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Preface

The term differential-algebraic equation has been coined to comprise differen-
tial equations with constraints (differential equations on manifolds) and singular
implicit differential equations. Such problems arise and have to be solved in
a variety of applications, e.g., constrained mechanical systems, fluid dynamics,
chemical reaction kinetics, simulation of electrical networks, and control engi-
neering. From a more theoretical viewpoint, the study of differential-algebraic
problems gives insight into the behaviour of numerical methods for stiff ordinary
differential equations. As a consequence, this subject has attracted the interest
of many engineers and mathematicians in the last years.

The purpose of these lecture notes is to give a self-contained and comprehen-
sive exposition of the numerical solution of differential-algebraic systems arising in
applications, when treated by Runge-Kutta methods, here included also extrapo-
lation methods. While multistep methods (BDF) have been considered since the
early seventies (Gear (1971)), the study of Runge-Kutta methods for differential-
algebraic systems has begun only a few years ago. Runge-Kutta methods also
have interesting computational and theoretical properties. They combine high
order with good stability, allow a simple step size selection, are self-starting and
have advantages in parallel computing.

The first two sections are introductory and review differential-algebraic proh-
lems and Runge-Kutta methods for their numerical solution. In Sections 3 to 6
we study existence and uniqueness of the numerical solution, influence of pertur-
bations, local error and convergence, and asymptotic expansions. We investigate
in Sections 7 and 8 the convergence of simplified Newton iterations for the arising
nonlinear systems, and the problems of local error estimation and inconsistent
starting values. In the final sections we describe a FORTRAN program and apply
it to several concrete examples. The sections end with notes which relate the
results to the existing literature. Most of the presented material has not been
published previously.

We have tried to treat the subject in its various aspects ranging from theory
via numerical analysis to implementation and applications. Many of the presented
ideas and techniques are not restricted to Runge-Kutta methods, but can also
be applied to other integration methods, such as linearly implicit methods and
multistep methods.

These lecture notes have their origin in a one-semester graduate course given
by one of the authors at the University of Rennes, and in a series of seminars at
the University of Geneva, in the years 1987 and 1988.
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1. Description of differential-algebraic problems

We consider problems whose general form is that of an implicit differential
equation

F(Y',Y)=0 (1.1)

where F' and Y are of the same dimension, and F' is assumed to have sufficiently
many bounded derivatives. A non-autonomous system F(Y’,Y,z) = 0 is brought
to the form (1.1) by adding the equation for the independent variable, ' = 1.
The initial value Y (0) is supposed to be specified, and the solution Y (x) is sought
on a bounded interval [0, Z]. If F /Y is invertible, then we can formally solve
for Y’ in (1.1) to obtain an ordinary differential equation. Here we are interested
in the case when OF/JY" is singular. A convenient classification of such problems
is provided by the concept of index.

Index of a differential-algebraic system

We introduce the index as a measure of the sensitivity of the solutions to
perturbations in the equation. The relation to other definitions of the index will
be discussed at the end of this section.

Definition 1.1. Equation (1.1) has perturbation indez m along a solution

Y on [0,Z], if m is the smallest integer such that, for all functions Y having a
defect R
FY'Y)=6(z), (1.2)

there exists on [0, Z] an estimate

I¥ (@)=Y @)l < C(I¥ (0)-Y (0)ll+ max 18(€)]I+- . +max [V (E)]) (1.3)

whenever the expression on the right-hand side is sufficiently small. Here ('
denotes a constant which depends only on F' and the length of the interval.

In the numerical solution of equation (1.1), the influence of perturbations in
the discretized equation is of fundamental importance in the analysis of conver-
gence and of roundoff errors. The occurence of the (m — 1)-th derivative in (1.3)
will translate in the numerical solution into a division of the discrete perturbation
by hm—1, where h is the (small) discretization parameter.

It is worthwhile to remark that stronger estimates than (1.3) may be available
for some components of the difference to the solution.

