifer, L. Steels, Y. Kuniyoshi (Eds.),
Embodied Artificial Intelligence. IX, 331 pages. 2004.
Vol. 3131: V. Torra, Y. Narukawa (Eds.), Modeling Deci-
sions for Artificial Intelligence. XI, 327 pages. 2004.
Vol. 3127: K.E. Wolff, H.D. Pfeiffer, H.S. Delugach (Eds.),
Conceptual Structures at Work. XI, 403 pages. 2004.
Vol. 3123: A. Belz, R. Evans, P. Piwek (Eds.), Natural
Language Generation. X, 219 pages. 2004.

Vol. 3120: J. Shawe-Taylor, Y. Singer (Eds.), Learning
Theory. X, 648 pages. 2004.

Vol. 3097: D. Basin, M. Rusinowitch (Eds.), Automated
Reasoning. XII, 493 pages. 2004.

Vol. 3071: A. Omicini, P. Petta, J. Pitt (Eds.), Engineering
Societies in the Agents World. XIII, 409 pages. 2004.
Vol. 3070: L. Rutkowski, J. Siekmann, R. Tadeusiewicz,
L.A. Zadeh (Eds.), Artificial Intelligence and Soft Com-
puting - ICAISC 2004. XXV, 1208 pages. 2004.

Vol. 3068: E. André, L. DybKj@r, W. Minker, P. Heis-
terkamp (Eds.), Affective Dialogue Systems. XII, 324
pages. 2004.

Vol. 3067: M. Dastani, J. Dix, A. El Fallah-Seghrouchni
(Eds.), Programming Multi-Agent Systems. X, 221 pages.
2004.

Vol. 3066: S. Tsumoto, R. Stowiriski, J. Komorowski, J.W.
Grzymata-Busse (Eds.), Rough Sets and Current Trends
in Computing. XX, 853 pages. 2004.

Vol. 3065: A. Lomuscio, D. Nute (Eds.), Deontic Logic in
Computer Science. X, 275 pages. 2004.

Vol. 3060: A.Y. Tawfik, S.D. Goodwin (Eds.), Advances
in Artificial Intelligence. XIII, 582 pages. 2004.

Vol. 3056: H. Dai, R. Srikant, C. Zhang (Eds.), Advancesin
Knowledge Discovery and Data Mining. XIX, 713 pages.
2004.

Vol. 3055: H. Christiansen, M.-S. Hacid, T. Andreasen,
H.L. Larsen (Eds.), Flexible Query Answering Systems.
X, 500 pages. 2004.

Vol. 3040: R. Conejo, M. Urretavizcaya, J.-L. Pérez-de-
la-Cruz (Eds.), Current Topics in Artificial Intelligence.
XIV, 689 pages. 2004.

Vol. 3035: M.A. Wimmer (Ed.), Knowledge Management
in Electronic Government. XII, 326 pages. 2004.

Vol. 3034: J. Favela, E. Menasalvas, E. Chéavez (Eds.),
Advances in Web Intelligence. XIII, 227 pages. 2004.

Vol. 3030: P. Giorgini, B. Henderson-Sellers, M. Winikoff
(Eds.), Agent-Oriented Information Systems. XIV, 207
pages. 2004.

Vol. 3029: B. Orchard, C. Yang, M. Ali (Eds.), Innovations
in Applied Artificial Intelligence. XXI, 1272 pages. 2004.

Vol. 3025: G.A. Vouros, T. Panayiotopoulos (Eds.), Meth-
ods and Applications of Artificial Intelligence. XV, 546
pages. 2004.

Vol. 3020: D. Polani, B. Browning, A. Bonarini, K.
Yoshida (Eds.), RoboCup 2003: Robot Soccer World Cup
VII. XVI, 767 pages. 2004.

Vol. 3012: K. Kurumatani, S.-H. Chen, A. Ohuchi (Eds.),
Multi-Agnets for Mass User Support. X, 217 pages. 2004.

Vol. 3010: K.R. Apt, F. Fages, F. Rossi, P. Szeredi, J.
Viéncza (Eds.), Recent Advances in Constraints. VIII, 285
pages. 2004.

Vol. 2990: J. Leite, A. Omicini, L. Sterling, P. Torroni
(Eds.), Declarative Agent Languages and Technologies.
XII, 281 pages. 2004.

