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It is striking to contemplate the influence of Nestor Riviére upon so
many areas in analysis, and even more striking to think of his influence upocn
so many people. His graciousness was reflected in his mathematical work. He
loved to work with people and to share his ideas. Many of us attending this
conference have benefited in our own work from these ideas and from the breadth
of his mathematical knowledge. His collaborations with others were always marked
by a brilliance, a willingness to listen, and an optimism that created an un-
ending flow of ideas.

Born and raised in Buenos Aires, Argentina, Nestor entered the University
at the age of 16. He received his Licenciatura in mathematics in 1960, married
Marisa Renda in 1961 and taught in Buenos Aires and Bariloche until December
1962. At that time, with the help of A.P. Calderdn, he came to the University
of Chicago to pursue his mathematical studies. Nestor received his Ph.D.
degree in 1966 and in the Fall of that year became a member of the faculty at
the University of Minnesota. In April 1974 Marisa and Nestor's daughter,
Melisa, was born.

Nestor was naturally influenced by his education at Chicago. Real and
harmonic analysis always remained his primary mathematical interest. At Minne-
sota the environment was perfect for the development of this interest and for
the application of his knowledge to problems in other areas, especially to cer-
tain areas of partial differential equations. From 1966 Nestor's work in real
and harmonic analysis went along hand-in-hand with his work in P.D.E. . Below
we review some of Nestor's work in four major areas: Singular Integrals,
Multiplier Theory, Interpolation Theory, and Partial Differential Equations.

Nestor's love for mathematics and his desire to share ideas made him an
exceptional teacher. During his years at Minnesota he supervised the theses
of a number of students, among them were Eleonor Harboure de Aguilera, Nestor

Aquilera, Norberto Fava, Robert Hanks, Wally Madych, and Felipe Zo.

Singular Integrals

At the time Nestor was a student in Chicago the Calderdn-Zygmund theory

vii
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of singular integral operators of elliptic type had already arrived to a well
understood stage. The techniques of the 1952 paper, "On Certain Singular In-
tegrals™, were being used by B.F. Jones to study the Lp-continuity of singular
integrals arising from parabolic equations. Riviére realized that the entire
theory could be placed under one general setting dependent on a fixed notion
of dilation, namely
Q. a
Q n

1
A x = (A X 5 eh xn) ,A>0

where oi,...,oh are given positive numbers.
Associated with the above (nonisotropic) dilation is the metric, r(x) ,

defined for x + O as the unique positive number satisfying

n X
§ 2a, =ik
a=lr j

r(x) has the homogeneity property, r(fzx) = \xr(x) and there is a polar de-

composition of R" relative to r , i.e. each x § O can be written as

(04
X =r

G lc l =1
and
(2, )-1
dx = r J(o) drdo
with 0<J(o)eC(z) , =={o:|o|=1}.

In this setting one can mimic the techniques of the 1952 paper of Calderdn-

Zygmund and prove the P continuity, 1l < p <« , of convolution singular
integrals of the form
(*) lim [ k(x-y)f(y)dy

s r(x-y)> ¢

where

1) k(x) e cH@ERN{O}) ,

-zo,
i) k0%x) =r  k(x) ,A>0,xfo0 ,

iii) f k(c)J(o)do = 0 where do is area measure on £ .
z

The proofs of the above results appeared in article [1] and the extensions of
the results to certain nonconvolution type operators were given in [3].

Nestor went on to considerably generalize the setting in which one could
consider convolution singular integral operators. In [13] he attaches the
notion of a singular kernel with a one parameter family, {Ur: r >0}, of
open bounded neighborhoods of the origin satisfying the conditions:

i) ucu ,r<s, N U_ ={0},
£ 8 r>0
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ii) The algebraic difference Ur-UrCU}é(r), with @#:(0, »)=+(0, »)
nondecreasing, continuous, ﬁ(r) t® as rte
iii) The Lebesque measure of Uﬁ(r) , denoted by m(Uﬁ(r)) 5
is E.Am(Ur) , A independent of r .

Associated to such a family Riviére defined the notion of a singular ker-

nel as a function, k(x) eLiOC(Rn\[o}) with the properties,

i) j k(x)dx is bounded independently of s and r and

Ug\Ur
lim r k(x)dx exists for each fixed s > 0 ,
r+0+
UNUL
ii) I |k(x)| dx < A , independent of r>0
N
U%(r) Ur

iii) There exists A > O such that j [k(x=-y)-k(x)| dx < A
n
R \Uyﬁ(r)

for all yeUr and for all r .