In obvious terminology we call an equation of index m if it has index m along
any solution. As defined above, the perturbation index can not be less than one.
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The index 0 case can be included if one interprets §(~1)(£) as the integral over §.
More precisely, we say that (1.1) has perturbation index 0, if

-~ o £
I17() - Y (@)l < C(ITO) - YO + max | [ 80l

It follows from Gronwall’s Lemma that this is satisfied for ordinary differential
equations Y/ = f(Y). Let us now turn to classes of systems of index 1, 2 and 3
which frequently arise in applications. Concrete examples are presented in Section
9.

Systems of index 1

The simplest situation is that of a system of the form

v'=f(y,2) (1.4.a)
0=g(y,2) (1.4.6)

(as always in this article, with sufficiently differentiable functions f and g) where

™

g, has a bounded inverse (1.5)

in a neighbourhood of the solution. Here and in the following we adopt the
convention to denote partial derivatives by subscripts, so that g, = dg/dz. The
initial value (y,, 2,) is to be consistent, i.e. g(y,,z,) = 0.

By the Implicit Function Theorem, z can be extracted from (1.4.b) as a
function of y. Inserting it into (1.4.a) then gives an ordinary differential equa-
tion. This implies in particular local existence, uniqueness and regularity of the
solution. Let us now consider the perturbed system

By the Implicit Function Theorem we get
12(z) = 2(2)|| < Cy ([[9(x) — y(@)I| + 18, (2)]]),

as long as ||6,(z)| is small and y(x) is sufficiently close to y(x). We substract
(1.4.a) from the corresponding perturbed equation, integrate from 0 to x, use a
Lipschitz condition for f and the above estimate for Z(z) — z(x). This gives for

e(z) = ||y(= z)||

e(z) < e(0 +C/ dt+C/ 116, (¢ ||dt+“/ (t)dt||,



and Gronwall’s inequality implies

z 4
I32) ~ (@)l < C,(150) = 9O) + [ 1) lde + max 1| [ 5, (0.

Inserting this into the estimate for Z(x) — z(z) we obtain finally an estimate (1.3)
which does not depend on derivatives of the perturbation. The system is thus of
index 1.

Problems of the form
BY' =a(Y) (1.6)

with a constant singular matrix B can be transformed into the form (1.4) by
decomposing B (e.g. by Gaussian elimination) as

I 0
B=S (0 O) T (1.7)
with invertible S and 7. Premultiplication of (1.6) by S—1 and use of the trans-

formed variables
TY = ( y)
z

gives a system (1.4). Condition (1.5) then reads

9 o1 ~1 .
[(G_Y(S a))T ]22 has a bounded inverse, (1.8)
where [...],, denotes the lower right block of the matrix (of the dimension of the

null-space of B), according to the decomposition (1.7). The initial value Y| is
consistent when a(Y})) is in the range of B.
Systems of index 2

We consider the problem

(1.10.a)
(¥) (1.10.b)

o Y.
Il
Q —
<
E_,/

under the assumption that

9,f. has a bounded inverse (1.11)
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in a neighbourhood of the solution. Differentiating (1.10.b) and substituting y’
from (1.10.a) shows that the solution also has to satisfy the equation

0=g,(y)f(y,2) (1.10.c)

so that it lies on the intersection of the manifolds defined by (1.10.b) and (1.10.c).
A consistent initial value (y,,2,) now has to satisfy the constraint (1.10.b) for
the y-component, and condition (1.10.c) then determines the z-component locally
uniquely because of (1.11).

Equations (1.10.a) and (1.10.c) together are under the condition (1.11) of the
index 1 form (1.4) with (1.5). Since we have differentiated once to arrive at this
form, the estimate (1.3) contains the derivative of a perturbation in (1.10.b), and
the system is thus of index 2. More formally, we consider the perturbed system

Differentiating the second equation gives

0=g,®)f(#2)+9,@)s(x) + 0 ().