Vol. 2980: A. Blackwell, K. Marriott, A. Shimojima (Eds.),
Diagrammatic Representation and Inference. XV, 448
pages. 2004.

Vol. 2977: G. Di Marzo Serugendo, A. Karageorgos, O.F.
Rana, F. Zambonelli (Eds.), Engineering Self-Organising
Systems. X, 299 pages. 2004.

Vol. 2972: R. Monroy, G. Arroyo-Figueroa, L.E. Sucar, H.

Sossa (Eds.), MICAI 2004: Advances in Artificial Intelli-
gence. XVII, 923 pages. 2004.

Vol. 2969: M. Nickles, M. Rovatsos, G.- Weiss (Eds.),
Agents and Computational Autonomy.. X, 275 pages.
2004.

Vol. 2961: P. Eklund (Ed.), Concept Lattices. IX, 411
pages. 2004,

Vol. 2953: K. Konrad, Model Generation for Natural Lan-
guage Interpretation and Analysis. XIII, 166 pages. 2004.

Vol. 2934: G. Lindemann, D. Moldt, M. Paolucci (Eds.),
Regulated Agent-Based Social Systems. X, 301 pages.
2004.

Vol. 2930: F. Winkler (Ed.), Automated Deduction in Ge-
ometry. VII, 231 pages. 2004.

Vol. 2926: L. van Elst, V. Dignum, A. Abecker (Eds.),
Agent-Mediated Knowledge Management. XI, 428 pages.
2004.

Vol. 2923: V. Lifschitz, I. Niemeli (Eds.), Logic Program-
ming and Nonmenotonic Reasoning. IX, 365 pages. 2004.

Vol. 2915: A. Camurri, G. Volpe (Eds.), Gesture-Based
Communication in Human-Computer Interaction. XIII,
558 pages. 2004.

Vol. 2913: T.M. Pinkston, V.K. Prasanna (Eds.), High Per-
formance Computing - HiPC 2003. XX, 512 pages. 2003.

Vol. 2903: T.D. Gedeon, L.C.C. Fung (Eds.), A 2003: Ad-
vances in Artificial Intelligence. XVI, 1075 pages. 2003.

Vol. 2902: EM. Pires, S.P. Abreu (Eds.), Progress in Arti-
ficial Intelligence. XV, 504 pages. 2003.

Vol. 2892: F. Dau, The Logic System of Concept Graphs
with Negation. XI, 213 pages. 2003.

Vol. 2891: J. Lee, M. Barley (Eds.), Intelligent Agents and
Multi-Agent Systems. X, 215 pages. 2003.

Vol. 2882: D. Veit, Matchmaking in Electronic Markets.
XV, 180 pages. 2003.

Vol. 2871: N. Zhong, Z.W. Ras§, S. Tsumoto, E. Suzuki
(Eds.), Foundations of Intelligent Systems. XV, 697 pages.
2003.

Vol. 2854: J. Hoffmann, Utilizing Problem Structure in
Planing. XIII, 251 pages. 2003.

Vol. 2843: G. Grieser, Y. Tanaka, A. Yamamoto (Eds.),
Discovery Science. XII, 504 pages. 2003.

Vol. 2842: R. Gavald4, K.P. Jantke, E. Takimoto (Eds.),
Algorithmic Learning Theory. XI, 313 pages. 2003.

Vol. 2838: N. Lavra¢, D. Gamberger, L. Todorovski,
H. Blockeel (Eds.), Knowledge Discovery in Databases:
PKDD 2003. XVI, 508 pages. 2003.

Vol. 2837: N. Lavra¢, D. Gamberger, L. Todorovski, H.
Blockeel (Eds.), Machine Learning: ECML 2003. XVI,
504 pages. 2003.

Vol. 2835: T. Horvith, A. Yamamoto (Eds.), Inductive
Logic Programming. X, 401 pages. 2003.

Vol. 2821: A. Giinter, R. Kruse, B. Neumann (Eds.), KI
2003: Advances in Artificial Intelligence. XII, 662 pages.
2003.

Vol. 2807: V. Matousek, P. Mautner (Eds.), Text, Speech
and Dialogue. XIII, 426 pages. 2003.