He then naturally defined the doubly truncated singular integral operator -

K (D) = [ k(y)e(x-y)ay
US\Ur

and proved the following theorem, which was new even for the elliptic case,

ice. r(x) = |x| and g(r) =or

Theorem. The operator K,f(x) = sup|K s(f)(x)| is bounded from

LP—pr , 1 <p<w, and from L14 weak Ll 5

In particular for fe P » 1 <p<elim Kr s(f)(x) exist
s 2

r+0+
pointwise for almost every x eRn

In 1973 Nestor, together with Steve Wainger and Alex Nagel, returned to a
problem in singular integrals which was first formulated in the study of the
singular integral operators involving "mixed homogeneous" kernels defined
earlier. The problem was to find a "method of rotation" for these operators
corresponding to that developed by Calderdn and Zygmund. In the latter case
the Lp-continuity of a singular integral of elliptic type arising from an odd
kernel was reduced to the continuity of the one dimensional Hilbert transform.
The problem was to find the appropriate one-dimensional operator for the mixed
homogeneous operators coming from an odd kernel. A candidate was formulated

as early as 1966, namely for x €R"
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il %, at
T £(x) = lim f f(xl—sgnt [t] =, c,x -sent|t| M) E
k% e+ 0 n t
|t| >e€

ui:>0 s 1i=1,0e.,n .

This operator was called by Nagel, Riviére, and Wainger, the Hilbert transform

a a
of f along the curve, v(t) = (sgnt |t| l,...,sgn't|t| n) . In [24] they
prove the continuity of TY on Lp(Rn) , 1 <p<eo, and as a consequence,
the continuity on Lp(Rn) of the mixed homogeneous operators in the form (*)

where the smoothness of k(x) is replaced by the condition

[ (o) | 108" |x(0)|do < .
b3,

Multiplier Theory

Riviere's interest in the theory of Fourier multipliers began as a gradu-
ate student in Chicago. In [1l] there appears the extension of the Hormander
multiplier theorem to the case of multipliers, m(x) , behaving like smooth
functions with mixed homogeneity zero. More precisely if r(x) denotes the

metric, discussed in the previous part, corresponding to the given dilation
a Q
n

Py = (x lxl JECTEON ¢

xn) > > o ,
then m(x) is a Fourier multiplier on all Lp , 1 < p<w provided m is

bounded and

Rz(a-B)- |o] ‘J" IDBm(x)IngSC , independent of R ,
R/2 <r(x) <2R

for all B, |B| <N with n>.1% (la] =za,)
> . i
1

When Nestor joined the faculty at Minnesota in 1966 he immediately began
working with Walter Littman and Charles McCarthy on refinements of the
Marcinkiewicz multiplier theorem in R ([6]). At this same time he started
studying a problem posed to him earlier by A.P. Calderdn who asked if a bounded
rational function on Rd ,d>1, was a Fourier multiplier on i for some
interval of p's around 2 . Already Littman, McCarthy, and Riviére had
given in [7] an example of a bounded rational function on R2 which was not
a multiplier on Lp(RE) , L <p< %— . The example was —E?JL———T . In [13]

x -y+ti
Nestor extended the Marcinkiewicz multiplier result of [6] to operator valued
multipliers and proved that any bounded rational function on Rd is a multi-
plier on the space of functions

Lp(Rd_l,Lg(R)) = {f(t,x),t €R, x€R*™ 1 sueh that

( g ([ 1£(t,%) |2dt)p/2dx)l/p <o} (1<p<w)
gd-1
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Finally in [13] Nestor proved a version of the Hormander multiplier
theorem that not only considerably generalized the setting of the theorem but
added an original twist which even for the elliptic case gave a very interest-
ing result. It is in this setting that we would like to state the result.

d -1
Theorem. Let Bj, j=1,...,d , be positive integers such that T Bj <2 .

Assume mGLw , and =1

(2B8.-n)d B.
sup 2 J IDXJm(x)Igdx:< © .
=0y iy s oMo x| <™ I
g Tl eow o gd

. . d
Then m is a Fourier multiplier on LP(R ) , 1<p<wo .
The novelty of the above reslut is the "trade-off" of smoothness of the
individual variables. One may assume a weak smoothness in one or several of

the variables by requiring sufficient smoothness in the remaining ones.