We can now use the estimates of the index 1 case to obtain

() - wla)l < C(150) - w0} + | "8 + 19/(©)l1)de)

[5(z) = 2(2)]| < C(I70) - w(O)]| + max. [6(6)] + max. [6(€)1)-

The system (1.10) can be considered as an extreme case of equations (1.4)
with singular g,. For such problems, under the assumption that g, has constant
rank in a neighbourhood of the solution, it is possible to perform a transformation
into the form (1.10) which does not change the index and, even more importantly,
under which the numerical methods to be studied are invariant. This transfor-
mation can be described as a nonlinear version of Gaussian elimination: Let us
denote by z, the first component of z. From the assumption that g, has constant
rank it follows that either there exists a component of g such that dg,/92; # 0
locally, or dg/0z, vanishes identically so that g is already independent of z;. In
the first case we can express z, as a function of y and the remaining components
of z by the Implicit Function Theorem, and thereby eliminate z; in the other
equations. Repeating this procedure with z,, 25, etc., we arrive finally at a sys-
tem of the form (1.10) where z now consists of those components of the original
z in (1.4) which have not been eliminated.

Our next aim is to describe two important classes of equations which either
are of the form (1.10), (1.11) or are closely related to it. These two classes are:
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a) Systems with a solution-dependent singular matrix multiplying the solu-
tion derivative, which arise in electrical circuit analysis and in chemical reaction
kinetics.

b) Equations of motion of constrained mechanical systems.

Ad a): An index 2 system (1.10) will be obtained formally from a transfor-
mation (to be described below) of a system

B(y)y' = a(y) (1.13)

where B(y) is a solution-dependent singular matrix satisfying (1.7) and (1.8).
Since the numerical methods to be studied in this article are invariant under that
transformation, convergence estimates for the y-component of (1.10) will apply
immediately to the direct solution of (1.13).

We first rewrite (1.13) as an augmented system
y' =2z
0 =a(y) - B(y)=.
Supposing that B is of constant rank, we can again decompose

B(y) = 5(y) (é 8>T(y) (1.14)

with invertible S and 7. When B is sufficiently differentiable, also S and 7' can
be chosen smooth in a neighbourhood of each y. We premultiply the second
equation of the augmented system by S—1(y) and obtain with the block notation

(s-la)(y)=(§§§j)’)» T=(§;i %Z)’ y=(5;)’ 2()

the equivalent system

hh=%

Ys = 2,
= f(y) — T (¥)z — T12(y)2,
=g(y)

Since T is invertible, we can (apart from a permutation of columns) assume also
T,, invertible. We then eliminate the third line of the above system by calculating
z, and substituting it into the first line. This gives a system of the form (1.10),
with (y,z,) in the role of (y,z) of (1.10). Condition (1.11) reads in the present
situation

(-9,,T17'Ty5 +g,,) is invertible,
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and a calculation shows that this is equivalent to (1.8).

With the help of the above transformation one derives that the difference
between the solution of (1.13) and that of a perturbed system B()y’ = a(y)+é(z)
is bounded by

I3(z) - v(@)]| < C(115(0) - ¥(O)]| + / " 166))1de + / " 116/ (6) 1dg)

whenever the expression on the right-hand side is sufficiently small. This estimate
is stronger than (1.3) in that the uniform norm is replaced by the L! norm. In
contrast to the case (1.6) of constant B, the dependence of the estimate on &’
cannot, in general, be removed for solution-dependent B(y). This is seen from
the following example:

yi - yayé *+ yzyg =0, y(0)=0

If we add the perturbation é(z) = (0,esinwz, ecoswz)T, then we have ¥ = €2w,
and letting w — oo we see that the ||8’|| term cannot be omitted in (1.3).

We remark, however, that there is no dependence on &’ for systems of the
special form

b, ()Y = f(y)
0=g(y)

with invertible (b7, gI')T, where b, = 9b/0y for some function b(y). This follows
from the observation that the system obtained by adding the equation 0 = b(y)—v
and replacing b (y)y’ by v’ is of the index 1 form (1.4), (1.5) with (v,y) in the
role of (y,z). Numerical methods are not invariant under this transformation,
because v’ and b, (y)y’ are discretized differently for non-constant b,.