Vol. 2801: W. Banzhaf, J. Ziegler, T. Christaller, P. Dittrich,
J.T. Kim (Eds.), Advances in Artificial Life. XVI, 905
pages. 2003.

Vol. 2797: O.R. Zaiane, S.J. Simoff, C. Djeraba (Eds.),
Mining Multimedia and Complex Data. XII, 281 pages.
2003.

Vol. 2792: T. Rist, R.S. Aylett, D. Ballin, J. Rickel (Eds.),
Intelligent Virtual Agents. XV, 364 pages. 2003.

Vol. 2782: M. Klusch, A. Omicini, S. Ossowski, H. Laa-
manen (Eds.), Cooperative Information Agents VII. XI,
345 pages. 2003.

Vol. 2780: M. Dojat, E. Keravnou, P. Barahona (Eds.),
Artificial Intelligence in Medicine. XIII, 388 pages. 2003.

Vol. 2777: B. Schélkopf, M.K. Warmuth (Eds.), Learning
Theory and Kernel Machines. XIV, 746 pages. 2003.

Vol. 2752: G.A. Kaminka, P.U. Lima, R. Rojas (Eds.),
RoboCup 2002: Robot Soccer World Cup VI. XVI, 498
pages. 2003.

Vol. 2741: E Baader (Ed.), Automated Deduction —
CADE-19. XII, 503 pages. 2003.

Vol. 2705: S. Renals, G. Grefenstette (Eds.), Text- and
Speech-Triggered Information Access. VII, 197 pages.
2003.

Vol. 2703: O.R. Zaiane, J. Srivastava, M. Spiliopoulou, B.
Masand (Eds.), WEBKDD 2002 - MiningWeb Data for
Discovering Usage Patterns and Profiles. IX, 181 pages.
2003.

Vol. 2700: M.T. Pazienza (Ed.), Extraction in the Web Era.
XIII, 163 pages. 2003.

Vol. 2699: M.G. Hinchey, J.L. Rash, W.F. Truszkowski,
C.A. Rouff, D.F. Gordon-Spears (Eds.), Formal Ap-
proaches to Agent-Based Systems. IX, 297 pages. 2002.

Vol. 2691: V. Mafik, J.P. Miiller, M. Pechoucek (Eds.),
Multi-Agent Systems and Applications III. XIV, 660
pages. 2003.
Vol. 2684: M.V. Butz, O. Sigaud, P. Gérard (Eds.), Antic-
ipatory Behavior in Adaptive Learning Systems. X, 303
pages. 2003.
Vol. 2682: R. Meo, PL. Lanzi, M. Klemettinen (Eds.),
Database Support for Data Mining Applications. XII, 325
pages. 2004.

Vol. 2671: Y. Xiang, B. Chaib-draa (Eds.), Advances in
Artificial Intelligence. XIV, 642 pages. 2003.

Vol. 2663: E. Menasalvas, J. Segovia, P.S. Szczepaniak
(Eds.), Advances in Web Intelligence. XII, 350 pages.
2003.

Vol. 2661: PL. Lanzi, W. Stolzmann, S.W. Wilson (Eds.),
Learning Classifier Systems. VII, 231 pages. 2003.

Vol. 2654: U. Schmid, Inductive Synthesis of Functional
Programs. XXII, 398 pages. 2003.

Vol. 2650: M.-P. Huget (Ed.), Communications in Multi-
agent Systems. VIII, 323 pages. 2003.

Vol. 2645: M.A. Wimmer (Ed.), Knowledge Management
in Electronic Government. XI, 320 pages. 2003.

Vol. 2639: G. Wang, Q. Liu, Y. Yao, A. Skowron (Eds.),
Rough Sets, Fuzzy Sets, Data Mining, and Granular Com-
puting. XVII, 741 pages. 2003.

Vol. 2637: K.-Y. Whang, J. Jeon, K. Shim, J. Srivas-
tava, Advances in Knowledge Discovery and Data Mining.
XVIII, 610 pages. 2003.

Vol. 2636: E. Alonso, D. Kudenko, D. Kazakov (Eds.),
Adaptive Agents and Multi-Agent Systems. XIV, 323
pages. 2003.] _
Vol. 2627: B. O’Sullivan (Ed.), Recent Advances in Con-
straints. X, 201 pages. 2003.

