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PREFACE

This book is designed for use in secondary schools and in
short college courses. It aims to present in concise but clear
form the portions of algebra that are required for entrance to
the most exacting colleges and technical schools.

The chapters on algebra to quadratics are intended for a
review of the subject, and contain many points of view that
should be presented to a student after he has taken a first
course on those topics. Throughout the book the attention
is concentrated on subjects that are most vital, pedagogically
and practically, while topics that demand a knowledge of the
caleulus for their complete comprehension (as multiple roots,
and Sturm’s theorem) or are more closely related to other por-
tions of mathematics (as theory of numbers, and series) have
been omitted.

The chapter on graphical representation has been intro-
duced early, in the belief that the illumination which it affords
greatly enlivens the entire presentation of algebra. The dis-
cussion of the relation between pairs of linear equations and
pairs of straight lines is particularly suggestive.

In each chapter the discussion is directed toward a definite
result. The chapter on theory of equations aims to give a
simple and clear treatment of the method of obtaining the

real roots of an equation and the theorems that lead to that
iii
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process.  Similarly direct in its argument is the chapter on
determinants, its object being the solution of non-homogeneous
equations and the necessary evaluation of determinants.

I'am under obligations to many friends and colleagues for
suggestions, but especially to Professor P. F. Smith, who has
read the book both in manuseript and proof and whose numer-
ous suggestions have been invaluable.

New Haven, CoNNecTICUT
August, 1905
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ADVANCED ALGEBRA

ALGEBRA TO QUADRATICS

CHAPTER 1
FUNDAMENTAL OPERATIONS

1. It is assumed that the elementary operations and the mean-
ing of the usual symbols of algebra are familiar and do not
demand detailed treatment. In the following brief exposition
of the formal laws of algebra most of the proofs are omitted.

2. Addition. The process of adding two positive integers « and
b consists in finding a number « such that

a+b==z.

For any two given positive integers a single sum x exists
which is itself a positive integer.

3. Subtraction. The process of subtracting the positive num-
ber 4 from the positive number « consists in finding a number
ht
such that btz—a )

This number z is called the difference between « and & and is
denoted as follows :

a—b=uw,
a being called the minuend and & the subtrahend.

If @ > b and both are positive integers, then a single posi-
tive integer = exists which satisfies the condition expressed by
equation (1)

1



2 ALGEBRA TO QUADRATICS

If @ < b,then x is not a positive integer. In order that the pro-
cess of subtraction may be possible in this case also, we introduce
negative numbers which we symbolize by (—a ), (— 8), etc. When
in the difference @ — b, is less than 4, we define a — b = (— (b — a)).
The processes of addition and subtraction for the negative numbers
are defined as follows:

(—a)+ (=) =(—(a+39))-
(—a)+b=(—(a—0)).
a+(—b)y=a—0b.

(—a)— (=) =(—(a —0)).
(—a)—b=(—(a+0)).
a—(—b=a+0.
(—(—a)=ax*

4. Zero. If in equation (1), @ =0, there is no positive or nega-
tive number which satisfies the equation. In order that in this
case also the equation may have a number satisfying it, we intro-
duce the number zero which is symbolized by 0 and defined by

the equation
a+0=a,

or a—a=0.

The processes of addition and subtraction for this new number
zero are defined as follows, where @ stands for either a positive or

a negative number
O+a=a+0=a.

0—a=—a.

5. Multiplication. The process of multiplying a by & consists
in finding a number = which satisfies the equation

a-b=za.

* The symbol for a positive integer might be written (+ a), (+ b), ete., consistently
with the notation for negative numbers. Since, however, no ambiguity results, we omit
the + sign. Since the laws of combining the + and — signs given in this and the following
paragraphs remove the necessity for the parentheses in the notation for the negative
wumber, we shall omit them where no ambiguity results.



FUNDAMENTAL OPERATIONS 3

When a and 4 are positive integers « is a positive integer which
may be found by adding a to itself 4 times. When the numbers
to be multiplied are negative we have the following laws,

(—a)(~h)=a-t,
(—a)b=a-(~b=—(a-D),
0O.a=a-0=0, @

where a is a positive or negative number or zero.
These symbolical statements include the statement of the
following

PRINCIPLE. A product of numbers is zero when and only when
one or more of the factors are zero.

This most important fact, which we shall use continually, assures
us that when we have a product of several numbers as

a-b-c-d=e,

first, if e equals zero, it is certain that one or more of the num-
bers a, b, ¢, or d are zero; second, if one or more of the numbers
a, b, ¢, or d are zero, then e is also zero.

6. Division. The process of dividing a by B consists in finding
a number & which satisfies the equation

x-[;’:a, | (1)

where @ and B are positive or negative integers, or « is 0.
When « occurs in the sequence of numbers

"'_3137 _2ﬁa —'B, 0: ;B; 218) 3:37 Ty

x is a definite integer or 0, that is, it is a number such as we
have previously considered. If a is not found in this series, but
is between two numbers of the series, then in order that in this
case the process may also be possible we introduce the fraction

which we symbolize by @ <+ f8 or % and which is defined by the
equation A

-B=a.