Ad b): Problems of the very form (1.10) appear in mechanical modeling of
constrained systems. A multi-body system described by (generalized) coordinates
q and (generalized) velocity u = ¢’ may be subjected to geometric constraints
g(q) = 0 and/or kinematic constraints K (q)u + k(g) = 0. In terms of the kinetic
energy 1'(q,u), the Lagrange equations of motion are
d (o0T oT T
dt(@u) Y =& §H

where (g, u) represents the (generalized) effective forces, A is the Lagrangean
multiplier, and H” = (GT,KT) with G' = g,. Differentiating out and collecting
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all equations gives a system of the form

g =u (1.15.a)
M(q)w' = f(q,u) + HT(q)A (1.15.b)
0=g(q) (1.15.¢)
0= K(q)u+k(q) (1.15.d)

where M =T, is a positive definite matrix.

Let us first consider the case when no constraints (1.15.c) are present. The
system (1.15.a,b,d) is of the form (1.10) (apart from solving for «’ in (1.15.b)) with
(g,u) and A in the roles of y and z. If the constraints in (1.15.d) are independent,
so that H = K has full row rank, then KM -1KT is invertible, and condition
(1.11) is satisfied.

In the presence of geometric constraints (1.15.c) the system (1.15) is no longer
of index 2. A reduction to index 2 may be obtained by using the differentiated
constraint G(q)u = 0, which is of the form (1.15.d), instead of (1.15.c) (or using a
linear combination of both). A difficulty with this approach is that, in the course
of the numerical integration, one may leave the original constraint (1.15.c). To
avoid this, Gear, Gupta & Leimkuhler (1985) propose to use the differentiated
constraint and to add (1.15.c) via a Lagrangean multiplier p (which vanishes on
the exact solution):

q =u+G"(q)p (1.16.a)
M(q)w' = f(g,u) + H (g)A (1.16.b)
0=g(q) (1.16.¢)
0=G(q)u (1.16.d)
0= K(q)u+k(q). (1.16.e)

If the rows of H (and hence also those of ) are linearly independent, then (1.16)
is of the form (1.10) with y = (q,u) and z = (A, u), and condition (1.11) is
satisfied.

Systems of index 3

Problems of the form

y' = f(y,2) (1.17.a)
2 =k(y,z,u) (1.17.b)

are of index 3, if
g,f.k, has a bounded inverse (1.18)
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in a neighbourhood of the solution. This is seen by differentiating (1.17.c) twice,
which gives (omitting the function arguments)

0=g,f (1.17.d)
0=g,,(f,f)+g9,f,f+g,f.k (1.17.¢)

Equations (1.17.a,b) together with (1.17.e) are under condition (1.18) of the index
1 form (1.4) with (1.5). The error estimate (1.3) now depends on the second
derivative of a defect in (1.17.a-c), yielding index 3. Consistent initial values
have to satisfy the three conditions (1.17.c-e).

An example of such an index 3 problem is given by a holonomic mechani-
cal system, for which the equations (1.15) can be formulated without constraints
(1.15.d). Here (g, u,A) play the role of (y,z,u) in (1.17). Condition (1.18) is
satisfied if H = G has linearly independent rows. In the presence of constraints
(1.15.d) the problem (1.15) is still of index 3 if H has full row rank (since differ-
entiation of (1.15.c) then gives an index 2 system of the form (1.10)). It is then,
however, of a slightly more general form than (1.17).