Vol. 2600: S. Mendelson, A.J. Smola (Eds.), Advanced
Lectures on Machine Learning. IX, 259 pages. 2003.
Vol. 2592: R. Kowalczyk, J.P. Miiller, H. Tianfield, R. Un-

land (Eds.), Agent Technologies, Infrastructures, Tools,
and Applications for E-Services. XVII, 371 pages. 2003.

Table of Contents

An Introduction to Pattern Classification
Elad Yom-Touo e e e e 1

Some Notes on Applied Mathematics for Machine Learning
Christopher J.C. BUTges «. :cius smiws swissswins swimsiams 208 0pins i 21

Bayesian Inference: An Introduction to Principles and Practice in
Machine Learning
Michael E. Tipping et e eee 41

Gaussian Processes in Machine Learning
Carl Edward RasmusSsen: o wvsssws stonss Bsms sms amsiss 65 amsmasy 63

Unsupervised Learning
Zoubin Ghahramami o 72

Monte Carlo Methods for Absolute Beginners
Christophe ANdrieu v e 113

Stochastic Learning
Léom Bottou e 146

Introduction to Statistical Learning Theory
Olivier Bousquet, Stéphane Boucheron, Gdbor Lugosi............... 169

Concentration Inequalities
Stéphane Boucheron, Gdbor Lugosi, Olivier Bousquet 208

Author Index 241

An Introduction to Pattern Classification

Elad Yom-Tov

IBM Haifa Research Labs, University Campus, Haifa 31905, Israel
yomtov@il.ibm.com

1 Introduction

Pattern classification is the field devoted to the study of methods designed to
categorize data into distinct classes. This categorization can be either distinct
labeling of the data (supervised learning), division of the data into classes (unsu-
pervised learning), selection of the most significant features of the data (feature
selection), or a combination of more than one of these tasks.

Pattern classification is one of a class of problems that humans (under most
circumstances) are able to accomplish extremely well, but are difficult for com-
puters to perform. This subject has been under extensive study for many years.
However during the past decade, with the introduction of several new classes of
pattern classification algorithms this field seems to achieve performance much
better than previously attained.

The goal of the following article is to give the reader a broad overview of
the field. As such, it attempts to introduce the reader to important aspects of
pattern classification, without delving deeply into any of the subject matters.
The exceptions to this rule are those points deemed especially important or
those that are of special interest. Finally, we note that the focus of this article
are statistical methods for pattern recognition. Thus, methods such as fuzzy
logic and rule-based methods are outside the scope of this article.

2 What Is Pattern Classification?

Pattern classification, also referred to as pattern recognition, attempts to build
algorithms capable of automatically constructing methods for distinguishing be-
tween different exemplars, based on their differentiating patterns.

Watanabe [53] described a pattern as "the opposite of chaos; it is an entity,
vaguely defined, that could be given a name.” Examples of patterns are human
faces, handwritten letters, and the DNA sequences that may cause a certain
disease. More formally, the goal of a (supervised) pattern classification task is to
find a functional mapping between the input data X, used to describe an input
pattern, to a class label Y so that Y = f(X). Construction of the mapping is
based on training data supplied to the pattern classification algorithm. The
mapping f should give the smallest possible error in the mapping, i.e. the min-
imum number of examples where Y will be the wrong label, especially on test
data not seen by the algorithm during the learning phase.

O. Bousquet et al. (Eds.): Machine Learning 2003, LNAI 3176, pp. 1-20, 2004.
© Springer-Verlag Berlin Heidelberg 2004

2 E. Yom-Tov

An important division of pattern classification tasks are supervised as op-
posed to unsupervised classification. In supervised tasks the training data
consists of training patterns, as well as their required labeling. An example are
DNA sequences labeled to show which examples are known to harbor a genetic
trait and which ones do not. In unsupervised classification tasks the labels are
not provided, and the task of the algorithm is to find a ”good” partition of the
data into clusters. Examples for this kind of task are grouping of Web pages into
sets so that each set is concerned with a single subject matter.