Interpolation

Nestor began his studies at the University of Chicago in the area of in-
terpolation. His unpublished thesis extended the Riesz-Thorin or Complex
method of interpolation from Banach spaces to topological vector spaces, B ,
with a metric topology defined through an s-norm, O<s <1 , i.e. a function

Il Hs: B+ [0, ) such that
i) Hx”s= 0<=>x=0
5.5 * "
11) Ix*yllg <=l +liyllg
B0 - s
1i1) Il = AT 0
The metric is of course defined as d(x,y) = Hx-—yHS . These spaces are called
s-Banach spaces and prime examples are the Lebesque and Hardy spaces, LS(X,du)
and HS(Rn), 0< s <1 . In the thesis Nestor identifies, via the complex

method, the intermediate spaces of various s-Banach spaces of functions and in

particular shows that
p p
1 2
(L ~(X,du), L “(X,ap)], = LP(X,du)

o, (-9

Pl p2 , 0<a<1l, O<pl, pgﬁm @

where -L =
p

In [14] Nestor extends the techniques of the Marcinkiewicz interpolation
theorem and as a consequence proves that any sublinear operator mapping

boundedly
L”(R™) - BMO(R™)

and
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LHR%) » L(1, =)

must also map boundedly Par? for 1< p <= . Here BMO denotes the space
of functions with bounded mean oscillation, as defined by F. John and L. Niren-
berg, and L(l,®) is the Lorentz space of functions commonly called "weak Ll".
This work of Nestor's, published in 1971, was his one mathematical paper writ-
ten in Spanish.

Together with Yoram Sagher in [17], Nestor calculated the intermediate

spaces, (Hl,qb) for the Lions-Peetre or real method of interpolation.

6,p ’
Here Hl denotes the classical Hardy space of functions defined on R" and

qb denotes the class of continuous functions on Rn vanishing at o . They
proved
1 = p _:L =

(H,Cw)e,p L¥ for = (1-8), 0<6<1.

As a consequence, if M = space of finite measures then
1 I 1
= ' —_= - —+ - = .
(BMO’M)Q,q L(p',q) ° D 1-96, P D' 1

(L(p',q) denotes the usual Lorentz space.)

The above results were extended in [19] where the equalities

Y P P
0 = - yP o .~1 = yP
(H 7,L )9,p H® and (H “,H )6,p H
were proved respectively for Eed=F ong & ei=Bg L > 0<p,, p,< ® ,
P Py P Py, Py 0" "1

0<6<1l.
Nestor's interest in interpolation remained throughout his career. 1In

1976 his student, Robert Hanks, identified in his thesis the intermediate space
p
P P =
(H ,BMO)Q,p as H for p =75, 0< By ™

As a consequence Nestor's result on sublinear operators described above was

extended to the case
o]
T: L -»BMO

T: Hl"L(l,m) g

Partial Differential Equations

As a graduate student Nestor was very interested in the use of singular
integral operators as a general tool to study existence, uniqueness, and regu-
larity for a large class of equations modeled mostly from elliptic operators.
The use of the symbolic calculus, developed by A.P. Calderdn and A. Zygmund in
the elliptic case was adapted to parabolic operators in [4]. Any such operator,

say L =% Aa(x,t)D: - D, , was decomposed on smooth functions with sup-
|a] =2b
+
port in Ri & as
b+1b
L = s((-1) A -D,)

t
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with S a parabolic singular integral operator. Assuming boundedness and uni-
form continuity on the coefficients the operator S was shown to be invertible
on LP(ST) with s. = R® x (0,T) and 1 <p <o . From this followed easily

T
the existence and uniqueness for the problem

Iun =f in sT , u(x,0) =0

with f¢€ Lp(ST) and u in the class of functions having spatial derivatives

of orders < 2b and one time derivative in LP(S ) . Also in papers [28] and

[29] one can again find the development of a symbglic calculus designed to give
general algebraic conditions for the solvability of initial boundary value
problems associated with the Navier-Stokes equations.

The final three years of Nestor's life were dedicated to problems in par-
tial differential equations and some of his best work was done at this time.
Together with Luis Caffarelli very precise regularity results in two dimensions
were obtained for the free boundaries arising from the solution of the minimal
energy problem above a given obstacle and from the solution of the minimal sur-
face problem staying above an obstacle.

In the above situations we are given a bounded, connected domain DC:Rn

and a functioh ¢ , the obstacle, defined on D , satisfying:
a) <0 on pD
b) Ap and v(Ap) do not vanish simultaneously.

We let v(x) , x€D , be the solution of a specific variational inequality

satisfying v > ¢ in D . For example in the case of minimizing energy

=0,u>¢ in D} .

[ lvv|2dx = inf {f |vu]2dx: ulbD
D

D

In [26] it was shown that the set of coincidence,
A={x€D:v(x) =9)x)},

has the following structure in 2 dimensions:

Theorem. If Np€ Ck’u , 0<a<1, k>1, then each component of the inte-

rior of A 1is composed of a finite number of Jordan arcs each having a nonde-
generate Ck_kl’a parametrization. Moreover if Ap 1is real analytic the
Jordan arcs are real analytic.