The pendulum

Let us illustrate the above discussion by the mathematical pendulum. The
equations of motion of a point-mass m suspended at a massless rod of length [
under the influence of gravity g, in cartesian coordinates (p, q), are

=u
J = (1.19.a)
mu' = —pA
o (1.19.5)
mv = —qg\—g
0=7p%+¢* 12 (1.19.¢)

Here (u,v) is the velocity and A is the rod tension. In this formulation the system
is of the index 3 form (1.17.a-c). Differentiating (1.19.c) gives

0= pu+qu (1.19.d)

which geometrically corresponds to the fact that the velocity is tangential to the
manifold given by (1.19.c), i.e., orthogonal to the gradient 2(p,q). The system
(1.19.a,b,d) is of the index 2 form (1.10.a,b). Differentiating once more and using
(1.19.c) yields

0 = m(u® + v?) — gq — 12\ (1.19.e)
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The system (1.19.a,b,e) is of the index 1 form (1.4.a,b). The index 2 reformulation
of Gear, Gupta & Leimkuhler (1985) reads in the present case

P=u-—pu
¢ =v—qu
I _
:Z,Z_Zi_g (1.20)
0=p2+q2—12
0=pu+qu.

Singularly perturbed problems

A sequence of differential-algebraic systems of arbitrarily high index arises
in the study of singular perturbation problems:

¥ = f(y,2) (1.21.a)
ez’ = g(y,2), D<ex 1 (1.21.0)

where it is supposed that
(g,v,v) < —|lv||* for all vectors v (1.22)

holds for some scalar product in a neighbourhood of the solution. On any fixed
interval bounded away from 0 (outside an initial transient phase), the solution is
known to possess an e-expansion (see e.g. O’Malley (1988))

y(z) = yo(z) + ey (x) + ¥y, () + ... + fNyN(z) +O(eM )

1.23
2(2) = z4(2) +ezl(z) +€222(1,) B s +€NZN(J:) + O(6N+l) ( )

with smooth e-independent coefficients y,,z,. Inserting (1.23) into (1.21) and
comparing powers of € shows that the expansion coefficients are solution of a
sequence of differential-algebraic systems

(1.24.0)

Y = fy(yOa 20)y1 + f. (Y05 20) 21

(1.24.1)
Z(I) = gy(ymzo)yl + 9.(¥0»20) 2
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and in general

Y = F, (Yo 20)Yk + f2(o,20) 2k + Pr(¥0s 205+ - s Ykm1> Zk—1)

(1.24.)
9y (Yos 20)¥i + 9. (Yos 20) 2k + Vic(Yos 205+ - - » Ykm15 k1)

™
el
|
-

Il

The functions y,, z, are completely determined by (1.24.0), which is an index 1
system of the form (1.4), with condition (1.5) being implied by (1.22). If y,, z, are
considered known, then (1.24.1) is again an index 1 system for y,, z,. Equations
(1.24.0) and (1.24.1) together are, however, of index 2, because a perturbation in
z, enters differentiated into (1.24.1). * Similarly the system (1.24.0)-(1.24.k) is
of index k + 1.

Our interest in the system (1.24) comes from the fact that the numerical
solution of the stiff problem (1.21) possesses an e-expansion whose coefficients are
the numerical solution of the differential-algebraic system (1.24). This permits to
give sharp error bounds for the numerical solution of (1.21) as will be explained
at the end of Section 2.

Singular singularly perturbed problems

As an example of a stiff mechanical system we consider the pendulum sus-
pended at a massless stiff spring with Hooke’s constant 1/e2, 0 < ¢ < 1. With
the normalisation m = 1, [ =1, g = 1 the equations of motion are

/

p =u
r (1.25.a)
qg =v
1
V=g s (VP - )
: pq 1 (1.25.)
V= ———— (VP +¢? -1) -1
€ p2+q2

It can be shown that the solution either has an asymptotic €?-expansion with
smooth e-independent coefficients

p(x) = po(x) + 62p1(;z:) + 64p2((L‘) + ...+ GZNpN(;zf) + O(€2N+2) (1.26)

and similarly for g,u,v with coeflicients g¢;,u;,v;, or it oscillates rapidly with

frequency of magnitude 1/e around such a solution. Let us now suppose that we

* The combined system (1.24.0), (1.24.1) is, in fact, of the form (1.10), (1.11), with (yo, 25 yl)
and z; in the roles of ¥ and 2.