A pattern is described by its features. These are the characteristics of the
examples for a given problem. For example, in a face recognition task some
features could be the color of the eyes or the distance between the eyes. Thus,
the input to a pattern recognition task can be viewed as a two-dimensional
matrix, whose axes are the examples and the features.

Pattern classification tasks are customarily divided into several distinct blocks.
These are:

. Data collection and representation.

. Feature selection and/or feature reduction.
. Clustering.

. Classification.

> W N =

Data collection and representation are mostly problem-specific. Therefore it
is difficult to give general statements about this step of the process. In broad
terms, one should try to find invariant features, that describe the differences in
classes as best as possible.

Feature selection and feature reduction attempt to reduce the dimensionality
(i.e. the number of features) for the remaining steps of the task. Clustering
methods are used in order to reduce the number of training examples to the
task. Finally, the classification phase of the process finds the actual mapping
between patterns and labels (or targets). In many applications not all steps are
needed. Indeed, as computational power grows, the need to reduce the number
of patterns used as input to the classification task decreases, and may therefore
make the clustering stage superfluous for many applications.

In the following pages we describe feature selection and reduction, clustering,
and classification.

3 Feature Selection and Feature Reduction: Removing
Excess Data

When data is collected for later classification, it may seem reasonable to assume
that if more features describing the data are collected it will be easier to classify
these data correctly. In fact, as Trunk [50] demonstrated, more data may be
detrimental to classification, especially if the additional data is highly correlated
with previous data. Furthermore, noisy and irrelevant features are detrimental to
classification as they are known to cause the classifier to have poor generalization,

An Introduction to Pattern Classification 3

increase the computational complexity, and require many training samples to
reach a given accuracy [4].

Conversely, selecting too few features will lead to the ugly duckling theorem
[53], that is, it will be impossible to distinguish between the classes because there
is too little data to differentiate the classes. For example, suppose we wish to
classify a vertebrated animal into one of the vertebra classes (Mammals, Birds,
Fish, Reptiles, or Amphibians). A feature that will tell us if the animal has skin is
superfluous, since all vertebrates have skins. However, a feature that measures if
the animal has warm blood is highly significant for the classification. A feature
selection algorithm should be able to identify and remove the former feature,
while preserving the latter.

Hence the goal of this stage in the processing is to choose a subset of features
or some combination of the input features that will best represent the data. We
refer to the process of choosing a subset of the features as feature selection,
and to finding a good combination of the features as feature reduction.

Feature selection is a difficult combinatorial optimization problem. Finding
the best subset of features by testing all possible combinations is practically
impossible even when the number of input features is modest. For example,
attempting to test all possible combinations of 100 input features will require
testing 1030 combinations. It is not uncommon for text classification problems
to have 10% to 107 features [27]. Consequently numerous methods have been
proposed for finding a (suboptimal) solution by testing a fraction of the possible
combinations.

Feature selection methods can be divided into three main types [4]:

1. Wrapper methods: The feature selection is performed around (and with) a
given classification algorithm. The classification algorithm is used for ranking
possible feature combinations.

2. Embedded methods: The feature selection is embedded within the classifi-
cation algorithm.

3. Filter methods: Features are selected for classification independently of the
classification algorithm.

Most feature selection methods are of the wrapper type. The simplest algo-
rithms in this category are the exhaustive search, which is practical only when the
number of features is small, sequential forward feature selection (SFFS)
and sequential backward feature selection (SBF'S). In sequential forward
feature selection the feature with which the lowest classification error is reached
is selected. Then, the feature that, when added, causes the largest reduction in
error is added to the set of selected features. This process is continued iteratively
until the maximum number of features needed are found or until the classification
error starts to increase. Although sequential feature selection does not assume
dependence between features, it usually attains surprisingly reasonable results.
There are several minor modifications to SFFS and SBFS, such as Sequential
Floating Search [41] or the "Plus n, take away m” features.

One of the major drawbacks of methods that select and add a single feature at
each step is that they might not find combinations of features that perform well

4 E. Yom-Tov

together, but are poor predictors individually. More sophisticated methods for
feature selection use simulated annealing or genetic algorithms [56] for solving
the optimization problem of feature selection. The latter approach has shown
promise in solving problems where the number of input features is extremely
large.