It was later shown by Caffarelli (even for the general n-dimensional case)
that if xcﬁ A is a point of positive density of A then there exists a ball,

B(xo) , about x_ such that bA[WB(xO) is a €' curve. In [31] Riviére and

0

Caffarelli studied the case when x is a point of zero density and showed

0

the existence of a neighborhood, B(xo), of x,. in which AﬂB(xO) is con~

0
j
tained between two tangent C~ curves. In fact, with a proper choice of
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coordinates AﬂB(xo) is contained between the curves

1/2} )

y =% Cp |x| exp{-C,(log x| )

The final work submitted for publication by Riviére and his co-authors
was [34]. Here A.P. Calderdn's recent results concerning the Cauchy integral
over a Cl-curve were used to solve the Dirichlet and Neumann problems for
Laplace's equation in a Cl-domain, D , contained in R" . The data were as-
sumed to belong to Lp(bD) , 1 < p <o, and the solutions were written respec-
tively in the form of the classical double and single layer potentials. In the
Dirichlet case the nontangential maximal function associated with the solution
was shown to belong to Lp(bD) and, as a consequence, the solution converged
nontangentially to the data at almost every point of the boundary. Similarly
in the Neumann problem the nontangential maximal function associated to the
gradient of the solution was shown to belong to Lp(oD) and again the data
was assumed in a pointwise nontangential sense at almost every point of the
boundary.

On November 23, 1977, during an informal gathering of harmonic analysts
from the Midwest at the University of Chicago, Nestor spoke of some open pro-
blems which he considered exceptionally interesting. These problems are listed
in this proceedings.

The last three years of Nestor's life were years of great personal growth.
For each new crisis in his illness he found in himself new resources of courage.
His sensitivity to other people increased, and his mathematical work continued
unabated to the end. The grace he had shown under the most relentless pressure

one has to face was his last, and greatest achievement.

Alberto Calderdn
University of Chicago
Chicago, Illinois 60637

Eugene Fabes
University of Minnesota
Minneapolis, Minnesota 55455

Yoram Sagher
University of Illinois at Chicago Circle
Chicago, Illinois 60680
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Some Open Questions

Let {ut :t >0} be a family of open bounded convex sets containing O such
that uscut for s<t , ﬂﬂt= {0} . If p and v are finite regular
Borel measures is it true that

w(x+y,)

1im Ty exists almost everywhere with respect to v ?
taor Y t
Consider the fundamental solution, m(x,y) = 2—1—— of the Schrodinger
x -y+i
2
2

operator - % + ib—oy- + i . As a Fourier multiplier on Lp(R ) m(x,y)

0X

is unbounded on IF¥ for p>4 . What canbe said for therange 4/3<p<h ?

Suppose P(x) and Q(x) are polynomials on R" such that gi) is
bounded. Does it follow that %E—:-)l is Fourier multiplier on Lp(Rn)

for some intervals of p's around 2 .

Assume kl(x) and kz(x) , X€R" , are smooth functions on Rn\{O} such
that kl(x) is an elliptic singular kernel and kg(x) is a parabolic
kernel, i.e. kl()\x) = )\_nkl (x) , A\>0 , x#0 and its mean value over the

unit sphere is zero; (AX, 5.0 5AX% >\2x ) = Xn_l k,(x) and its appro-
L n 2

_1»
priate mean value on the unit spherlt;l ii zero. Set Kif = ki*f . Does the
composition K K, map o P ? (see [23]).

Suppose T 1is a translation invariant operator mapping Lp—» Lp’m for a
given p , 1<p<2 . Does this imply T:Lp_,Lp,p' s §+%, =1 2
(The unknown cases are 1<p<2 .)

Let Kf = k*f where k(x) , x €R™ , is homogeneous of degree -n , mean

+

value zero over the unit sphere, £ , in R" , and in L log L(X) . Does
K:L +BMO ?
For a given bounded Cl-domain DcC Rrl , consider the boundary value pro-
blems
2 _ . du .
Au(x) = 0, x€ED , with uloD s &floD given

2
2 _ . du d u x
Au(x) =0, x€ED , with ODIOD » —plpp &iven

>n

Eu u

| | given. Here Qﬁl denotes
s . :
bn2 0D bn3 0D 5 dD

the jth normal derivative of u on 3D . Prescribe classes of boundary

2
Au(x) =0, x€D , with 2= =

data which give existence and uniqueness.

Since the meeting in Williamstown Carlos Kenig and Peter Tomas have an-

swered problem 2 and, as a consequence, also problem 3. They have proved that

2
m(x,y) is only a multiplier on L (R2)
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