An interesting approach to feature selection is based in information theoretic
considerations [25]. This algorithm estimates the cross-entropy between every
pair of features, and discards those features that have a large cross-entropy with
other features, thus removing features that add little additional classification in-
formation. This is because the cross-entropy estimates the amount of knowledge
that one feature provides on other features. The algorithm is appealing in that
it is independent of the classification algorithm, i.e. it is a filter algorithm. How-
ever, the need to estimate the cross entropy between features limits its use to
applications where the datasets are large or to cases where features are discrete.

As mentioned above, a second approach to reducing the dimension of the
features is to find a lower-dimensional combination (linear or non-linear) of the
features which represent the data as well as possible in the required dimension.

The most commonly used technique for feature reduction is principal com-
ponent analysis (PCA), also known as the Karhunen-Loeve Transform (KLT).
PCA reshapes the data along the directions of maximal variance. PCA works
by computing the eigenvectors corresponding to the largest eigenvalues of the
covariance matrix of the data, and returning the projection of the data on these
eigenvectors. An example of feature reduction using PCA is given in Figure 1.

Fig. 1. Feature reduction using principle component analysis. The figure on the left
shows the original data. Note that most of the variance in the data is along a single
direction. The figure on the right shows probability density function of the same data
after feature reduction to a dimension of 1 using PCA

Principle component analysis does not take into account the labels of the
data. As such, it is an unsupervised method. A somewhat similar, albeit su-
pervised, linear method is the Fisher Discriminant Analysis (FDA). This
method projects the data on a single dimension, while maximizing the separation
between the classes of the data.

A more sophisticated projection method is Independent Component
Analysis (ICA)[8]. This method finds a linear mixture of the data, in the

An Introduction to Pattern Classification 5

same dimension of the data or lower. ICA attempts to find a mixture matrix
such that each of the projections will be as independent as possible from the
other projections.

Instead of finding a linear mixture of the feature, it is also possible to find
a nonlinear mixture of the data. This is usually done through modifications of
the above-mentioned linear methods. Examples of such methods are nonlinear
component analysis [33], nonlinear FDA [32], and Kernel PCA[46]. The latter
method works by remapping data by way of a kernel function into feature space
where the principle components of the data are found.

As a final note on feature selection and feature reduction, one should note
that as the ratio between the number of features and the number of training
examples increases, it becomes likelier for a noisy and irrelevant feature to seem
relevant for the specific set of examples. Indeed, feature selection is sometimes
viewed as an ill-posed problem [52], which is why application of such methods
should be performed with care. For example, if possible, the feature selection
algorithm should be run several times, and the results tested for consistency.

4 Clustering

The second stage of the classification process endeavors to reduce the number
of data points by clustering the data and finding representative data points (for
example, cluster centers), or by removing superfluous data points. This stage is
usually performed using unsupervised methods.

A cluster of points is not a well-defined object. Instead, clusters are defined
based on their environment and the scale at which the data is examined. Figure 2
demonstrates the nature of the problem. T'wo possible definitions for clusters|23]
are: (I) Patterns within a cluster are more similar to each other than are patterns
belonging to other clusters. (II) A cluster is a volume of high-density points
separated from other clusters by a relatively low density volumes. Both these
definitions do not suggest a practical solution to the problem of finding clusters.
In practice one usually specifies a criterion for joining points into clusters or the
number of clusters to be found, and these are used by the clustering algorithm
in place of a definition of a cluster. This practicality results in a major drawback
of clustering algorithms: A clustering algorithm will find clusters even if there
are no clusters in the data.

Returning to the vertebrate classification problem discussed earlier, if we
are given data on all vertebrate species, we may find that this comprises of
too many training examples. It may be enough to find a representative sample
for each of the classes and use it to build the classifier. Clustering algorithms
attempt to find such representatives. Note that representative samples can be
either actual samples drawn from the data (for example, a human as an example
for a mammal) or an average of several samples (i.e. an animal with some given
percentage of hair on its body as a representative mammal).

The computational cost of finding an optimal partition of a dataset into a
given number of clusters is usually prohibitively high. Therefore, in most cases

6 E. Yom-Tov

Bl * -2 Fzowteaesnr
g 7
06 L
A + we
w - ¥ ey
. 3 et .
02 © 3.
RS
0| -
02| o
< 4
0.4 ..‘,‘ >
%
08 o
S

4 * -,

08 08 04 02 0 02 04 o0& o8 1

Fig. 2. An example of data points for clustering. Many possible clustering configura-
tions can be made for this data, based on the scale at which the data is examined, the
shape of the clusters, etc

clustering algorithms attempt to find a suboptimal partition in a reasonable
number of computations. Clustering algorithms can be divided into Top-Down
(or partitional) algorithms and Bottom-Up (or hierarchical) algorithms.

A simple example for Bottom-Up algorithms is the Agglomerative Hi-
erarchical Clustering Algorithm (AGHC). This algorithm is an iterative
algorithm, which starts by assuming that each data point is a cluster. At each
iteration two clusters are merged until a preset number of clusters is reached.
The decision on which clusters are to be merged can be done using one of several
functions, i.e. distance between cluster centers, distance between the two nearest
points in different clusters, etc. AGHC is a very simple, intuitive scheme. How-
ever, it is computationally intensive and thus impractical for medium and large
datasets.

Top-Down methods are the type more frequently used for clustering due
to their lower computational cost, despite the fact that they usually find an
inferior solution compared to Bottom-Up algorithms. Probably the most popular
amongst Top-Down clustering algorithms in the K-means algorithm [28], a
pseudo-code of which is given in figure 3. K-means is usually reasonably fast, but
care should be taken in the initial setting of the cluster centers so as to attain a
good partition of the data. There are probably hundreds of Top-Down clustering
algorithms, but popular algorithms include fuzzy k-means [3], Kohonen maps
[24], and competitive learning [44].

Recently, with the advent of kernel-based methods several algorithms for clus-
tering using kernels have been suggested (e.g. [2]). The basic idea behind these
algorithms is to map the data into a higher dimension using a non-linear function
of the input features, and to cluster the data using simple clustering algorithms
at the higher dimension. More details regarding kernels are given in the Classi-
fication section of this paper. One of the main advantages of kernel methods is
that simple clusters (for example, ellipsoid clusters) formed in a higher dimen-
sion correspond to complex clusters in the input space. These methods seem to
provide excellent clustering results, with reasonable computational costs.

An Introduction to Pattern Classification 7

A related class of clustering algorithms are the Spectral Clustering meth-
ods [37, 11]. These methods first map the data into a matrix representing the
distance between the input patterns. The matrix is then projected onto its k
largest eigenvectors, and the clustering is performed on this projection. These
methods demonstrated impressive results on several datasets, with computa-
tional costs slightly higher than those of kernel-based algorithms.

The K-means clustering algorithm

Begin initialize N random cluster centers.

Assign each of the data points the nearest of the N cluster centers.

Recompute the cluster centers by averaging the points assigned to each cluster.
Repeat steps 2-4 until the there is no change in the location of the cluster centers.
Return the cluster centers.

O b 00, 100

Fig. 3. Pseudo-code of the K-means clustering algorithm

5 Classification

Classification, the final stage of a pattern classifier, is the process of assigning la-
bels to test patterns, based on previously labeled training patterns. This process
is commonly divided into a learning phase, where the classification algorithm is
trained, and a classification phase, where the algorithm labels new data.

The general model for statistical pattern classification is one where patterns
are drawn from an unknown distribution P, which depends on the label of the
data (i.e., P(z|w;) i =1,...,N, where N is the number of labels in the data).
During the learning phase the classification algorithm is trained with the goal
of minimizing the error that will be obtained when classifying some test data.
This error is known as the risk or the expected loss.

When discussing the pros and cons of classification algorithms, it is important
to set criteria for assessing these algorithms. In the following pages we describe
several classification algorithms and later summarize (in table 1) their strong
and weak points with regard to the following points:

— How small are the classification errors reached by the algorithm?

— What is the computational cost and the memory requirements for both train-
ing and testing?

— How difficult is it for a novice user to build and train an efficient classifier?

— Is the algorithm able to learn on-line (i.e. as the data appears, allowing each
data point to be addressed only once)?

— Can one gain insight about the problem from examining the trained classi-
fier?

It is important to note that when discussing the classification errors of clas-
sifiers one is usually interested in the errors obtained when classifying test data.
Many classifiers can be trained to classify all the training data correctly. This

